(19)
(11) EP 0 102 428 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.03.1987 Bulletin 1987/11

(21) Application number: 82304662.8

(22) Date of filing: 06.09.1982
(51) International Patent Classification (IPC)4B07C 5/344

(54)

Method and system for testing and sorting batteries

Verfahren und Anordnung zum Prüfen und Sortieren von Batterien

Procédé et dispositif pour le contrôle et le triage des piles électriques


(84) Designated Contracting States:
DE FR GB

(43) Date of publication of application:
14.03.1984 Bulletin 1984/11

(71) Applicant: POLAROID CORPORATION
Cambridge, Massachusetts 02139 (US)

(72) Inventors:
  • Buckler, Sheldon A.
    Brookline Massachusetts 02146 (US)
  • Burns, Jeffrey B.
    Natick Massachusetts 01760 (US)
  • Kniazzeh, Alfredo G.
    West Newtown Massachusetts 02165 (US)
  • Plesse, Paul A.
    Lexington Massachusetts 02173 (US)
  • Sullivan, David J.
    Boston Massachusetts 01740 (US)

(74) Representative: Abbott, Leonard Charles et al


 ()


(56) References cited: : 
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to battery testing and sorting. More particularly, it concerns a method for testing individual batteries for anticipated shelf-life and culling those individual batteries which are not acceptable.

    [0002] In the merchandising of most battery powered appliances and the like, it is accepted practice to separately package and retail the batteries required for use of the appliance. Among the reasons for this practice are a different manufacturing origin of the appliance and the batteries, different storing, shipping and handling requirements of the appliance and battery, and possible damage to the appliance by defective batteries. Most germane to these reasons and others for separate merchandising of batteries is that the electric charge stored by substantially all batteries deteriorates in time, without use, so that the batteries exhibit a shelf-life of limited duration whereas the appliance with which they are used will last indefinitely without use if proper storage conditions are met.

    [0003] An exception to the practice of separately merchandising batteries and related goods is exemplified by the merchandising of photographic film for use in electrically powered cameras. Film packs for use in instant cameras of the type available from Polaroid Corporation, Cambridge, Massachusetts under the trade designation "POLAROID SX-70 LAND FILM", for example, include a sheet-like battery arranged to be engaged by camera supported contacts upon insertion of the film pack into the camera, thus assuring that the camera powering battery is replaced after exposure and motorized processing of the limited number of film units supplied for each film pack.

    [0004] The sheet-like batteries used in such film packs employ materials selected to require storage conditions which correspond ideally with those of the photographic film units included in the film pack. Also, the construction of such batteries has been developed to a point where the open circuit voltage decay rate is exeptionally low. In this latter respect, the disclosure of US-A-4 028 479 is illustrative in that it describes such a battery and includes graphs showing the results of periodically testing open-circuit and closed-circuit voltages of batteries over an extended period of storage time. In spite of the complementary storage condition requirements and construction of this type of battery, however, the shelf-life characteristics of a given battery are difficult to discern at the time of battery production and often will have a longevity falling below that of the corresponding shelf-life of the film units with which they are packaged.

    [0005] To minimize film wastage as a result of abnormally short battery shelf-life, current procedures used in the manufacture and testing of such batteries involve a batch or production run sampling technique by which the anticipated shelf-life of each batch or run of batteries is ascertained before any of the individual batteries in such a batch or run are assembled and packaged with film units in a film pack. Specifically, a sampling of batteries manufactured in each production run or batch is tested immediately upon completion for the voltage of the stored electrical charge, and the voltage of the sample is recorded. Samples are then stored for a period of time, retested for voltage charge, the retested voltage compared with the original test voltage and the voltage decay rate computed to provide a measure of shelf-life. If the shelf-life of the sampling of any batch indicates a shelf-life shorter than is acceptable, the entire batch or production run corresponding to the sampling is discarded to ensure that only those batches or production runs of batteries exhibiting an acceptable shelf-life will be used.

    [0006] While the present procedures have demonstrated statistical soundness, it has been found that the shelf-life of individual batteries in a given batch or production run may vary considerably. As a result, many of the batteries discarded as a result of the batch or production run sampling technique are found to exhibit an acceptable shelf-life. Accordingly, current procedures are in need of improvement from the standpoint of reducing battery wastage.

