(19)
(11) EP 0 242 776 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
07.02.1990 Bulletin 1990/06

(21) Application number: 87105515.8

(22) Date of filing: 14.04.1987
(51) International Patent Classification (IPC)5B01J 10/00, B01F 3/04
// C12M1/08

(54)

Gas-liquid reactor and method for gas-liquid mixing

Gas-Flüssigreaktor und Verfahren zum Mischen von Gas mit Flüssigkeit

Réacteur gaz-liquide et procédé pour mélanger du gaz et du liquide


(84) Designated Contracting States:
BE CH DE FR GB LI

(30) Priority: 14.04.1986 US 851725

(43) Date of publication of application:
28.10.1987 Bulletin 1987/44

(73) Proprietor: HERZOG-HART CORPORATION
Boston, Mass. 02116 (US)

(72) Inventors:
  • Concordia, Joseph J.
    Boston Massachusetts 02114 (US)
  • Hall, Donald R.
    Barrington Rhode Island 02806 (US)

(74) Representative: Görg, Klaus, Dipl.-Ing. et al
Hoffmann Eitle, Patent- und Rechtsanwälte Postfach 81 04 20
81904 München
81904 München (DE)


(56) References cited: : 
EP-A- 0 010 571
FR-A- 1 512 557
EP-A- 0 048 974
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to a reactor for transferring a reactive gas to a liquid and, more particularly, to a gas-liquid reactor having a high rate of gas transfer into the liquid and to a method for effectively transferring a reactive gas to a liquid.

    [0002] Apparatus for gas-liquid mixing is used for many chemical reaction processes and fermentation processes. A liquid to be reacted is placed in a reactor vessel. The liquid contains compounds to be reacted or cells which take part in a fermentation process. A gas is introduced into the liquid by a variety of techniques, and a reactive component of the gas reacts with the liquid in a desired manner.

    [0003] One objective in the operation of gas-liquid reactors is a high rate of reaction in order to reduce processing times and costs. High reaction rates are obtained by increasing the interface area between the gas and the liquid which requires a large number of very small gas bubbles distributed through the liquid. It is well-known that a given volume of gas has maximum surface area when it is subdivided in a large number of small bubbles. In order to transfer large gas volumes to a liquid in the required form of evenly distributed small bubbles, energy must be applied to the liquid as a shear force. A large fraction of the energy used for stirring or agitation of the liquid by rotary mixers is not available as a shear force for gas-liquid mixing. In addition, small bubbles in the liquid have a tendency to coalesce into larger bubbles and rise to the surface, limiting the gas-liquid interface area and causing a pressure buildup in the head space at the top of the vessel.

    [0004] A variety of techniques has been used for gas- liquid mixing including mechanically agitated tanks, sparged gas columns and nozzle assemblies to disperse gas in a liquid. One widely used gas-liquid reactor includes a submerged jet nozzle at the bottom of a cylindrical vessel, and a guide tube coaxial with the cylindrical vessel and positioned over the submerged jet nozzle. A gas-liquid mixture, injected by the nozzle, circulates upwardly through the guide tube to the surface of the liquid and then downwardly in the annular space outside the guide tube, re- suiting in continuous circulation. In another prior art gas-liquid reactor, a so-called free jet nozzle is positioned at the top of a vessel in the head space above the liquid surface. Reactive gas is introduced into the head space and is entrained by the downwardly injected liquid jet from the free jet nozzle.

    [0005] All of the prior art gas-liquid reactors suffer from certain deficiencies and disadvantages. The gas introduced into the liquid tends to coalesce into larger bubbles and rise to the surface of the liquid, thereby reducing the interfacial surface area between the gas and the liquid. The unreacted gas in the head space must be vented to maintain system pressure and may be lost from the system. Usually the gas vented from the head space is only partially reacted and still contains useful reactive components. A variety of baffles, guides and tubes have been incorporated into reactor assemblies to extend the path length of the gas-liquid mixture and to provide more time for gas and liquid to be in intimate contact. However, none have been totally satisfactory. As a result, prior art reactors have been relatively inefficient in transferring gas to the liquid for reaction. Relatively large amounts of energy have been required to transfer limited amounts of gas to the liquid.

    [0006] It is a general object of the present invention to provide a novel gas-liquid reactor.

    [0007] It is another object of the present invention to provide a novel gas-liquid reactor with a high gas transfer rate.

    [0008] It is a further object of the present invention to provide a novel gas-liquid reactor utilizing a submerged jet nozzle and at least two free jet nozzles to achieve a high rate of transfer of gas to the liquid.

    [0009] It is a further object of the present invention to provide a novel gas-liquid reactor with relatively low energy requirements for transferring the gas to the liquid phase.

    [0010] It is a further object of the present invention to provide a novel gas-liquid reactor wherein gas is efficiently transferred to the liquid phase.

    [0011] It is a further object of the present invention to provide a method for effectively transferring a reactive gas to a liquid in a gas-liquid reactor.

    [0012] According to the present invention, these and other objects and advantages are achieved in a gas-liquid reactor comprising a vessel for containing a liquid, the vessel having a sidewall, a top and a bottom, a submerged jet nozzle positioned at the bottom of the vessel for injecting a liquid and gas mixture upwardly into the liquid in the vessel and at least two free jet nozzles positioned at the top of the vessel in a head space above the liquid surface for injecting a liquid jet downwardly into the liquid in the vessel. Reactive gas in the head space is entrained into the liquid jet and mixed into the liquid in the vessel. The gas-liquid reactor further includes means for supplying reactive gas to the submerged. jet nozzle, means for supplying liquid to the submerged jet nozzle and to the free jet nozzle, means for venting reacted gas from the vessel, and baffle means for directing reactive gas from the liquid to the head space for entrainment in the liquid jet from the free jet nozzle and for directing reacted gas to the venting means.

    [0013] The vessel preferably comprises an upright cylinder closed at both ends and a cylindrical guide tube coaxial with the vessel. The submerged jet nozzle is positioned on the axis of the vessel and directs a gas-liquid mixture upwardly through the guide tube. The gas-liquid mixture then circulates downwardly through the annular region between the guide tube and the vessel wall.

    [0014] The gas liquid reactor of the present invention is preferably provided with diffuser tubes extending from each free jet nozzle downwardly into the liquid in the vessel in the annular space between the guide tube and the vessel wall. The diffuser tubes cause the gas-liquid mixture generated by the free jet nozzle to be injected into the lower portion of the vessel. The diffuser tubes increase in diameter toward the bottom of the vessel to facilitate transfer of the gas-liquid mixture into the lower portion of the vessel.

