(19)
(11) EP 0 377 616 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.05.1994 Bulletin 1994/19

(21) Application number: 88907553.7

(22) Date of filing: 02.09.1988
(51) International Patent Classification (IPC)5C10L 9/02
(86) International application number:
PCT/AU8800/339
(87) International publication number:
WO 8901/963 (09.03.1989 Gazette 1989/06)

(54)

COAL ASH MODIFICATION AND REDUCTION

KOHLENASCHEN-MODIFIZIERUNG UND REDUKTION

MODIFICATION ET REDUCTION DE CENDRES DE CHARBON


(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(30) Priority: 03.09.1987 AU 4128/87

(43) Date of publication of application:
18.07.1990 Bulletin 1990/29

(73) Proprietor: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
Campbell, ACT 2601 (AU)

(72) Inventors:
  • BOWLING, Keith, McGregor
    Turramurra, NSW 2074 (AU)
  • WAUGH, Allan, Bruce
    Sutherland, NSW 2232 (AU)

(74) Representative: Daley, Michael John et al
F.J. CLEVELAND & COMPANY 40-43 Chancery Lane
London WC2A 1JQ
London WC2A 1JQ (GB)


(56) References cited: : 
WO-A-87/02024
GB-A- 2 094 830
US-A- 4 105 416
US-A- 4 490 238
US-A- 4 705 530
US-A- 4 741 741
GB-A- 2 071
US-A- 3 988 120
US-A- 4 105 416
US-A- 4 560 390
US-A- 4 705 530
US-A- 4 753 033
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This invention relates to the beneficiation of carbonaceous materials, particularly black coals, using a chemical treatment process adapted for the removal or alteration of selected minerals.

    BACKGROUND ART



    [0002] Australian black coals are generally low in sulfur and trace elements but have a high ash yield which is usually a refractory ash, that is, it has a high ash fusion temperature, compared with overseas coals. This refractory ash reflects the high silica and kaolin clay content in the coal.

    [0003] There are however some coals in Australia and many coals originating from overseas that have appreciable contents of other minerals which are more reactive and detract from the quality of the coal and/or hinder its industrial application.

    [0004] In conventional coal washeries, as described in "An Introduction To Coal Preparation" edited by members of the executive committee of the Coal Preparation Society of NSW (1985), the main objective is to lower the ash yield of the coal without appreciable size reduction. The coal size generally ranges from about 150mm to below 0.5mm and depending on the size range, different washing techniques are used to separate the minerals and high ash coal from the coal rich fraction.

    [0005] It is to be noted that the majority of techniques are based on the separation by density differences between coal at 1.3SG and minerals at 2.5SG. However, none of these methods are intended to alter the relative proportion of the individual minerals present in the coal. Thus any selective separation on size reduction or beneficiation at the washery is usually incidental.

    [0006] It is known in the art that there are a variety of specialised, sophisticated chemical leaching techniques to demineralise coal wherein all of the minerals are removed to produce ultra-clean coal, that is coals having an ash of less than 1%. These methods are generally used to remove all minerals unselectively. Typical such methods employ hydrofluoric acid or fluoride salts as described by Lloyd, R. and Turner, M.J. (Kinneret Enterprises Ltd.) - Patents pending and by Das, S.K. "Electrode grade carbon from coal by acid leaching process", Light Metals, 575 (1979); aqueous caustic soda solutions as described by Meyers, R.A, Hart, W.D. and McClanathan, L.C. "Gravimelt process for near complete chemical removal", Coal Processing Technology, 7, 89. (C.E.P. Technical Manual published by American Institute of Chemical Engineers) (1981) and aqueous caustic soda solutions under autoclave conditions as described by the present inventors in "Removal of Mineral Matter from Bituminous Coals by Aqueous Chemical Leaching" Fuel Processing Technology 9 217-233 (1984), "Demineralisation - A New Approach to Old Problems in the Utilisation of Solid Fuels", Proc. Aust. Inst. Energy Nat. Conf., Melbourne 347-357 (1985) and "An integrated, physical and chemical approach to coal beneficiation" Proc. CHEMECA 86, Adelaide, 297-302 (1986).

    [0007] Additionally, selective chemical leaching has been used to remove pyrites from coal. The methods used are reviewed by Morrison, G.F. "Chemical desulphurisation of coal". Report No. ICTIS/TR15 I.E.A. Coal Research, London, June 1981. In this review the author categorises the reactions possible as displacement reactions, acid/base neutralisation, oxidation or reduction. It is noted that these methods are selective for pyrites only.

