(19)
(11) EP 0 318 831 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.09.1992 Bulletin 1992/37

(21) Application number: 88119564.8

(22) Date of filing: 24.11.1988
(51) International Patent Classification (IPC)5H01R 13/03

(54)

Electric power connectors

Elektrische Leistungsverbinder

Connecteurs électriques de puissance


(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(30) Priority: 02.12.1987 CA 553333

(43) Date of publication of application:
07.06.1989 Bulletin 1989/23

(73) Proprietor: INCO LIMITED
Toronto Ontario, M5K 1N4 (CA)

(72) Inventors:
  • Bell, James Alexander Evert
    Ontario L6L 5Y9 (CA)
  • Hope, Douglas Albert
    Ontario L5K 1Z3 (CA)
  • Conard, Bruce Randolph
    Ontario L6L 3X4 (CA)
  • Babjak, Juraj
    Ontario L5B 2V4 (CA)

(74) Representative: Greenstreet, Cyril Henry et al
Haseltine Lake Partners Motorama Haus 502 Rosenheimer Strasse 30
D-81669 München
D-81669 München (DE)


(56) References cited: : 
EP-A- 0 092 754
GB-A- 2 203 450
   
  • METALL , 41 Jahrgang, Heft 1, January 1987, Metall-Verlag GmbH, Berlin,DE; G. WEIK et al.: "Diffundierte Goldschichten für schaltende Kontakte"
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention is concerned with electrical connectors or contacts and, more particularly, with electrical connectors useful in carrying substantial currents at voltages in excess of, perhaps, 10 volts, according to the first part of the claims 1 or 9 and as known from the document GB-A-2 203 450.

[0002] It is known in electronic, particularly computer technology, to use electronic contacts of pure gold in order to reduce to the irreducible minimum value the contact resistance of faying, usually spring-loaded contact surfaces. Such contact surfaces having contact resistances of less than one milliohm when tested against a lightly weighted, polished gold probe are generally not designed for frequent make and break service. Thus, thin, pure gold contact surfaces on circuit boards and their mating components are the standard means for providing electrical circuits in electronic and computer devices which often operate at voltages up to only 100 mV and with extremely low amperages. Such contacts are very resistant to corroding media and oxidation. However, if gold is used on certain metal bases, e.g. copper or silver, without an intermediate layer of nickel, the electronic contacts tend to degrade if exposed to temperatures elevated above 25°C even as low as 100°C. Gradually atoms of copper and silver migrate to the gold surface. Migrated copper makes the contact surface subject to sulfidation and oxidation while migrated silver is particularly detrimental when the contact surface is used in sulfidizing atmospheres as mild as ordinary room air. Accordingly, it is generally standard practice to employ a layer of nickel (or perhaps cobalt or a nickel- or cobalt-rich alloy) between a base of copper or silver or copper- or silver-base alloy and the gold in order to prevent copper or silver migration and also to provide an exposed layer of relatively tarnish-resistant metal anywhere there may be breaks in the overlying layer of gold. A good description of electronic-type contact materials is contained in the article "Properties of Inlay Clad Wrought Gold Alloys", Robert J. Russell, Solid State Technology, 10 pages (8/76).

[0003] There is a need for electrical contact materials which have a low contact resistance, but not necessarily the extremely low contact resistances required by the electronics industry, and which have sufficient abrasion resistance in order to survive multiple makes and breaks.

[0004] It is an object of the present invention to provide such electrical contacts adapted to carry reasonably high amperages at voltages in excess of perhaps 10 volts.

[0005] It is a further object of the invention to provide an electrical contact material which can be employed in the electrical contacts of the present invention.