    [0015] The baffle means preferably includes a first horizontal baffle plate positioned in the head space above the liquid and a cylindrical baffle member extending downwardly from the first baffle plate into the liquid outside the guide tube. Gas rising from the liquid surface above the guide tube is directed into the head space for recirculation via the free jet nozzles while gas rising from the liquid in the annular space outside the guide tube is directed to the venting means.

    [0016] According to another aspect of the present invention, there is provided a method for mixing a gas into a liquid in a gas-liquid reactor vessel. The method comprises the steps of injecting liquid and gas upwardly into the liquid in the vessel from a submerged jet nozzle positioned at the bottom of the vessel, injecting liquid and gas, which is entrained into the liquid from the head space in the vessel, downwardly into the liquid in the vessel from at least two free jet nozzles positioned in the head space, and directing reactive gas from the liquid to the head space for entrainment in the liquid jet from the free jet nozzle while directing reacted gas from the liquid to a vent.

    [0017] For a better understanding of the present invention together with other and further objects, advantages and capabilities thereof, reference may be had to the accompanying drawings which are incorporated herein by reference and in which:

    FIG. I is a cross-sectional elevation view of a gas-liquid reactor in accordance with the present invention with associated external elements shown schematically;

    FIG. IA is an enlarged partial cross-sectional view of a free jet nozzle and a diffuser tube; and

    FIG. 2 is a cross-sectional top view of the gas- liquid reactor shown in FIG. I, taken through the line 2-2.



    [0018] A gas-liquid reactor in accordance with the present invention is illustrated in FIGS. I, IA and 2. A vessel 10 includes a cylindrical sidewall 12, a top 14 and a bottom 16. The vessel 10 may be fabricated from any weldable metal such as plain or stainless steel and is positioned with the axis 18 of the cylindrical sidewall 12 oriented vertically. A liquid 20 to be reacted fills the major portion of the vessel 10. Above a liquid surface 22, the top 14 and the sidewall 12 define a head space 24 filled with a gas as described hereinafter.

    [0019] A submerged jet nozzle 30 is mounted in the bottom 16 of the vessel 10 on the axis 18. The nozzle 30 includes an inner nozzle portion 32 which receives pressurized liquid through a conduit 34, and an outer nozzle portion 36 concentric with the inner nozzle portion 32 which receives a reactive gas through a conduit 38 from a gas supply 40. The inner and outer nozzle portions 32, 36 extend through the vessel bottom 16 and terminate within the liquid in vessel 10 in a nozzle tip 42.

    [0020] Liquid is pumped from the inner nozzle portion 32 upwardly into the liquid in the vessel 10. Since the liquid entering the vessel 10 through the jet nozzle 30 has considerable velocity relative to the liquid in the vessel 10, there is created an interface 44 between the relatively fast-moving liquid from the nozzle 30 and the relatively slow-moving liquid in the vessel 10. The interface 44 is generally conical in shape, with the apex of the cone approximately coincident with the nozzle tip 42. The differential liquid velocities at the interface 44 create a shear force which, as noted hereinabove, is beneficial to transfer of gas to the liquid. The gas is introduced through the outer nozzle portion 36 to the tip 42 in a ring concentric with the inner nozzle portion 32, and is directed into the interface 44 to promote entrainment into the liquid.

    [0021] A cylindrical guide tube 46 is positioned within the vessel 10 with its axis coincident with the axis 18. The guide tube 46 terminates below the liquid surface 22 and promotes circulation of the liquid gas mixture in the vessel 10 in a well-defined manner. The gas-liquid mixture injected by the submerged jet nozzle 30 passes upwardly through the guide tube 46, then radially outward near the liquid surface 22 and downwardly through the annular region between the guide tube 46 and the sidewall 12, as indicated by the arrows in FIG. I. Preferably, the ratio between the diameter of the guide tube 46 and the diameter of the vessel 10 is in the range between 0.5 and 0.6.

    [0022] In the example of FIG. the guide tube 46 is provided with a heat transfer surface 48. A heat transfer liquid can be circulated from an external source through the passage between surface 48 and the guide tube 46 for heating or cooling of the liquid in vessel 10. The heat transfer surfaces can also be incorporated as part of the diffuser tubes, the vessel wall, or the external liquid recirculation pipes which transfer liquid from the vessel to the nozzles.

    [0023] Mounted in the top 14 of the vessel 10 and symmetrically positioned with respect to the axis 18 are free jet nozzles 50, 52. The free jet nozzles 50, 52 include tubular portions 50a, 52a, which extend from outside the vessel 10 through the vessel top 14 into the head space 24 and terminate in tips 50b, 52b above the liquid surface 22. Liquid is received by the free jet nozzle 50 through a conduit 54 and is injected through the tip 50b downwardly into the liquid in the vessel 10. Similarly, liquid is received by the free jet nozzle 52 through a conduit 56 and is delivered through the tip 52b downwardly into the liquid in the vessel 10. The liquid injected under pressure from the jet nozzles 50, 52 forms liquid jets 60, 62 extending from the nozzle tips 50b, 52b, respectively, downwardly into the liquid in the vessel 10. The liquid jets 60, 62 are generally conical in shape and have turbulence and instability at their surfaces where the liquid interfaces with the gas in the head space 24. The turbulence creates shear force which causes gas in the head space 24 to be entrained into the liquid jets 60, 62 and carried downwardly into the liquid in the vessel 10.

    [0024] The gas-liquid reactor in accordance with the present invention is further provided with diffusers 66, 68 for directing the liquid jets 60, 62, with gas entrained therein, to the lower portion of the vessel 10 for improved gas-liquid mixing. The diffusers 66, 66 are axially oriented with tn6 nozzles so, 62 and extend from flared ends 66a, 68a adjacent nozzle tips 50b, 52b downwardly into the liquid to outlet apertures 66b, 68b. Upper portions 66c, 68c of the diffusers are uniform diameter tubes while lower portions 66d, 68d are tapered to increase in diameter toward outlet apertures 66b, 68b. The flared ends 66a, 68a form a conical space for directing gas flow toward the liquid jets 60, 62. A low pressure region is created in upper portions 66c, 68c to promote entrainment of gas into the liquid jets 60, 62. When the liquid jets 60, 62 intersect the inner walls of the diffusers 66, 68, the jets attach to the walls and a strong shear plane develops which disperses the gas into small bubbles in the liquid. The tapered lower portions 66d, 68d decrease the velocity and increase the pressure of the gas-liquid mixture flowing downwardly, so that it can be discharged against the pressure existing in the lower portion of the vessel 10. Lower ends of the diffusers 66, 68 are covered by baffles 66e, 68e which direct the gas-liquid mixture outwardly through outlet apertures 66b, 68b.