    [0008] Another selective chemical leaching process is the ion exchange method used on lignites or brown coal to exchange calcium, magnesium, aluminium, iron and other cations from the carboxylate and phenate salts in the coal structure. These ion exchange processes are described by Bowling K. McG. and Rottendorf, H.R. in Australian patent specification 472,900, New Zealand patent specification 171,005 and Canadian Patent specification 100,023 and in "Demineralised brown coal as an alternative to current hydrocarbon resources" Proc. 4th National Conf. Chem. Eng. Adelaide, 86-91 (1976). In this ion exchange method various solutions of salts and acids are used but there is no removal of minerals which are not chemically combined minerals, apart from quartz by fluoride salts.

    [0009] US-A-4,560,390 describes a process for treating coal to remove sulphur and ash by a process that comprises cleaning and pulverising the coal and subsequently treating the coal with an aqueous solution of a compound containing an active nitrogen; an aqueous solution of an organic compound containing at least one hydroxyl group; a surfactant containing active ammonium groups; or combinations thereof.

    [0010] GB-A-2094830 discloses a process for chemically removing ash from coal which comprises finely divided coal in an aqueous solution of

    i) hydrochloric acid or citric acid up to a concentration of 10% by weight, and

    ii) acidic ammonium fluoride

    to react the ash with the acid and the acidic ammonium fluoride and separating the de-ashed coal from the aqueous solution. This patent requires the presence of both an acidic fluoride and citric acid.

    [0011] The same document compares the above mentioned processes with washing the finely divided coal with citric acid at concentrations of up to 3% and washing with water, and concludes that both the latter two treatments fail to produce a substantial de-ashing effect.

    [0012] US-A-3988120 relates to a method of desulfurizing high sulfur low grade coal by immersing the coal in an aqueous solution of a polar compound containing non-polar groups bonded with polar groups. The non-polar groups and polar groups are to be selected from the lists provided in columns 1, 2, 3 and 4 of the specification. As stated on column 3, lines 53 to 56 of US-A-3988120 the alkyl groups R and R' each usually contain 10 to 20 carbon atoms (preferably 10 to 15 carbon atoms).

    DISCLOSURE OF THE INVENTION



    [0013] The present inventors have realised that there is benefit to be gained by selectively removing minerals such as mineral sulfates, carbonates, phosphates, hydroxides and other mineral salts from black coals and other carbonaceous materials. The benefits to be gained by the selective removal of such mineral salts broadly include increasing coal recovery and improving coal quality.

    [0014] The present inventors have found that by the treatment of black coals and other carbonaceous materials with selective chemical reagents, it is possible to remove the aforementioned reactive minerals present in the coal. In addition, if the reactive minerals present are bonding or cementing some of the silicates and oxides to the coal, then removal of the cementing minerals allows the silicates and oxides to be liberated and thereby more readily removed by standard washery techniques.

    [0015] Accordingly, the present invention consists in a process for the beneficiation of a carbonaceous material which contains at least one mineral comprising:

    a) forming an aqueous solution of a compound selected from the group consisting of citric acid having a concentration of greater than 10% by weight, acetic acid, ascorbic acid, oxalic acid, formic acid, succinic acid, adipic acid, ethylenediaminetetraacetic acid, disodium salts of ethylenediaminetetraacetic acid, 8-hydroxyquinoline mercaptoethanol, sorbitol, mannitol, threitol and polysaccharides;

    b) contacting said carbonaceous material with said solution at a temperature less than the boiling point of said solution for a sufficient time to allow the compound to react with the at least one mineral to selectively remove or chemically modify said at least one mineral contained in said carbonaceous material; and

    c) subsequently washing the carbonaceous material with water.



    [0016] The process of the present invention may be used for the beneficiation of any carbonaceous materials containing minerals, such as coal, anthracite, graphite, peat, lignites and oil shale.

    [0017] The present method is particularly adapted for treatment of black coals containing an appreciable content of reactive minerals.

    [0018] The present process may also be used on coal washery products or low ash run-of-mine coals to produce significant yields of super clean coal. These yields may be further increased and/or ash levels reduced with subsequent physical cleaning.

    [0019] When, however, the inventive process is used alone without physical beneficiation, it is capable of significantly altering the ash fusion properties of such black coals. This may be achieved without resort to the use of prior art chemical treatment and without significant size reduction.

    [0020] In addition, the inventive process is capable of altering some minerals present in coals by ion exchange to give a coal with different, desirable, ash characteristics and hence improve the properties of the coal. In particular, those coals containing alkali feldspars and some swelling clays may be associated with the fouling/slagging properties of coals and/or difficulties experienced with coking coals sticking to the refractory lining of coke ovens thereby resulting in serious damage to the expensive oven linings.