[0006] The present invention contemplates an electric power connector adapted to provide an interruptible conductive path for electrical current (for example, current of at least about 0.1 ampere) comprising at least two components adapted to be placed in surface contact one with another. At least one of the components has a fayable surface of contact made of an alloy of gold and nickel. At the fayable contact surface the alloy contains about 1 to about 10% by weight of nickel. The amount of nickel in the gold generally increases with distance from the fayable contact surface to an underlying metallurgically bonded layer preferably of essentially pure nickel. However, the alloy which is made by diffusing nickel from an underlayer into a gold overlayer usually exhibits a particular structure when examined by sputtering and Auger analysis. The immediate surface, perhaps 150 Angstrom units thick, exhibits a relatively high nickel content. Immediately below this surface layer, the nickel content falls somewhat and remains relatively constant for perhaps up to two-thirds of the thickness of the gold layer which ranges from 0.3 to 2 micrometers. Over the remaining thickness of the gold-containing layer, the nickel content rises rapidly to the nickel content of the underlying metal. Those skilled in the art will appreciate that this type of Auger analysis sometimes produces results at the surface of an object being examined which may be surface artifacts and may not represent or be significant with respect to properties of the bulk material. Accordingly, it appears safe to say that in the gold layer of the contact structure of the present invention, the nickel content near the outer surface is at a relatively low level. It remains at that low level until, at some point remote from the surface the nickel content of the gold rapidly increases.

[0007] The electrical power connector can be in any conventional contact form such as male and female plug components, pins, threaded structures or the like. Advantageously, the connectors are of such configuration that they can be made from composite, electrical contact material in strip form. Such contact material which is also within the contemplation of the present invention comprises a strip-form structural base of electrically conductive material, e.g. metal having at least one major surface comprised of nickel or nickel-rich alloy underlying a layer of gold about 0.1 to 2 micrometers thick metallurgically bonded to the nickel or nickel-rich alloy. This diffusion is such as to provide about 1 to about 10% by weight of nickel at the outer major surface. In this connection, "nickel-rich alloy" means an alloy containing at least about 90% nickel advantageously at least 95% or 99% nickel and includes commercially pure nickel and nickel-cobalt alloys.

[0008] Specific examples of contact materials of the present invention include copper, copper-base alloys such as brass, cupro-nickel, beryllium copper, copper-nickel-tin alloy and copper-nickel-aluminium alloy, nickel, cobalt or nickel-cobalt alloy particularly in strip form. In the cases of copper, copper-base alloys and cobalt the basic metal has an electrodeposited layer of nickel about 3 to 10 micrometers thick on at least one major surface. The outer portion of that at least one major surface comprises a layer of electroplated gold or a gold alloy containing up to about 1% total nickel and/or cobalt about 0.1 to about 2 micrometers thick which layer of electroplated gold or gold alloy is heat bonded to the nickel so as to provide diffusion of nickel to the gold surface in an amount at or near the surface of about 1% to about 10% total nickel. The strip can be faced on all surfaces with gold or, on the two major surfaces, i.e. the top and bottom or on one major surface.

[0009] Nickel and nickel-rich alloy strip can be made by conventional metallurgical melt technology wherein a charge of metal is melted, then cast and then hot- and/or cold-worked to strip form. A particularly advantageous method of making nickel, cobalt or nickel-rich alloy strip is to roll compact metal powder, sinter bond and interdiffuse the roll-compacted metal powder and thereafter or simultaneously roll the bonded powder product to strip form and thickness.

[0010] Strip of metal other than nickel or nickel-rich alloy which can form the principal structural element of the connectors of the present invention is generally made in a conventional manner and is commercially available from many sources. The present invention contemplates use of commercially available strip of copper, brass, aluminium bronze, cupro-nickel, beryllium copper, copper-nickel-tin alloy and any other metal or other electrically conductive material useful in the electrical contact art. This strip is thoroughly cleaned by conventional means such as alkaline cleaning baths, solvent and vapor degreasing, etc. and then electroplated to provide a layer of nickel about 5 to about 10 micrometers thick. One of the electroplating baths set forth in Electroplating Engineering Handbook, 3rd Ed., A. Kenneth Graham, Van Nostrand Reinhold Company, Copyright, 1971 at page 247 can be used to electroplate nickel.