    [0025] The combination of free jet nozzles 50, 52 and diffusers 66, 68 is extremely efficient in mixing gas into the liquid since in the region of the liquid jets 60, 62, virtually all of the energy in the liquid jets 60, 62 goes into shear forces causing instabilities which scoop gas in and compress it, causing small bubbles to be entrained in the liquid jets 60, 62. As a result, gas is efficiently entrained and a high transfer rate is achieved.

    [0026] While two free jet nozzles 50, 52 are included in the present example, it will be understood that additional free jet nozzles can be utilized. In each case, the free jet nozzles are equiangularly positioned about the vessel axis 18 at a radius greater than the radius of the guide tube 46. Also, while the present example describes a particular baffle 66e, 68e at the ends of the diffusers, it will be understood that the termination of the diffuser may have various configurations including, but not limited to, elbows as well as impingement baffles.

    [0027] The gas-liquid reactor of the present invention is provided with a baffle system for separating reactive gases from reacted and substantially inert gases. The baffle system includes a horizontal baffle plate 70 across the vessel 10 above the liquid surface 22. A cylindrical baffle member 72 extends downwardly from the baffle plate 70 into the liquid outside the guide tube 46. The cylindrical baffle member 72 must provide sufficient clearance for liquid recirculation downwardly outside the guide tube 46. An optional third baffle plate 74 is positioned between the baffle plate 70 and the liquid surface 22 above the guide tube 46 and has a diameter slightly larger than the guide tube 46. The horizontal baffle plate 70 is provided with an aperture 76 within the periphery of the cylindrical baffle member 72 and a short pipe 78 extending upwardly from the aperture 76 into the head space 24. The pipe 78 acts as a guide for gas passing upwardly into the head space 24.

    [0028] Gas, which circulates upwardly through the guide tube 46 and is partially reacted with the liquid therein, preferably recirculates through the annular Ns- gion outside the guide tube 46. However, a fraction of the gas rises from liquid surface 22 and passes around the edge of the third baffle plate 74 and upwardly through the aperture 76 into the head space 24. The partially reacted gas is then entrained into the liquid jets 60, 62 as described above and is recirculated into the liquid through diffuser outlet apertures 66b, 68b for more efficient utilization of the reactive gas and a high gas transfer rate. A portion of the gas then passes upwardly through the annular region outside the baffle member 72, as indicated in FIG. I by arrows just below the baffle member 72, into an annular space 80 defined between the cylindrical baffle member 72 at the inside and the vessel sidewall 12 at the outside and between the baffle plate 70 at the top and the liquid surface 22 at the bottom. The gas reaching the annular space 80, to a great extent, has had the reactive species removed by reason of multiple passes through the liquid in the vessel 10. Gas reaching the annular space 80 passes out of the vessel 10 through a vent 82. Thus, the gas passing through the liquid surface 22 is separated into a partially reacted component which is directed into the head space 24 for entrainment into the liquid jets 60, 62, and a reacted component which is directed to the annular space 80 and vented from the vessel through the vent 82.

    [0029] While the present example describes a particular baffle configuration 70, 72, 74, 78 to direct gas to the head space 24, it will be understood that other means for providing this flow path are available. Another means would be provided by a pipe connection. By using a pipe connection, the gas can be directed through various treatments, including among others, heat exchange, absorption of a gaseous component, drying, or gas enrichment.

    [0030] An external pumping system includes a liquid pump 86, having its outlet coupled via the conduit 34 to the submerged jet nozzle 30, and via conduits 54, 56 to free jet nozzles 50, 52, respectively. A drain 88 from the vessel 10 is coupled via a conduit 90 to the inlet of the pump 86. As a result, liquid is continuously recirculated from the vessel 10 through the nozzles 30, 50 and 52. The external pumping system can be fitted with various other components (not shown) to further process the liquid; for example, a heat exchanger to adjust the liquid temperature, filters to collect solids which may be in the liquid, or special devices to remove and collect valuable products from the liquid.

    [0031] Normally, the vessel 10 is filled with liquid to its prescribed capacity prior to operation of the above- described gas mixing system. In an alternative mode of operation, known as the "fed-batch" method of processing, the vessel is filled to about 35 percent of capacity. Then liquid is gradually added to the system from an external source through the submerged jet nozzles and the free jet nozzles so that gas mixing occurs as the vessel is filled.

    [0032] An example will now be given of a gas-liquid reactor in accordance with the present invention with calculations of the various parameters and dimensions. The reactor of the present example is selected to have a volume of 100 liters and to be used for transfer of oxygen to the liquid. Initially, the dimensions of the vessel 10 are calculated in accordance with

    where V = vessel volume

    D = diameter of the cylindrical vessel

    S = slenderness ratio of the vessel height to the vessel diameter = 5.



    [0033] For a 100 liter vessel, D = 30 centimeters and H = 150 centimeters where H = vessel height.

    [0034] Next, the dimensions of the guide tube 46 are calculated from

    DE = 0.59D (2)

    LE = 7.5 DE (3)
    where DE = diameter of the guide tube 46

    LE = length of the guide tube 46.



    [0035] The constants in equations (2) and (3) are obtained with reference to Blenke, "Loop Reactors," Springer-Verlag, 1979, page 157. Equations (2) and (3) give DE = 17 centimeters and LE = 127.5 centimeters. VD, the volume of the guide tube, is calculated at 28,925 cm3 and VA, the annular volume outside the guide tube, is calculated at 71,075 cm3 using conventional geometric formulas.

    [0036] The upper distance Ao between the liquid surface and the top of guide tube 46 is calculated in accordance with

    where Xo is a clearance parameter. Substituting into equation (4) and using Xo = 0.82 (from the Blenke reference) gives Ao = II centimeters. A lower distance parameter Xu is calculated in accordance with

    where Au = 11.5 cm. Substituting into equation (5) gives Xu = 0.86 which is within acceptable limits.