    [0007] An example of sorting individual devices in accordance with recorded test data is found in US-A-3 583 561; this discloses the testing of a wafer of semiconductor devices to determine the testing of a wafer of semiconductor devices to determine the quality of each device, the test data with respect to each device being photographically recorded in positions on a record medium related to the positions of the devices on the wafer. This is followed by the subsequent synchronised reading of the recorded data and sorting of the devices separated from the wafer.

    [0008] US-A-4081 743 discloses a cell discharge voltage monitor circuit for cell capacity grading. The cells are individually sorted in accordance with the time for discharging a charged cell to a predetermined cell voltage indicative of total discharge of the capacity of the cell.

    [0009] The present invention consists in a method of testing and sorting a production run of electric batteries in which individual batteries of the production run are tested and in which after a period of storage the same batteries are retested to enable a voltage decay rate to be obtained, characterised by the steps of:

    (a) testing each battery of the production run to obtain a first voltage value for each battery;

    (b) forming on each such battery machine-readable indicia corresponding to the first voltage value and to the time of testing;

    (c) after the said period of storage, retesting each of the individual batteries to obtain a second voltage value for each battery;

    (d) machine-reading the voltage and time indicia and computing, in accordance with the elapsed period of time and the difference between the first and second voltage values of each battery, the rate of voltage decay for each battery; and

    (e) sorting the batteries in accordance with the computed rate of decay to separate those individual batteries of the production run having a rate of voltage decay exceeding an acceptable value from those batteries of the same production run having a rate of voltage decay equal to or lower than the acceptable value.



    [0010] If desired, a preliminary sorting operation may be carried out after the first voltage value has been obtained, to separate those individual batteries having a first voltage value outside an acceptable range of first values from those batteries for which the first voltage value lies within the acceptable range.

    [0011] Preferably, the machine-readable indicia are formed on the battery by a non-contact printer, for example an ink jet printer. A method for controlling a row of ink jets to produce printed bars on a recording surface is disclosed in US-A-3 787 881.

    [0012] The invention also comprises a system for sorting a production run of electric batteries. The invention is particularly advantageous in the production of batteries designed to be packaged and merchandised with related goods of predictable shelf-life, although it can be used with batteries of other kinds.

    [0013] In order that the invention may be better understood, an example of a method and system embodying the invention will now be described with reference to the accompanying drawings, in which:-

    Figure 1 is a schematic view illustrating the system of the present invention;

    Figure 2 is a plan view of a battery for which the sorting method and system of the present invention is particularly intended; and

    Figure 3 is a perspective view illustrating in schematic form the organization of a battery testing station incorporated in the system of the present invention.



    [0014] Although it will be apparent from the detailed description to follow that the testing system and method of the present invention is applicable broadly to all type of batteries, the embodiment to be described is particularly intended for production run testing and sorting of sheet like batteries typified by the disclosure of the aforementioned US Patent No. 4,028,479. An example of such a battery is illustrated most clearly in Figure 2 and is generally designated in the drawings by the reference numeral 10. A most salient feature of the battery 10 from the standpoint of accommodation to the system and method of the present invention, is that in addition to its flat rectangular sheet-like configuration, the terminals 12 and 14 thereof are presented through openings 16 and 18 in an exterior paper or cardboard layer 20. The outer surface 22 of the layer 20, coupled with the uniformly rectangular peripheral configuration or shape of the battery and of the layer 20, facilitates the reception of printed indicia 24 to be described in more detail below, in a precisely registered position relative to the terminals 12 and 14 and to the peripheral edges of the battery.