    [0021] Preferably, where coals are being treated they will be of a particle size generally no greater than a few millimetres.

    [0022] The treatment may be carried out at ambient temperature conditions or at elevated-temperatures (below boiling point of the solution) in which case the treatment time will generally be reduced. Generally, however the treatment time will be about 30 to 45 minutes.

    [0023] Following treatment with the reagent, the reagent is removed and the coal washed with water to remove excess salts and dissolved minerals. Only mild washing is required. The treated coal, after drying, can if required be subjected to physical cleaning methods to obtain cleaner coal fractions or may be left in the dry state without further physical treatment.

    [0024] Organic compounds are one of the preferred classes for use as any organic residues remaining in the coal are non-contaminating and non-polluting.

    [0025] The reagents suitable for use in the process of the present invention are all ammonium salts, polyhydroxy alcohols, organic acids excluding sulphur containing organic acids, organic complexing agents capable of complexing with metal cations, and polysaccharides. Preference is given to those reagents that are cheapest and most easily available.

    [0026] Examples of suitable ammonium salts are acetate, sulphate, chloride, citrate, hydroxide, carbonate, bicarbonate and oxalate salts.

    [0027] Examples of suitable polyhydroxy alcohols are glycerol, glycol, ethylene glycol, sorbitol, propylene glycol, mannitol and threitol.

    [0028] Examples of suitable organic acids are citric, acetic, ascorbic, oxallic, formic, stearic, succinic and adipic acids.

    [0029] Examples of suitable complexing agents capable of complexing with metal cations are ethylene diamine tetracetic acid (EDTA), disodium salt of EDTA, 8-hydroxyquinoline and mercaptoethanol. The preferred complexing agents are suitable for complexing with transition metal cations.

    [0030] Examples of suitable polysaccharides are sucrose, maltose, dextrose, lactose, starch, glycogen, cellulose and cellulose derivatives, and galactose.

    [0031] The present inventors have found that the various reagents of the invention are appropriate for removing or altering different minerals by ion exchange. Thus, ammonium salts are capable of removing sulphate minerals such as gypsum and bassinite and are able to alter exchangeable minerals and feldspar minerals. Organic acids are able to remove carbonate minerals such as calcite, dolomite and siderite, phosphate minerals such apatite and alter feldspar minerals. Citric acid contains no inorganic elements and therefore does not contaminate the product or lead to pollution problems when using the treated coal. It is also of special interest in the context of coalfields such as those in Queensland because it can be easily and cheaply produced by the fermentation of sugar solutions, available locally, with a suitable mould (e.g. Aspergillus niger). Organic complexing agents are also capable of removing phosphate minerals such as apatite and altering feldspar minerals. Polyhydroxy alcohols are capable of removing sulphate minerals and of altering swelling clays, exchangeable minerals and feldspar minerals. Polysaccharides are capable of altering feldspar minerals.

    [0032] From the above, it will be realised that carbonaceous materials may be treated successfully with various reagents of the invention to achieve selective removal of different mineral species.

    [0033] It will be understood that a number of different mineral species may be selectively removed by repeating the process of the invention using a different reagent for each repetition.

    BRIEF DESCRIPTION OF THE DRAWING:



    [0034] Figure 1 is a graph of cumulative yield vs. cumulative ash of both starting and treated coal under the conditions of Example 7.

    MODES FOR CARRYING OUT THE INVENTION



    [0035] So that the invention may be more clearly understood, there follow seven examples of the application of the invention to prepare a low ash coal, an increased yield of clean coal, and an ash fusion modification.

    Example 1 Preparation of Low Ash Coal



    [0036] A coking coal product having a top size of 2mm was found to have an ash yield of 7.7% after conventional washing. The coal contained several percent of reactive minerals and after treating the coal in 3 M citric acid at 80oC for 30 minutes followed by a second treatment using glycerol at room temperature for 30 minutes, a coal was obtained with an ash yield of 6.6%.

    [0037] Subsequent float/sink separation at SG 1.6 achieved total recovery of the coal present at a reduced ash level of 4.4%. The sinks fraction was found to contain only quartz and clay indicating greater liberation due to the chemical treatment.

    Example 2 Increased Yield of Clean Coal



    [0038] A run-of-mine coal having a 2mm top particle size and an ash yield of 8.8% on float/sink separation at SG 1.355 gave a 78.8% mass yield at 3.6% ash. The sinks fraction contained 27.9% ash.