    [0037] Next, the flows through each of the nozzles 30, 50 and 52 are calculated. The total recirculation per hour, R, is selected to be 80 times the vessel volume V or 8,000 liters per hour. R can be given by

    R = REX + RINT (6)


    where REX = recirculation through the external loop to the nozzles 50, 52 and RINT = recirculation in the internal loop around the tube 46. The quantities REX and RINT can be given by

    REX = F50 + F52 and (7)

    RINT = F3o + nuF30 (8) where Fso and F62 are the liquid flows to the nozzles 50, 52 and F30 is the liquid flow to the nozzle 30 and nµ is a recirculation number. The recirculation number nµ represents the ratio of the volume of liquid flowing in a loop around the guide tube 46 to the volume of liquid injected into the vessel 10 through the nozzle 30. Preferably, the recirculation number is in the range between 4 and 6. In the present example, nu is selected to be 5. Substituting this and the required recirculation rate of 8000 liters per hour into the above equation and setting Fso = F52, gives

    Fso = F52, gives

    Fso + 3F30 = 4000 (9)



    [0038] A preferred solution to equation (9) establishes Fso = F30 = F52 = 1000 liters per hour or 16.9 liters per minute.

    [0039] The nozzle sizes are selected to give the desired flow rate and to provide a Reynolds number of at least 20,000. Using conventional techniques for calculation of nozzle flow rates and pressure drops, preferred nozzle diameters of 5.08 centimeters to 0.76 centimeters are selected.

    [0040] The liquid velocities in the various portions of the system are calculated from the flow rates and cross-sectional areas as follows:

    Diffuser flow = 17 liter per minute

    Diffuser velocity = 0.7 meter per second

    Guide tube flow = 102 liter per minute

    Guide tube velocity = 0.1 meter per second Annulus flow = 119 liter per minute

    Annulus velocity = 0.037 meter per second Now calculate the gas flows.

    q = v(aGT + aA) (10)

    where q = gas flow rate

    v = gas velocity

    aGT = area of the guide tube 46



    [0041] aA = area of the annulus around the guide tube 46. The required vessel superficial gas velocity, v is 0.06 meter/second. Equation (10) gives a flow rate, q of 0.25 cubic meter per minute. The induced flow at nozzles 50 and 52 is given by

    qNA = 2.4 qNL (11)



    [0042] where qNA is the gas flow in cubic meter per second and qNL is the liquid flow in cubic meter per second. Substituting 17 liter per minute into equation (10) gives qNA = 0.046 CMM, and for two nozzles, qNA = 0.092 CMM. This represents the volume of gas which can be entrained into the liquid jets 60, 62 from the nozzles 50 and 52.

    [0043] Now the oxygen transfer rates can be estimated. From the above calculations, 0.25 CMM air will be injected through nozzle 30 and 0.092 CMM of air can be injected by means of nozzles 50, 52. It can be determined that the vent gas will be 0.246 kilograms per minute of nitrogen gas and 0-0.075 kilograms per minute of oxygen depending on the amount reacted. The oxygen transfer rate for nozzle 30 is given by

    Mo = k1a1(C0-C1) (12)


    where k1 = mass transfer coefficient

    a1 = gas/liquid interfacial area

    C0 = mean oxygen concentration at the inlet

    C1 = oxygen concentration in the liquid.



    [0044] Substituting into equation (12) gives an oxygen mass flow rate of 0.9 kilograms per hour for nozzle 30. The oxygen transfer rate NA for nozzles 50, 52 is given by NA = KLa(C0-C1) (13) where KLa = mass transfer coefficient (see Kastanek, "International Chemical Engineering", Vol. 20, No. 1, 1980). Substituting into equation (13) gives NA equals 57.74 kilograms per hour. Therefore, all oxygen present in the head space 24 will be recirculated into the liquid by the action of the nozzles 50, 52.

    [0045] The rating of the system is based on the total air flow to nozzle 30. For the above example, the oxygen transfer rate, OTR, in millimols per liter-hour equals 309. However, nozzle 30 can accept twice this air flow and nozzles 50, 52 will still have capacity to transfer all oxygen back into the liquid. Therefore, the range of operation for the above example is 309-620 millimols per liter-hour.

    [0046] The above example is summarized as follows:

    Working volume: approximately 100 liters



    [0047] External liquid recirculation: 51 liter per minute Internal gas recirculation: 0.09346 m3/min at 15.5°C and atmosphere pressure

    [0048] Gas feed rate: 0.249 m3/min at 15.5°C and atmosphere pressure

    Vessel diameter: 30 centimeters

    Guide tube diameter: 17 centimeters

    Slenderness ratio: 5

    Circulation number: 5



    [0049] Oxygen transfer rate: 309-620 millimols per liter-hour.


    Claims

    1. A gas-liquid reactor comprising:

    a vessel (10) for containing a liquid, said vessel having a sidewall (12), a top (14) and a bottom (16), a head space (24) being defined between the liquid surface (22) and the top of said vessel;

    a submerged jet nozzle (30) positioned at the bottom (16) of said vessel (10) for injecting liquid and gas upwardly into the liquid in said vessel;

    at least two free jet nozzles (50, 52) positioned at the top (14) of said vessel (10) in said head space (24) for injecting a liquid jet downwardly into the liquid in said vessel such that gas in said head space is entrained into said liquid jet and mixed into the liquid in said vessel;

    means (38) for supplying reactive gas to said submerged jet nozzle (30),

    means (34, 54, 56) for supplying liquid to said submerged jet nozzle (30) and said free jet nozzles (50, 52);

    means (82) for venting reacted gas from said vessel (10); and

    baffle means (70, 72, 74, 76) for directing reactive gas rising from said liquid surface to said head space (24) for entrainment in said liquid jet, and for directing reacted gas rising from said liquid surface to said venting means (82).


     
    2. A gas-liquid reactor as defined in claim 1 wherein said vessel (10) is a cylinder with closed ends and has a vertical axis, said submerged jet nozzle (30) being positioned at the bottom (16) of said vessel (10) on said axis.
     
    3. A gas-liquid reactor as defined in claim 2 further including a generally cylindrical guide tube (46) coaxial with said vessel sidewall (12) and terminating below said liquid surface (22) for promoting circulation upwardly through the guide tube (46) and downwardly through the annular region outside the guide tube (46).
     
    4. A gas-liquid reactor as defined in claim 3 including two free jet nozzles (50, 51) symmetrically positioned with respect to said axis at a distance therefrom greater than the radius of said guide tube (46) such that a gas-liquid mixture is directed by said free jet nozzles (50, 52) into said liquid outside said guide tube (46).
     
    5. A gas-liquid reactor as defined in claim 4 further including diffuser tubes (66, 68) extending downwardly from each of said free jet nozzles (50, 52) into said liquid for delivering the gas-liquid mixture formed by said free jet nozzles (50, 52) into the lower portion of said vessel (10) outside said guide tube (46) and for enhancing the entrainment of gas from the head space (24) into said liquid jets.
     