    [0015] The batteries 10 are mass produced in batches or runs of several hundred or more individual batteries. The manufacture or assembly of each battery is completed by application of the cardboard layer 20 to the internal cell structure and by a peripheral heat sealing or bonding of the layer 20 to an insulative layer or covering (not shown) on the opposite side of the battery from the layer 20. In accordance with the present invention and as shown in Fig. 1, each battery 10 is passed upon manufacturing completion by an appropriate dispenser or conveyor (not shown) to a first testing station 26. At the station 26, a value of the open circuit voltage of each battery is obtained. As shown in Fig. 3, this voltage is detected by a meter 28 having a pair of contact probes or brushes 30 and 32 adapted to engage both terminals 12 and 14 of each battery. The meter 28 may be any of several known types of volt meters capable of generating a signal corresponding to the open circuit voltage across the probes 30 and 32.

    [0016] Located at the first station with the meter 28 is a recording device or printer 34. The printer 34 is responsive to and controlled by the meter 28 and is operative to form the printed indicia 24 directly on the outer surface 22 of the cardboard battery layer 20. As shown in Fig. 1, the printer 34 is preferably spaced from the battery 10 and is a non-contact printer, for example, an inkjet printer which essentially exerts no force, or quite negligible force, on the battery since only the ink contacts the battery surface. The non-contact printing eliminates the possibility of battery damage due to printing and also may easily accommodate a wide variety of battery configurations such as, for example, cylindrical. While other non-contact printers such as, for example, a laser type will also be applicable, the ink jet printer is relatively maintenance-free and provides excellent indicia.

    [0017] As most clearly illustrated in Fig. 2, the indicia is preferably provided as a bar/half bar code in the form of a series of variable height lines representing a binary or other type encoding capable of representing the precise voltage detected by the meter 28 in a form which may be sensed or read by machine. Other forms of indicia may also be utilized, and while encoded indicia rather than alphanumerical is preferred for reliability, the latter could also be employed. Hence, the meter 28 and printer 34 provide testing and marking means for providing a first value of battery energy and for placing the measured value on each battery in machine readable form. Further, as noted below, these means also preferably determine and record the time of measurement as well as other manufacturing information. Consequently, the indicia 24 include machine readable information representative of the time at which the voltage for a particular battery 10 was measured by the meter 28. As will be appreciated by those skilled in the art, an encoded indicia of the type illustrated may include information relative to month, day of the month, hour and minute of each day.

    [0018] After passing the first testing station 26, the batteries 10 may be advanced to a first sorting station 36 operated under the control of the first testing station 26 to cull those batteries for which the initial voltage detected at the station 26 was below a predetermined acceptable limit. Each acceptable battery passing the station 36 is retained and passed to a storage station 38.

    [0019] In practice, the storage station 38 may take a variety of specific forms such as a plurality of magazine-like receptacles for warehouse storage, or in-line storage bins in which the batteries 10 may be stored for a period of time, or delay period, determined in accordance with such factors as the anticipated voltage decay rate of the batteries as well as the sensitivity of the metering equipment used in the system for detecting the open circuit voltage for each battery. In other words, it is necessary only that the batteries remain at the storage station 38 for a period of time adequate to undergo a discernible voltage decay from the voltage detected at the first testing station 26. However, since the purpose is to extrapolate or predict from a measured decay the subsequent time, many months or years later, at which the battery energy will fall below a given value, a reasonable decay period of several weeks is preferred.

    [0020] After storage, the batteries are again tested by passing them to a second testing station 40. As suggested by the legend in Fig. 1 of the drawings, at the station 40 the open circuit voltage of each battery 10 is again detected, the voltage recorded at the first testing station and represented by the indicia 24 on each battery 10 is read, the two voltage readings are compared and the voltage decay rate for each battery computed. Hence the station 40 provides testing and reading means for providing or obtaining a second value for each battery after the time interval, for reading the previously printed indicia.

    [0021] As above-indicated, the indicia 24 carries information as to the time at which the first voltage reading was taken at the station 26. The availability of this information on each battery 10 at the second testing station 40 provides data by which the voltage decay rate for each battery may be directly computed. Station 40 reads the original voltage value and original test time and compares the two voltage values and also the first and second test times to determine the specific length of time the batteries 10 were retained between tests, and computes the rate or decay of the battery under test.

    [0022] After passing the second sorting station 40, the batteries are passed through a second sorting station 42, which is responsive to and controlled by the test station 40 and operative to reject those individual batteries 10 for which the computed decay rate is in excess of a pre-established or acceptable decay rate. Thus, only those batteries which pass from the sorting station 42 to a packaging station (not shown) will have a tested decay rate corresponding to an acceptable battery shelf-life.