[0011] Gold is electrodeposited over either the nickel strip or plated nickel from a cyanide-type, citrate-type or other type of bath adapted to produce a pure soft gold electro-deposit. The strip is then heat treated at about 350°C to 600°C for times ranging from 2 hours to 10 seconds so as to diffuse nickel into the gold to reach a level of from 1 to 10% nickel at the gold outer surface.

[0012] The electrical connector materials and electrical contacts made therefrom as contemplated in the present invention are advantageous with respect to contacts made of base metals in that they are and remain through their useful lives essentially free of corrosion products and thus give reliable, stable contact service. Compared to pure gold contact surfaces, when high currents (e.g. greater than 0.1 ampere) are passed through an electrical circuit, the contacts and contact materials of the present invention are advantageous when the contact must be broken periodically. In these situations, a pure gold surface becomes galled or roughened, gold-on-gold contacting surfaces tend to sinter or fuse together and the contact cannot readily be separated. Conversely, the present invention is based upon the discovery that when gold contacting surfaces contain 1 to 10% nickel such modified gold-on-modified gold contacts do not exhibit the fusing or sintering character of pure gold and thus the contacts can always be easily broken, provided of course, that the circuit including the contact has not been overloaded beyond design capacity.

[0013] In making the contact materials of the present invention, those of normal skill in the metallurgical art will appreciate that heat treatment time will normally vary with temperatures such that longer times will be used at lower temperatures and vice versa with a given thickness of gold. Lower temperatures and shorter times at a given temperature will be employed with thinner gold layers than with thicker gold layers. As disclosed in GB-A-2 203 450 diffusion of nickel into gold can be carried out simultaneously with age-hardening of an age-hardenable substrate. Normally, this age-hardening of, for example, copper-base-alloys such as beryllium copper or a copper-nickel-tin alloy or a copper-nickel aluminium alloy will be carried out after the contact material is in final form as an electrical contact. For example, strip form of beryllium copper is blanked and shaped to contact configuration. The thus shaped contacts are then electroplated sequentially with nickel and gold and then heat treated at a temperature and time combination selected in consideration of the thickness of electroplated gold so as to achieve both age-hardening of the substrate and proper gold-nickel interdiffusion at the same time. Alternatively, contacts may be blanked out of composite gold-nickel-copper beryllium strip, formed and then heat treated.

[0014] The annealing heat treatment which produces diffusion of nickel and gold can be carried out simultaneously with hot rerolling of plated strip material. For example, nickel strip made by roll compacting and then sintering and rolling nickel powder can be electroplated with gold and then rerolled at a temperature in the range of 350°C to 500°C to enhance the metallurgical bond between the nickel and gold and effectuate the diffusion of the nickel. Alternatively, the metallurgical bond and diffusion can be accomplished by the annealing heat treatment as described hereinbefore and the composite can be cold rolled either before or after annealing so as to enhance mechanical characteristics.

[0015] In order to give those skilled in the art a greater appreciation of the advantages of the invention the following example is given:
   A nickel strip made from roll compacted and sintered nickel powder about 0.5 mm thick, about 30 mm wide and about 70 meters long is thoroughly cleaned, mildly etched and electroplated with gold from a citrate-base electroplating bath to provide a uniform, pure gold deposit about 0.5 micrometer thick. The plated strip is thoroughly rinsed to remove any trace of electrolyte, dried and then heat treated by being passed through a furnace. The furnace is held at 480°C and contains an atmosphere of 10 volume percent hydrogen, balance nitrogen. Cool strip is fed to the furnace and passes through with a residence time of six minutes. As the strip exits the furnace it is cooled under the same reducing conditions and then coiled.

[0016] The composite nickel-gold contact material made in this way gives excellent results in electric contact service composite material to composite material. The contacts exhibit essentially no detrimental behavior over time when exposed to normal service. The contacts do not corrode, gall or pit in service and can be disconnected hundreds of times without difficulty even when exposed in use to temperatures up to about 200°C.