    6. A gas-liquid reactor as defined in claim 5 wherein each diffuser tube (66, 68) extends from a point adjacent the outlet of said free jet nozzle (50, 52) above said liquid surface to a region adjacent the lower end of said guide tube (46).
     
    7. A gas-liquid reactor as defined in claim 5 wherein said diffuser tube (66, 68) includes an upper portion (66c, 68c) of uniform diameter and a lower tapered portion (66d, 68d) which increases in diameter toward the bottom (16) of said vessel (10).
     
    8. A gas-liquid reactor as defined in claim 5 wherein said diffuser tube (66, 68) includes a baffle (66e, 68e) at the lower end thereof and outlet apertures (66b, 68b) in the lower portion of the tube for directing the gas-liquid mixture radially outward with respect to the axis of said diffuser tube (66, 68).
     
    9. A gas-liquid reactor as defined in claim 3 wherein the ratio between the diameter of said guide tube (46) and the diameter of said vessel (10) is in the range between 0.5 and 0.6.
     
    10. A gas-liquid reactor as defined in claim 5 wherein said baffle means comprises a first generally horizontal plate (70) spaced above the surface (22) of said liquid and a cylindrical baffle member (72) extending downwardly from said plate (70) into said liquid outside said guide tube (46), said horizontal plate (70) having an aperture therethrough located inside the periphery of said downwardly extending cylinder (72).
     
    11. A gas-liquid reactor as defined in claim 10 wherein said baffle means further includes a second horizontal plate (74) positioned between said first horizontal plate (70) and said liquid surface (22) above said guide tube (46).
     
    12. A gas-liquid reactor as defined in claim 10 wherein said venting means is coupled to an annular region (80) defined between said first baffle plate (70) and said liquid surface (22) and between said vessel wall and said cylindrical baffle member (72).
     
    13. A gas-liquid reactor as defined in claim 1 wherein said weans for supplying liquid includes pump means (86) for recirculating liquid from said vessel (10) to said submerged jet nozzle (30) and to . said free jet nozzles (50, 52).
     
    14. A gas-liquid reactor as defined in claim 13 wherein the ratio of the liquid volume circulating in said vessel (10) around said guide tube (40) to the liquid volume supplied to said submerged jet nozzle (30) is in the range between 4 and 6.
     
    15. A gas-liquid reactor as defined in claim 10 wherein said baffle means further includes a conduit (76) extending upwardly from said aperture into said head space (24) for dispersal of reactive gases therein.
     
    16. A gas-liquid reactor as defined in claim 1 wherein said submerged jet nozzle (30) is centrally located in said vessel (10).
     
    17. A gas-liquid reactor as defined in claim 1 wherein said free jet nozzles (50, 52) are equally- spaced positioned at the top of said vessel (10) for injecting the liquid jet and gas entrained therein downwardly into the liquid in the vessel outside said guide tube (46)..
     
    18. A gas-liquid reactor as defined in claim 1 further including heat transfer means (48) for transferring thermal energy to or from said liquid.
     
    19. A method for mixing gas into a liquid in a gas- liquid reactor of the type including a vessel for containing the liquid, the vessel having a cylindrical sidewall, a top and a bottom and a head space defined between the liquid surface and the vessel, said method comprising the steps of:

    injecting liquid and gas into the liquid in said vessel through a submerged jet nozzle;

    injecting a liquid jet into the lower portion of the liquid in said vessel from a plurality of free jet nozzle means positioned in said vessel in said head space such that gas in said head space is entrained into said liquid jet and mixed into the liquid in said vessel; and directing reactive gas from said liquid surface to said head space for entrainment in said liquid jet from said free jet nozzle means and for directing reacted gas from said liquid surface out of said vessel.


     
    20. A method for mixing gas into a liquid as defined in claim 19 wherein said step of injecting liquid and gas into the liquid through a submerged jet nozzle includes the step of injecting liquid and gas upwardly into the liquid through the submerged jet nozzle centrally positioned at the bottom of said vessel.
     
    21. A method for mixing gas into a liquid as defined in claim 20 further including the step of controlling the circulation of liquid and gas in said vessel with a cylindrical guide tube coaxial with said cylindrical sidewall.
     
    22. A method for mixing gas into a liquid as defined in claim 21 wherein said step of injecting a liquid jet into the liquid in said vessel from free jet nozzle means includes injecting the liquid jet downwardly into the liquid outside said guide tube from equally- spaced free jet nozzles.
     
    23. A method for mixing gas into a liquid as defined in claim 22 wherein the step of injecting a liquid jet downwardly into the liquid in said vessel includes delivering the liquid jet with gas entrained therein into the lower portion of the liquid in said vessel.
     
    24. A method for mixing gas into a liquid as defined in claim 23 further including the step of gradually filling said vessel from about 35 percent of vessel capacity to full capacity from an external source during mixing of gas into the liquid.
     


    Ansprüche

    1. Gas-Flüssigkeits-Reaktor, umfassend:

    einen Behälter (10) zum Aufnehmen einer Flüssigkeit, wobei das Gefäß eine Seitenwand (12), eine Oberseite (14) und einen Boden (16) aufweist, wobei der Kopfraum (24) zwischen der Flüssigkeitsoberfläche (22) und der Oberseite des Behälters gebildet wird;

    eine eingetauchte Jet-Düse (30), die im Boden (16) des Behälters (10) angeordnet ist, um Flüssigkeit und Gas nach oben in die im Behälter befindliche Flüssigkeit zu injizieren;

    zumindest zwei freie Jet-Düsen (50, 52), die an der Oberseite (14) des Behälters (10) im Kopfraum (24) angeordnet sind, um einen Flüssigkeitsstrahl nach unten in die im Behälter befindliche Flüssigkeit zu injizieren, so daß im Kopfraum befindliches Gas in den Flüssigkeitsstrahl eingefangen und mit der im Behälter befindlichen Flüssigkeit vermischt wird;

    Mittel (38) zum Versorgen der eingetauchten Jet-Düse (30) mit reaktivem Gas;

    Mittel (34, 54, 56) zum Versorgen der eingetauchten Jet-Düse (30) mit reagierendem Gas und der freien Jet-Düsen (50, 52) mit Flüssigkeit;

    Mittel (82) zum Abgeben des reagierten Gases aus dem Behälter (10) und Prall- bzw. Leitmittel (70, 72, 74, 76) zum Richten des von der Flüssigkeitsoberfläche aufsteigenden reagierenden Gases zum Kopfraum (24) für das Einfangen in den genannten Flüssigkeitsstrahl und zum Richten des von der Flüssigkeitsoberfläche aufsteigenden reagierten Gases zu den Ventiliermitteln (82).