    Claims

    1. A method of testing and sorting a production run of electric batteries in which individual batteries of the production run are tested and in which after a period of storage the same batteries are retested to enable a voltage decay rate to be obtained, characterised by the steps of:

    (a) testing (28) each battery of the production run to obtain a first voltage value for each battery (10);

    (b) forming (34) on each such battery machine-readable indicia (24) corresponding to the first voltage value and to the time of testing;

    (c) after the said period of storage, retesting (40) each of the individual batteries to obtain a second voltage value for each battery;

    (d) machine-reading (40) the voltage and time indicia and computing, in accordance with the elapsed period of time and the difference between the first and second voltage values of each battery, the rate of voltage decay for each battery; and

    (e) sorting (42) the batteries in accordance with the computed rate of decay to separate those individual batteries of the production run having a rate of voltage decay exceeding an acceptable value from those batteries of the same production run having a rate of voltage decay equal to or lower than the acceptable value.


     
    2. A method in accordance with claim 1, further comprising assembling and packaging acceptable batteries with related goods to be merchandised with the individual batteries of such a production run.
     
    3. A method in accordance with claim 1 or 2, wherein the batteries are sheet-like, rectangular electric batteries (Figure 2) having terminals (12, 14) presented through apertures in the exterior layer (20) receptive to placement of indicia by printing, and wherein each battery is tested by passing contact members (30, 32) through the apertures in the exterior layer and machine-readable indicia are placed on the exterior layer of each such battery corresponding to the first voltage value and the time of testing.
     
    4. A method according to any one of claims 1 to 3, further comprising the step (36) of sorting the batteries after completion of step (a) in accordance with the first voltage value to separate those individual batteries having a first voltage value above or below an acceptable range of first values from those batteries having a first voltage value within the acceptable range.
     
    5. A method according to any one of the preceding claims, wherein the step of forming machine-readable indicia includes forming the indicia by a non-contact printer or with only negligible force applied to the battery.
     
    6. A method according to claim 5, wherein the step of forming the machine-readable indicia is provided by directing ink to the battery to form the indicxia by means of an ink jet printer.
     
    7. A system for sorting a production run of electric batteries, comprising testing means for obtaining a first voltage value for individual batteries (10) of the production run and for obtaining a second voltage value for the same batteries (10) after a period of storage to enable a voltage decay rate to be derived, characterised in that the testing means obtains the said voltage values for each battery (10) of the production run and in that the system includes:

    marking means (34) for placing machine-readable indicia (24) on each battery (10) of the production run corresponding to the first voltage value and to the time of obtaining the said first value;

    reading means (40) operative when the second voltage value has been obtained after the storage period for machine-reading the voltage and time indicia from each tested battery (10);

    means for computing, in accordance with the elapsed period of time and the difference between the said first and second voltage values of each battery (10), the rate of voltage decay for each battery (10); and

    means (42) for sorting the batteries (10) individually in accordance with the computed rate of decay to separate those individual batteries (10) of the production run having a rate of voltage decay exceeding an acceptable value from those batteries (10) of the same production run having a rate of voltage decay equal to or lower than the acceptable value.


     
    8. A system according to claim 7, wherein the marking means is a non-contact printer (34) spaced from the batteries (10).
     
    9. A system according to claim 7 or 8, further including preliminary means (36), responsive to the first voltage value, for effecting a preliminary sorting of the batteries (10) in accordance with the obtained first voltage value.
     
    10. A system according to claim 7, 8 or 9, wherein the testing means (28) for obtaining the first voltage value and the marking means (34) are juxtaposed at a single station (26).
     
    11. A system according to any one of claims 7 to 10, wherein the testing means for obtaining the second voltage value and the reading means (40) are juxtaposed at a single station (40).
     
    12. A system according to any one of claims 7 to 11, comprising means for individually packaging batteries (10) having an acceptable rate of voltage decay with related goods to be merchandised.
     