[0017] While specific embodiments of the invention are illustrated and described herein, those skilled in the art will understand that changes may be made in the form of the invention covered by the claims and that certain features of the invention may sometimes be used to advantage without a corresponding use of the other features.


Claims

1. An electric power connector adapted to provide an interruptible conductive path for electric current comprising at least two components adapted to be placed in surface contact, one with another, at least one of said components having a fayable surface of contact made of an alloy of gold and nickel, said alloy containing about 1 to about 10% by weight of nickel near said fayable surface of contact, characterised by said amount of said nickel remaining essentially constant through some distance from the surface and then starting at a point interior of said fayable surface to increase with distance from said fayable surface of contact toward the interface of gold-containing metal with an underlying, metallurgically bonded layer of metal from the group of nickel and alloys rich in nickel.
 
2. An electric power connector as claimed in claim 1 wherein said underlying metallurgically bonded layer is a layer of essentially pure nickel.
 
3. An electric power connector as claimed in claim 2 wherein said layer of essentially pure nickel is the principal structural element of said connector.
 
4. An electric power connector as claimed in claim 1 wherein said underlying metallurgically bonded layer is an electrodeposit of nickel about 3 to about 10 micrometers thick on an electroconductive substrate.
 
5. An electric power connector as claimed in claim 4 wherein said electroconductive substrate is selected from the group of copper, brass, aluminium bronze, copper-nickel-aluminium alloy, cupro-nickel, beryllium copper and copper-nickel-tin alloy.
 
6. An electric power connector as claimed in claim 5 wherein said electroconductive substrate is selected from the group of age-hardened copper-base alloys.
 
7. An electric power connector as claimed in any preceding claim wherein two or more components of said connector have fayable surfaces of said alloy of gold and nickel.
 
8. An electric power connector as claimed in any preceding claim having mateable male and female components.
 
9. An electric power connector material comprising an electroconductive base having at least one surface made of a metal from the group of nickel and nickel-rich alloys and having overlying and metallurgically bonded thereto a layer of gold about 0.1 to about 2 micrometers thick, characterised by said layer of gold containing near its outer surface about 1 to 10% by weight of nickel, the content of nickel remaining essentially constant over some distance interior of said outer surface and starting to increase at a point remote from said outer surface and continuing to increase as the distance from said outer surface increases.
 
10. An electric power connector material as claimed in claim 9 wherein the underlying metal is nickel.
 
11. An electric power connector material as claimed in claim 10 wherein said nickel is an electrodeposit on an electroconductive base.
 
12. An electric power connector material as claimed in any of claims 9 to 11 wherein said electroconductive base is a metal from the group of copper, brass, aluminium bronze, copper-nickel-aluminium, cupro-nickel, beryllium copper and copper-nickel-tin alloy.
 
13. An electric power connector material as claimed in claim 12 wherein said electroconductive substrate is an age-hardened and copper-base alloy.
 
14. An electric power connector material as claimed in any of claims 9 to 13 in strip form.
 


Ansprüche

1. Elektrischer Leitungsverbinder zur Herstellung eines unterbrechbaren Leitungsweges für elektrischen Strom, umfassend mindestens zwei miteinander in Oberflächenkontakt bringbare Bestandteile, wobei mindestens einer der genannten Bestandteile eine passende Kontaktoberfläche aus einer Legierung von Gold und Nickel aufweist, und die genannte Legierung ungefähr 1 bis ungefähr 10 Gew.% Nickel nahe der genannten passenden Kontaktoberfläche enthält, dadurch gekennzeichnet, daß der genannte Nickelgehalt über eine Tiefe von der Oberfläche im wesentlichen konstant bleibt und dann ab einem Punkt unterhalb der genannten passenden Kontaktoberfläche mit der Tiefe von der genannten passenden Kontaktoberfläche zur Grenzfläche aus goldhältigem Metall mit einer darunterliegenden, metallurgisch gebundenen Schicht aus Metall aus der Gruppe umfassend Nickel und nickelreiche Legierungen zunimmt.
 