     
    2. Gas-Flüssigheits-Reaktor nach Anspruch 1, bei dem der Behälter (10) ein Zylinder mit geschlossenen Enden ist, der eine vertikale Achse aufweist, wobei die eingetauchte Jet-Düse (30) im Boden (16) des Behälters (10) auf der genannten Achse positioniert ist.
     
    3. Gas-Flüssigkeits-Reaktor nach Anspruch 2, weiterhin umfassend ein im wesentlichen zylindrisches Führungsrohr (46), welches koaxial mit der Behälter-Seitenwand (12) ausgebildet ist und unterhalb der Flüssigkeitsoberfläche (22) endet, um die Zirkulation nach oben durch das Führungsrohr (46) und nach unten durch den Ringbereich außerhalb des Führungsrohres (46) zu fördern.
     
    4. Gas-Flüssigkeits-Reaktor nach Anspruch 3, umfassend zwei freie Jet-Düsen (50, 52), die hinsichtlich der Achse symmetrisch und in einem Abstand angeordnet sind, welcher größer ist als der Radius des genannten Führungsrohres (46), so daß eine Gas-Flüssigkeits-Mischung durch die freien Jet-Düsen (50, 52) in die Flüssigkeit gerichtet wird, die sich außerhalb des Führungsrohres (46) befindet.
     
    5. Gas-Flüssigkeits-Reaktor nach Anspruch 4, weiterhin umfassend Diffusor-Rohre (66, 68), die von jeder freien Jet-Düse (50, 52) nach unten in die Flüssigkeit verlaufen, um das Gemisch aus Gas und Flüssigkeit, welches durch die freien Jet-Düsen (50, 52) gebildet wird, in den unteren Abschnitt des Behälters (10) außerhalb des Führungsrohres (46) abzugeben und zum Verstärken das Einfangen des Gases vom Kopfraum (54) in die Flüssigkeitstrahlen.
     
    6. Gas-Flüssigkeits-Reaktor nach Anspruch 5, bei dem jedes Diffusor-Rohr (66, 68) von einem Punkt neben dem Auslaß der freien Jet-Düsen (50, 52) oberhalb der Flüssigkeitsoberfläche in einem Bereich neben dem unteren Ende des Führungsrohres (46) verläuft.
     
    7. Gas-Flüssigkeits-Reaktor nach Anspruch 5, bei dem das Diffusorrohr (66, 68) einen oberen Abschnitt (66c, 68c) gleichförmigen Durchmessers und einen unteren konischen Abschnitt (66d, 68d) umfaßt, welcher hinsichtlich des Durchmessers zum Boden (16) des Behälters (10) zunimmt.
     
    8. Gas-Flüssigkeits-Reaktor nach Anspruch 5, bei dem das Diffusor-Rohr (66, 68) ein Prall- bzw. Leitblech (66e, 68e) am unteren Ende desselben sowie Auslaßöffnungen (66b, 68b) im unteren Abschnitt des Rohres aufweist, um die Mischung aus Gas und Flüssigkeit hinsichtlich der Achse des Diffusor-Rohres (66, 68) radial nach außen zu richten.
     
    9. Gas-Flüssigkeits-Reaktor nach Anspruch 3, bei dem das Verhältnis zwischen dem Durchmesser des Führungsrohres (46) und des Durchmessers des Behälters (10) im Bereich zwischen 0,5 und 0,6 liegt.
     
    10. Gas-Flüssigkeits-Reaktor nach Anspruch 5, bei dem die Prall- bzw. Leitmittel eine im wesentlichen horizontale erste Platte (70) aufweisen, die im Abstand oberhalb der Oberfläche (22) der Flüssigkeit sich befindet, sowie ein zylindrisches Prall- bzw. Leitglied (72), welches von der Platte (70) außerhalb des Führungsrohres (46) in die Flüssigkeit nach unten verläuft, wobei die horizontale Platte (70) eine Durchgangsöffnung aufweist, die an der Innenseite des Umfangs des nach unten verlaufenden Zylinders (72) angeordnet ist.
     
    11. Gas-Flüssigkeits-Reaktor nach Anspruch 10, bei dem die Prall- bzw. Leitmittel weiterhin eine zweite horizontale Platte (74) umfassen, die zwischen der ersten horizontalen Platte (70) und der Flüssigkeitsoberfläche (22) oberhalb des Führungsrohres (46) angeordnet ist.
     
    12. Gas-Flüssigkeits-Reaktor nach Anspruch 10, dadurch gekennzeichnet, daß die Ventiliermittel mit einem Ringbereich (80) verbunden sind, der zwischen der ersten Prall- bzw. Leitplatte (70) und der Flüssigkeits-Oberfläche (22) und zwischen der Behälterwand und dem zylindrischen Prall- bzw. Leitglied (72) gebildet ist.
     
    13. Gas-Flüssigkeits-Reaktor nach Anspruch 1, bei dem die Mittel für die Flüssigkeitsversorgung Pumpenmittel (86) umfassen, die die Flüssigkeit aus dem Behälter (10) zur eingetauchten Jet-Düse (30) und zu den freien Jet-Düsen (50, 52) rezirkulieren.
     
    14. Gas-Flüssigkeits-Reaktor nach Anspruch 13, bei dem das Verhältnis des im Behälter (10) um das Führungsrohr (40) zirkulierenden Flüssigkeitsvolumens zur eingetauchten Jet-Düse (30) gelieferten Flüssigkeitsvolumen im Bereich zwischen 4 und 6 liegt.
     
    15. Gas-Flüssigkeits-Reaktor nach Anspruch 10, bei dem die Prall- bzw. Leitmittel weiterhin eine Leitung (76) umfassen, die für das Zerstreuen der reagierenden Gase innerhalb des Kopfraumes von der genannten Öffnung in den Kopfraum nach oben verläuft.
     
    16. Gas-Flüssigkeits-Reaktor nach Anspruch 1, bei dem die eingetauchte Jet-Düse (30) zentral im Behälter (10) angeordnet ist.
     
    17. Gas-Flüssigkeits-Reaktor nach Anspruch 1, bei dem die freien Jet-Düsen (50, 52) gleich beabstandet an der Oberseite des Behälters (10) angeordnet sind, um den Flüssigkeitstrahl und das darin eingefangene Gas nach unten außerhalb des Führungsrohres (46) in die im Behälter befindliche Flüssigkeit zu injizieren.
     