    Ansprüche

    1. Verfahren zur Prüfung und Sortierung einer Produktionsfolge elektrischer Batterien, bei dem die einzelnen Batterien der Produktionsfolge geprüft werden und bei welchem nach einer gewissen Lagerzeit die gleichen Batterien wiederum geprüft werden, um eine Spannungsverminderungsrate zu erhalten, gekennzeichnet durch die folgenden Schritte:

    (a) es wird jede Batterie der Produktionsfolge geprüft (28), um einen ersten Spannungswert für jede Batterie (10) zu erhalten;

    (b) es wird auf jeder derartigen Batterie ein maschinenlesbares Zeichen (24) angebracht (34), welches den ersten Spannungswert und den Prüfzeitpunkt angibt;

    (c) nach der besagten Lagerzeit wird jede einzelne Batterie nochmals geprüft (40), um einen zweiten Spannungswert für jede Batterie zu erhalten;

    (d) es werden die Angaben von Spannung und Zeit von dem Zeichen durch eine Maschine gelesen (40) und es wird gemäß der verstrichenen Zeitdauer und der Differenz zwischen dem ersten und zweiten Spannungswert jeder Batterie die Spannungsverminderungsrate für jede Batterie berechnet; und

    (e) es werden die Batterien gemäß der berechneten Verminderungsrate sortiert (42), um jene einzelnen Batterien der Produktionsfolge auszusondern, die eine Spannungsverminderungsrate besitzen, welche einen annehmbaren Wert gegenüber jenen Batterien der gleichen Produktionsfolge übersteigt, deren Spannungsverminderungsrate gleich oder kleiner als der annehmbare Wert ist.


     
    2. Verfahren nach Anspruch 1, bei welchem die annehmbaren Batterien mit zugeordneten Waren zusammengestellt und verpackt werden, die mit den einzelnen Batterien einer solchen Produktionsfolge gehandelt werden.
     
    3. Verfahren nach den Ansprüchen 1 oder 2 dadurch gekennzeichnet, daß die Batterien als flache rechteckige elektrische Batterien (Fig. 2) ausgebildet sind, deren Anschlußklemmen (12, 14) durch Öffnungen einer äußeren Schicht (20) freiliegen, welche aufgedruckte Zeichen aufnehmen, wobei jede Batterie dadurch geprüft wird, daß Kontaktglieder (30, 32) durch die Öffnungen der Außenschicht hindurchgreifen und maschinenlesbare Zeichen auf der äußeren Schicht einer jeden Batterie aufgebracht werden, welche den ersten Spannungswert und den Prüfzeitpunkt angeben.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, welches weiter den Schritt (36) umfaßt, die Batterien nach Vollendung des Schrittes (a) gemäß dem ersten Spannungswert zu sortieren, um jene einzelnen Batterien, die einen ersten Spannungswert über oder unter einem annehmbaren Bereich erster Werte aufweisen, von jenen Batterien zu trennen, die einen ersten Spannungswert innerhalb des annehmbaren Bereiches aufweisen.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, bei welchem der Schritt der Erzeugung maschinenlesbarer Zeichen das Aufbringen der Zeichen durch einen berührungslosen Drukker umfaßt, oder die Zeichen mit einer vernachlässigbaren Kraft, die auf die Batterie ausgeübt wird, aufgebracht werden.
     
    6. Verfahren nach Anspruch 5, bei welchem der Schritt der Herstellung der maschinenlesbaren Zeichen dadurch durchgeführt wird, daß Tinte auf die Batterie gespritzt wird, um eine Anzeige mittels eines Tintenstrahldruckers herzustellen.
     