2. Elektrischer Leitungsverbinder nach Anspruch 1, dadurch gekennzeichnet, daß die genannte darunterliegende, metallurgisch gebundene Schicht eine Schicht aus im wesentlichen reinem Nickel ist.
 
3. Elektrischer Leitungsverbinder nach Anspruch 2, dadurch gekennzeichnet, daß die genannte Schicht aus im wesentlichen reinem Nickel das Hauptbauelement des genannten Verbinders ist.
 
4. Elektrischer Leitungsverbinder nach Anspruch 1, dadurch gekennzeichnet, daß die genannte darunterliegende, metallurgisch gebundene Schicht ein galvanischer Niederschlag mit einer Dicke von ungefähr 3 bis ungefähr 10 Mikrometern auf einem elektrisch leitenden Substrat ist.
 
5. Elektrischer Leitungsverbinder nach Anspruch 4, dadurch gekennzeichnet, daß das genannte elektrisch leitende Substrat ausgewählt wird aus der Gruppe umfassend Kupfer, Messing, Aluminiumbronze, Kupfer-Nickel-Aluminiumlegierung, Kupfernickel, Berylliumkupfer und Kupfer-Nickel-Zinnlegierung.
 
6. Elektrischer Leitungsverbinder nach Anspruch 5, dadurch gekennzeichnet, daß das genannte elektrisch leitende Substrat ausgewählt wird aus der Gruppe von ausscheidungsgehärteten Legierungen auf Kupferbasis.
 
7. Elektrischer Leitungsverbinder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwei oder mehrere Bestandteile des genannten Verbinders passende Oberflächen aus der genannten Legierung aus Gold und Nickel aufweisen.
 
8. Elektrischer Leitungsverbinder nach einem der vorhergehenden Ansprüche mit zusammenpassenden Steck-  und Aufnahmeteilen.
 
9. Material für einen elektrischen Leitungsverbinder umfassend eine elektrisch leitende Basis mit mindestens einer Oberfläche aus einem Metall aus der Gruppe umfassend Nickel und nickelreiche Legierungen, und eine darüberliegende und metallurgisch daran gebundene Schicht aus Gold mit einer Dicke von ungefähr 0,1 bis ungefähr 2 Mikrometern, dadurch gekennzeichnet, daß die genannte Goldschicht nahe ihrer Außenfläche ungefähr 1 bis 10 Gew.% Nickel enthält, wobei der Nickelgehalt über eine Tiefe unterhalb der genannten Außenfläche im wesentlichen konstant bleibt und ab einem Punkt, der von der genannten Außenfläche entfernt liegt, zunimmt und mit zunehmender Tiefe von der genannten Außenfläche weiter steigt.
 
10. Material für einen elektrischen Leitungsverbinder nach Anspruch 9, dadurch gekennzeichnet, daß das darunterliegende Metall Nickel ist.
 
11. Material für einen elektrischen Leitungsverbinder nach Anspruch 10, dadurch gekennzeichnet, daß das genannte Nickel ein galvanischer Niederschlag auf einer elektrisch leitenden Basis ist.
 
12. Material für einen elektrischen Leitungsverbinder nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die genannte elektrisch leitende Basis ein Metall aus der Gruppe umfassend Kupfer, Messing, Aluminiumbronze, Kupfer-Nickel-Aluminium, Kupfernickel, Berylliumkupfer und Kupfer-Nickel-Zinnlegierung ist.
 
13. Material für einen elektrischen Leitungsverbinder nach Anspruch 12, dadurch gekennzeichnet, daß das genannte elektrisch leitende Substrat eine ausscheidungsgehärtete Legierung auf Kupferbasis ist.
 