    18. Gas-Flüssigkeits-Reaktor nach Anspruch 1, weiterhin umfassend Wärme-Übertragungsmittel (48) zum Übertragen der Wärmeenergie zur und von der Flüssigkeit.
     
    19. Verfahren zum Mischen von Gas und Flüssigkeit in einem Gas-Flüssigkeits-Reaktor eines Typs, der umfaßt einen Behälter für das Aufnehmen von Flüssigkeit, welcher Behälter eine zylindrische Seitenwand, eine Oberseite und einen Boden aufweist, wobei ein Kopfraum zwischen der Flüssigkeitsoberfläche und dem Behälter ausgebildet ist, wobei das Verfahren folgende Verfahrensschritte umfaßt:

    Injizieren von Flüssigkeit und Gas durch eine eingetauchte Jet-Düse in die im Behälter befindliche Flüssigkeit;

    Injizieren eines Flüssigkeitstrahles in den unteren Abschnitt der im Behälter befindlichen Flüssigkeit aus einer Vielzahl von freien Jet-Düsen, die im Kopfraum des Behälters angeordnet sind, so daß im Kopfraum befindliches Gas von dem Flüssigkeitsstrahl eingefangen und mit der im Behälter befindlichen Flüssigkeit vermischt wird; und

    Richten von reagierendem Gas von der Flüssigkeitsoberfläche zum Kopfraum für das Einfangen im von den freien Jet-Düsen ausgehenden Flüssigkeitsstrahl und zum Richten des reagierten Gases von der Flüssigkeitsoberfläche aus dem Behälter.


     
    20. Verfahren zum Mischen von Gas und einer Flüssigkeit gemäß Anspruch 19, wobei der Verfahrensschritt des Injizierens von Flüssigkeit und Gas durch die eingetauchte Jet-Düse in die Flüssigkeit den Schritt des Injizierens von Flüssigkeit und Gas durch die zentral im Boden des Behälters positionierte eingetauchte Jet-Düse nach oben in die Flüssigkeit umfaßt.
     
    21. Verfahren zum Mischen von Gas und Flüssigkeit nach Anspruch 10, weiterhin umfassend den Schritt des Steuerns der Zirkulation der Flüssigkeit und des Gases in einem Behälter mit einem zylindrischen Führungsrohr, welches koaxial zur zylindrischen Seitenwand des Behälters angeordnet ist.
     
    22. Verfahren zum Mischen von Gas und Flüssigkeit gemäß Anspruch 21, bei dem der Verfahrensschritt des Injizierens des Flüssigkeitsstrahles von den freien Jet-Düsen in die im Behälter befindliche Flüssigkeit das Injizieren des Flüssigkeitsstrahles nach unten von den gleich beabstandeten freien Jet-Düsen in die außerhalb des Führungsrohres befindliche Flüssigkeit umfaßt.
     
    23. Verfahren zum Mischen von Gas und Flüssigkeit gemäß Anspruch 22, bei dem der Verfahrensschritt des Injizierens eines Flüssigkeitsstrahles nach unten in die im Behälter befindliche Flüssigkeit das Abgeben des Flüssigkeitsstrahles mit dem darin eingefangenen Gas in den unteren Abschnitt der im Behälter befindlichen Flüssigkeit umfaßt.
     
    24. Verfahren zum Mischen von Gas und Flüssigkeit gemäß Anspruch 23, weiterhin umfassend den Schritt des graduellen Füllens des Behälters von ungefähr 35% der Behälterkapazität zur vollen Kapazität aus einer externen Quelle während des Vermischens von Gas und Flüssigkeit.
     


    Revendications

    1. Réacteur gaz-liquide comprenant:

    - un récipient (10) pour renfermer un liquide, le récipient ayant une paroi latérale (12), un sommet (14) et un fond (16), un espace de tête (24) étant défini entre la surface (22) du liquide et le sommet du récipient;

    - une tuyère (30) à jet immergé, placée au fond (16) du récipient (10) pour injecter vers le haut du liquide et du gaz dans le liquide du récipient;

    - au moins deux tuyères (50, 52) à jet libre, placées au sommet (14) du récipient (10) dans l'espace de tête (24) pour injecter vers le bas un jet de liquide dans le liquide du récipient de façon que le gaz présent dans l'espace de tête soit entraîné dans le jet de liquide et mélangé au liquide du récipient;

    - un moyen (38) pour fournir un gaz réactif à la tuyère (30) à jet immergé,

    - des moyens (34, 54, 56) pour fournir du liquide à la tuyère (30) à jet immergé et aux tuyères (50, 52) à jet libre;

    - un moyen (82) pour évacuer du récipient (10) le gaz ayant réagi; et

    - un moyen de réflecteur (70, 72, 74, 76) pour diriger le gaz réactif s'élevant à partir de la surface du liquide vers l'espace de tête (24) pour entraînement dans le jet de liquide, et pour diriger le gaz ayant réagi s'élevant à partir de la surface de liquide vers le moyen d'évacuation (82).


     
    2. Réacteur gaz-liquide selon la revendication 1, dans lequel le récipient (10) est un cylindre avec des extrémités fermées et présente un axe vertical, la tuyère (30) à jet immergé étant placée au fond (16) du récipient (10) suivant l'axe.
     
    3. Réacteur gaz-liquide selon la revendication 2, comprenant en outre un tube de guidage (46) généralement cylindrique ayant le même axe que la paroi latérale (12) du récipient et se terminant au-dessous de la surface (22) du liquide pour faciliter la circulation vers le haut à travers le tube de guidage (46) et vers le bas à travers la zone annulaire à l'extérieur du tube de guidage (46).
     
    4. Réacteur gaz-liquide selon la revendication 3, comprenant deux tuyères (50, 52) à jet libre, placées symétriquement par rapport à l'axe à une distance de celui-ci supérieure au rayon du tube de guidage (46) de sorte que le mélange gaz-liquide est dirigé par les tuyères (50, 52) à jet libre dans le liquide à l'extérieur du tube de guidage (46).
     
    5. Réacteur gaz-liquide selon la revendication 4, comprenant en outre des tubes (66, 68) de diffuseur s'étendant vers le bas à partir de chacune des tuyères (50, 52) à jet libre pour entrer dans le liquide afin de délivrer le mélange gaz-liquide formé par les tuyères (50, 52) à jet libre à la partie inférieure du récipient (10) à l'extérieur du tube de guidage (46) et pour améliorer l'entraînement du gaz sortant de l'espace de tête (24) dans les jets de liquide.
     