    7. System zur Sortierung einer Produktionsfolge elektrischer Batterien mit einer Prüfvorrichtung zur Erlangung eines ersten Spannungswertes für die einzelnen Batterien (10) der Produktionsfolge und zur Erlangung eines zweiten Spannungswertes für die gleichen Batterien (10) nach einer Lagerzeit zur Feststellung der Spannungsverminderungsrate, dadurch gekennzeichnet, daß die Prüfvorrichtung die Spannungswerte für jede Batterie (10) der Produktionsfolge erhält, und daß das System folgende Bestandteile aufweist:

    eine Markierungsvorrichtung (34), um maschinenlesbare Zeichen (24) auf jeder Batterie (10) der Produktionsfolge anzubringen, entsprechend dem ersten Spannungswert und dem Zeitpunkt, zu dem dieser erste Spannungswert festgestellt wurde;

    eine Lesevorrichtung (40), die in Tätigkeit tritt, wenn der zweite Spannungswert nach der Lagerzeit erlangt wird, um Spannungs- und Zeitangaben von jeder geprüften Batterie (10) durch eine Maschine lesen zu lassen;

    Mittel zur Berechnung der Spannungsverminderungsrate für jede Batterie (10) gemäß der verflossenen Zeitdauer und der Differenz zwischen dem ersten und zweiten Spannungswert jeder Batterie (10); und

    Mittel (42) zum individuellen Sortieren der Batterien (10) gemäß der berechneten Verminderungsrate, um jene individuellen Batterien (10) der Produktionsfolge, die eine Spannungsverminderungsrate besitzen, welche einen annehmbaren Wert überschreitet, von jenen Batterien (10) der gleichen Produktionsfolge zu trennen, die eine Spannungsverminderungsrate zeigen, die gleich oder kleiner einem annehmbaren Wert ist.


     
    8. System nach Anspruch 7, bei welchem die Markierungsmittel von einem berührungslosen Drucker (34) gebildet sind, der von den Batterien (10) distanziert ist.
     
    9. System nach Anspruch 7 oder 8, welches außerdem Vorbereitungsmittel (36) aufweist, die auf den ersten Spannungswert ansprechen, um, eine Vorsortierung der Batterie (10) gemäß dem erlangten ersten Spannungswert vorzunehmen.
     
    10. System nach den Ansprüchen 7, 8 oder 9, bei welchem die Prüfvorrichtung (28) zur Erlangung des ersten Spannungswertes und die Markierungsmittel (34) gegenüberliegend auf einer einzigen Station (26) angeordnet sind.
     
    11. System nach einem der Ansprüche 7 bis 10, bei welchem die Prüfvorrichtung zur Erlangung des zweiten Spannungswertes und die Lesevorrichtung (40) gegenüberliegend auf einer einzigen Station (40) angeordnet sind.
     
    12. System nach einem der Ansprüche 7 bis 11, welche Mittel umfaßt, um individuell jene Batterien (10), die eine annehmbare Spannungsverminderungsrate besitzen, zusammen mit den zugeordneten, in den Handel zu bringenden Waren zu verpacken.
     


    Revendications

    1. Méthode de test et de tri d'une série de production de batteries électriques, dans laquelle les batteries individuelles de la série de production sont testées et dans laquelle, après une période de stockage, les mêmes batteries sont à nouveau testées, pour permettre d'obtenir un taux d'affaiblissement du voltage, caractérisée par le fait qu'elle comporte les étapes suivantes:

    (a) tester (28) chaque batterie de la série de production, de façon à obtenir une première valeur du voltage pour chaque batterie (10);

    (b) former (34) sur chaque batterie un indice, lisible à la machine (24), correspondant à la première valeur du voltage et à la date du test;

    (c) après ladite période de stockage, tester à nouveau (40) chacune des batteries individuelles, de façon à obtenir une seconde valeur du voltage pour chaque batterie;

    (d) lire à la machine (40) l'indice de voltage et de date, et calculer, en fonction de la période de temps écoulé et la différence entre les première et seconde valeurs du voltage de chaque batterie, le taux d'affaiblissement du voltage de chaque batterie; et

    (e) trier (42) les batteries en fonction du taux calculé d'affaiblissement, de façon à séparer celles des batteries individuelles de la série de production ayant un taux d'affaiblissement de voltage supérieur à une limite acceptable, de celles des batteries de la même série de production ayant un taux d'affaiblissement de voltage égal ou inférieur à la limite acceptable.


     
    2. Méthode selon la revendication 1, comprenant de plus l'assemblage et l'emballage des batteries acceptables avec des objets en rapport en vue d'être commercialisés avec les batteries individuelles d'une telle série de production.
     