14. Material für einen elektrischen Leitungsverbinder nach einem der Ansprüche 9 bis 13 in Streifenform.
 


Revendications

1. Connecteur électrique de puissance destiné à réaliser un trajet conducteur, pouvant être coupé, pour un courant électrique, comprenant au moins deux composants destinés à être mis en contact de surface l'un avec l'autre, au moins l'un desdits composants ayant une surface affleurante de contact réalisée en un alliage d'or et de nickel, ledit alliage contenant environ 1 à environ 10 % en poids de nickel à proximité de ladite surface affleurante de contact, caractérisé en ce que ladite quantité dudit nickel demeure sensiblement constante sur une certaine distance à partir de la surface et ensuite, en un point situé à l'intérieur de ladite surface affleurante, commence d'augmenter avec la distance à ladite surface affleurante de contact vers l'interface du métal contenant de l'or et d'une couche sous-jacente, liée par voie métallurgique, d'un métal du groupe du nickel et d'alliages riches en nickel.
 
2. Connecteur électrique de puissance selon la revendication 1, dans lequel ladite couche sous-jacente, liée par voie métallurgique, est une couche de nickel sensiblement pur.
 
3. Connecteur électrique de puissance selon la revendication 2, dans lequel ladite couche de nickel sensiblement pur est l'élément principal de la structure dudit connecteur.
 
4. Connecteur électrique de puissance selon la revendication 1, dans lequel ladite couche sous-jacente, liée par voie métallurgique, est réalisée par électro-dépôt de nickel sur une épaisseur d'environ 3 à environ 10 micromètres sur un substrat électro-conducteur.
 
5. Connecteur électrique de puissance selon la revendication 4, dans lequel ledit substrat électro-conducteur est choisi dans le groupe du nickel, laiton, bronze d'aluminium, alliage cuivre-nickel-aluminium, cupro-nickel, cuivre au béryllium et alliage cuivre-nickel-étain.
 
6. Connecteur électrique de puissance selon la revendication 5, dans lequel ledit substrat électro-conducteur est choisi dans le groupe des alliages à base de cuivre ayant subi un durcissement de vieillissement.
 
7. Connecteur électrique de puissance selon l'une quelconque des revendications précédentes, dans lequel deux composants ou davantage dudit connecteur ont des surfaces affleurantes dudit alliage d'or et de nickel.
 
8. Connecteur électrique de puissance selon l'une quelconque des revendications précédentes, comprenant des composants complémentaires mâle et femelle.
 
9. Matériau de connecteur électrique de puissance comprenant une base électro-conductrice ayant au moins une surface réalisée en un métal du groupe du nickel et d'alliages riches en nickel et comportant une couche d'or d'environ 0,1 à 2 micromètres d'épaisseur qui recouvre cette base et qui lui est liée par voie métallurgique, caractérisé en ce que ladite couche d'or contient à proximité de sa surface extérieure environ 1 à 10 % en poids de nickel, la teneur en nickel demeurant sensiblement constante sur une certaine distance vers l'intérieur de ladite surface extérieure et commençant de croître en un point distant de ladite surface extérieure, puis continuant à croître avec l'augmentation, de la distance à ladite surface extérieure.
 
10. Matériau de connecteur électrique de puissance selon la revendication 9, dans lequel le métal sous-jacent est du nickel.
 
11. Matériau de connecteur électrique de puissance selon la revendication 10, dans lequel ledit nickel est un électro-dépôt sur une base électro-conductrice.
 
12. Matériau de connecteur électrique de puissance selon l'une quelconque des revendications 9 à 11, dans lequel ladite base électro-conductrice est un métal du groupe du cuivre, laiton, bronze d'aluminium, cuivre-nickel-aluminium, cupro-nickel, cuivre au béryllium et alliage cuivre-nickel-étain.
 
13. Matériau de connecteur électrique de puissance selon la revendication 12, dans lequel ledit substrat électro-conducteur est un alliage ayant subit un durcissement de vieillissement et à base de cuivre.
 
14. Matériau de connecteur électrique de puissance selon l'une quelconque des revendications 9 à 13, sous forme de ruban.