    6. Réacteur gaz-liquide selon la revendication 5, dans lequel chaque tube (66, 68) de diffuseur s'étend à partir d'un point contigu à la sortie de la tuyère (50, 52) à jet libre au-dessus de la surface du liquide jusqu'à une zone contiguë à l'extrémité inférieure du tube (46) de guidage.
     
    7. Réacteur gaz-liquide selon la revendication 5, dans lequel le tube (66, 68) de diffuseur comporte une partie supérieure (66c, 68c) de diamètre uniforme et une partie inférieure chanfreinée (66d, 68d) dont le diamètre augmente dans la direction du fond (16) du récipient (10).
     
    8. Réacteur gaz-liquide selon la revendication 5, dans lequel le tube (66, 68) du diffuseur comprend un déflecteur (66e, 68e) à son extrémité inférieure et des ouvertures de sortie (66b, 68b) dans la partie inférieure du tube afin de diriger le mélange gaz-liquide dans la direction radiale de l'extérieur par rapport à l'axe du tube (66, 68) du diffuseur.
     
    9. Réacteur gaz-liquide selon la revendication 3, dans lequel le rapport entre le diamètre du tube de guidage (46) et le diamètre du récipient (10) se trouvent dans la plage comprise entre 0,5 et 0,6.
     
    10. Réacteur gaz-liquide selon la revendication 5, dans lequel le moyen de déflecteur comprend une première plaque généralement horizontale (70) espacée du dessus de la surface (22) du liquide et un élément cylindrique de déflecteur (72) s'étendant vers le bas à partir de la plaque (70) pour entrer dans le liquide à l'extérieur du tube de guidage (46), la plaque horizontale (70) présentant une ouverture située à l'intérieur de la périphérie du cylindre (72) s'étendant vers le bas.
     
    11. Réacteur gaz-liquide selon la revendication 10, dans lequel le moyen de déflecteur comprend en outre une seconde plaque horizontale (74) placée entre la première plaque horizontale (70) et la surface (22) du liquide au-dessus du tube de guidage (46).
     
    12. Réacteur gaz-liquide selon la revendication 10, dans lequel le moyen d'évacuation est accouplé à une zone annulaire (80) définie entre la première plaque de déflecteur (70) et la surface (22) du liquide et entre la paroi du récipient et l'élément cylindrique de déflecteur (72).
     
    13. Réacteur gaz-liquide selon la revendication 1, dans lequel le moyen pour fournir du liquide comprend un moyen de pompe (86) pour mettre en circulation le liquide entre le récipient (10) et la tuyère (30) à jet immergé et les tuyères (50, 52) à jet libre.
     
    14. Réacteur gaz-liquide selon la revendication 13, dans lequel le rapport entre le volume du liquide circulant dans le récipient (10) autour du tube de guidage (46) et le volume du liquide fourni à la tuyère (30) à jet immergé se trouve dans la plage comprise entre 4 et 6.
     
    15. Réacteur gaz-liquide selon la revendication 10, dans lequel le moyen de déflecteur comprend en outre une conduite (76) s'étendant vers le haut à partir de l'ouverture jusque dans l'espace de tête (24) pour dispersion des gaz réactifs dans celui-ci.
     
    16. Réacteur gaz-liquide selon la revendication 1, dans lequel la tuyère (30) à jet immergé est placée au centre du récipient (10).
     
    17. Réacteur gaz-liquide selon la revendication 1, dans lequel les tuyères (50, 52) à jet libre sont espacées de la même distance au sommet du récipient (10) pour injecter le jet de liquide et le gaz entraîné dans celui-ci dans la direction du bas pour qu'ils entrent dans le liquide dans le récipient à l'extérieur du tube de guidage (46).
     
    18. Réacteur gaz-liquide selon la revendication 1, comprenant en outre un moyen (48) de transfert de la chaleur afin de transférer l'énergie thermique au liquide et à partir de celui-ci.
     
    19. Procédé pour mélanger un gaz dans un liquide dans un réacteur gaz-liquide du type comportant un récipient pour renfermer le liquide, le récipient ayant une paroi latérale cylindrique, un sommet et un fond et un espace de tête défini entre la surface du liquide et le récipient, le procédé comprenant les étapes consistant à:

    - injecter un liquide et un gaz dans le liquide du récipient par l'intermédiaire d'une tuyère à jet immer- gé;

    - injecter un jet de liquide dans la partie inférieure du liquide du récipient à partir d'une multitude de tuyères à jet libre placées dans le récipient dans l'espace de tête de façon que le gaz dans l'espace de tête soit entraîné dans le jet de liquide mélangé au liquide du récipient; et

    - diriger un gaz réactif entre ta surface du liquide et l'espace de tête pour entraînement dans le jet de liquide à partir du moyen de tuyère à jet libre et pour diriger le gaz ayant réagi à partir de la surface du liquide pour qu'il sorte du récipient.


     
    20. Procédé pour mélanger un gaz dans un liquide selon la revendication 19, caractérisé en ce que l'étape d'injection d'un liquide et d'un gaz dans le liquide par l'intermédiaire d'une tuyère à jet immergé comprend l'étape consistant à injecter un liquide et un gaz dans la direction du haut dans le liquide par l'intermédiaire de la tuyère à jet immergé placée au centre du fond du récipient.
     
    21. Procédé pour mélanger un gaz dans un liquide selon la revendication 20, comprenant en outre l'étape consistant à commander la circulation du liquide et du gaz dans le récipient avec un tube cylindrique de guidage ayant le même axe que la paroi latérale cylindrique.
     
    22. Procédé pour mélanger un gaz dans un liquide selon la revendication 21, dans lequel l'étape consistant à injecter un jet de liquide dans le liquide du récipient à partir du moyen de tuyère à jet libre comporte l'étape d'injection vers le bas du jet de liquide dans le liquide à l'extérieur du tube de guidage à partir de tuyères à jet libre espacées de la même distance.
     
    23. Procédé pour mélanger un gaz dans un liquide selon la revendication 22, dans lequel l'étape consistant à injecter un jet de liquide dans la direction du gaz dans le liquide du récipient comprend l'étape de fourniture du jet de liquide avec un gaz entraîné dedans dans la partie inférieure du liquide dans le récipient.
     
    24. Procédé pour mélanger un gaz dans un liquide selon la revendication 23, comprenant en outre l'étape consistant à remplir progressivement le récipient entre environ 35% de la capacité du récipient et la capacité totale à partir d'une source extérieure pendant le mélange du gaz dans le liquide.
     




    Drawing