    3. Méthode selon les revendications 1 ou 2, dans laquelle les batteries sont des batteries électriques (voir figure 2), en forme de feuille et rectangulaires, ayant des bornes (12, 14) qui se présentent à travers des ouvertures pratiquées dans une couche extérieure (20), capable de recevoir l'inscription de l'indice par impression, et dans laquelle chaque batterie est testée par des pièces de contact (30, 32) passant à travers les ouvertures dans la couche extérieure, et les indices, lisibles à la machine, sont inscrits sur la couche extérieure de chaque batterie, correspondant à la première valeur du voltage et la date du test.
     
    4. Méthode selon l'une quelconque des revendications 1 à 3, comprenant de plus l'étape (36) de triage des batteries après exécution de l'étape (a), en fonction de la première valeur du voltage, pour séparer ces batteries individuelles ayant une première valeur de voltage au dessus ou en dessous d'un intervalle acceptable de premières valeurs du voltage, de ces batteries ayant une première valeur de voltage à l'intérieur de cet intervalle acceptable.
     
    5. Méthode selon l'une quelconque des revendications précédentes 1 à 4, dans laquelle l'étape de formage des indices lisibles à la machine comporte l'inscription des indices par une impression sans contact, ou avec une force négligeable appliquée sur la batterie.
     
    6. Méthode selon la revendication 5, dans laquelle l'étape de formage des indices lisibles à la machine est prévue en dirigeant de l'encre sur la batterie pour former les indices, au moyen d'une impression par jet d'encre.
     
    7. Système pour le triage d'une série de production de batteries électriques, comportant des moyens de test pour obtenir une première valeur du voltage pour les batteries individuelles (10) de la série de production, et pour obtenir une seconde valeur du voltage pour les mêmes batteries (10) après une période de stockage, de façon à pouvoir en déduire un taux d'affaiblissement du voltage, caractérisé par le fait que les moyens de test permettent d'obtenir lesdites valeurs du voltage pour chaque batterie (10) de la série de production, et que ce système comporte:

    des moyens de marquage (34) pour inscrire les indices (24) lisibles à la machine sur chaque batterie (10) de la série de production, correspondant à la première valeur du voltage et à la date d'obtention de ladite première valeur;

    des moyens de lecture (40), qui sont opérationnels quand la seconde valeur du voltage a été obtenue après la période de stockage, pour lire à la machine les indices de voltage et de date de chaque batterie testée (10);

    des moyens de calcul pour calculer, en fonction de la période de temps écoulé et la différence entre lesdites première et seconde valeurs du voltage de chaque batterie (10), le taux d'affaiblissement du voltage pour chaque batterie (10); et

    des moyens (42) pour le triage des batteries (10) individuellement en fonction du taux calculé d'affaiblissement du voltage, de façon à séparer ces batteries individuelles (10) de la série de production ayant un taux d'affaiblissement du voltage supérieur à une limite acceptable, de ces batteries (10) de la même série de production ayant un taux d'affaiblissement du voltage égal ou inférieur à cette limite acceptable.


     
    8. Système selon la revendication 7, dans lequel le moyen de marquage est un procédé d'impression sans contact (34), séparé des batteries (10).
     
    9. Système selon les revendications 7 ou 8, comportant de plus des moyens préliminaires
     
    (36) pour obtenir la première valeur du voltage, et effectuer un triage préliminaire des batteries (10) en fonction des valeurs obtenues pour le premier voltage.
     
    10. Système selon les revendications 7, 8 ou 9, dans lequel les moyens (28) de test pour obtenir la première valeur du voltage, et les moyens de marquage (34) sont juxtaposés dans un poste unique (26).
     
    11. Système selon l'une quelconque des revendications 7 à 10, dans lequel les moyens pour obtenir la seconde valeur du voltage, et les moyens de lecture (40) sont juxtaposés dans un poste unique (40).
     
    12. Système selon l'une quelconque des revendications 7 à 11, comportant des moyens d'emballer individuellement des batteries (10) ayant un taux acceptable d'affaiblissement de voltage, avec des objets en rapport en vue d'être commercialisés.
     




    Drawing