    [0039] The same coal was treated as in Example 1, with 3 M citric acid at 80oC for 30 minutes and was found to have an ash yield of 6.5% and gave an increased floats yield of 87.2% at the same density (SG 1.355) of a floats fraction with an ash of 3.6%. The sinks fraction, which was lower in quantity than in the case of the untreated coal had an ash yield of 26.8%.

    [0040] From the foregoing, it will be seen that through the use of the inventive process, a 10% increase in recovery of a super clean coal fraction (having an ash content of 1-5%) was obtained with less waste material.

    Example 3 Ash Fusion Modification



    [0041] Samples of the coal listed in Table 1 were treated with 3 M citric acid solution at 80oC for 30 minutes, filtered and washed with water. The coals were reslurried with a small quantity of water and ammonium acetate solution. The slurry was stirred for 30 minutes then filtered, water-washed, dried and the ash fusion properties determined.

    [0042] As shown in Table 1, a comparison of the treated and untreated coals indicates that in all cases the ash fusion temperatures have been substantially increased. The filtrates were analysed and indicated that the major elements removed from the coals were calcium, iron, magnesium, phosphorus, sodium and potassium with smaller quantities of most other elements, all of which came from the dissolved minerals.
    TABLE 1
    ALTERATION OF ASH FUSION PROPERTIES AND REDUCTION IN COAL ASH YIELD BY CHEMICAL LEACHING OF SELECTED MINERALS FROM SAMPLES OF SIX DIFFERENT COALS
    Properties Before Leaching
    Sample 1 2 3 4 5 6
    Ash % (dry basis) 9.8 12.1 17.2 9.7 8.0 7.2
    Deformation temp oC 1280 1250 1320 1440 1140 1110
    Sphere temp oC 1530 1550 1560 1600 1200 1280
    Hemisphere temp oC 1570 1550 1580 1600 1200 1300
    Flow temp oC 1600 1580 1600 1600 1340 1390
    Properties After Leaching
    Sample 1 2 3 4 5 6
    Ash % (dry basis) 8.9 10.0 15.1 9.1 6.1 5.4
    Deformation temp oC 1280 1600 1600 1380 1290 1270
    Sphere temp oC 1600 1600 1600 1600 1600 1540
    Hemisphere temp oC 1600 1600 1600 1600 1600 1560
    Flow temp oC 1600 1600 1600 1600 1600 1600

    Example 4 Phosphorus Removal



    [0043] A premium Queensland coking coal containing a high phosphorus content (0.15% P) was treated with a molar excess of citric acid at 80oC for 30 minutes then washed. The coal was separated into two size fractions of -4 mm + 2mm and -2 mm to zero. The reduction in phosphorus from the coal samples was 45% and 89% respectively. The finer size fraction having a phosphorus level of <0.02%. This is a considerable improvement in the quality of coking coal as phosphorus is considered a serious contaminant for metallurgical applications.

    Example 5 Alkali Removal



    [0044] A Bowen basin coking coal containing a high proportion of alkali elements namely sodium, potassium, calcium, magnesium and iron was treated with a number of organic acids and complexing agents, ascorbic acid, oxalic acid, citric acid, acetic acid, ethylene diamine tetracetic acid (EDTA), both in a protonated form and as the disodium salt. All reagents showed significant reduction in the basic elements (alkali s) in the coal. Hot citric acid solution and hot EDTA (protonated form) showed the greatest reduction at more than 50%. This reduction is slightly greater than that obtained when the coal was treated with sulfurous acid as shown in the Table II.

    [0045] The reduction of alkali elements from coals improves both the thermal properties and ash characteristics, and the coking properties.


    The BI is lowered by 35-40% using sulfurous acid and by 50% using the complexing agent.

    Example 6 Brown Coal Benefication



    [0046] Brown coals contain minerals, salts and inorganic matter. The latter can be in the form of inorganic humates. Samples of Victorian and South Australian brown coals were treated with a molar excess of hot citric acid for 30 minutes then filtered and washed. The liquors were brightly coloured presumably from the iron salts being removed. The reduction in ash was as follows: Victorian brown coal originally 3.5% ash was reduced to 0.6% ash. The South Australian coals were originally 10.0 and 8.0% ash and after treatment were reduced to 3.0% and 2.5% respectively.

    [0047] The ash from these coals was pale in comparison to the original ash and reflected the removal of iron minerals and iron salts. The resultant ash was rich in silicates.

    Example 7 Improved Washability Potential



    [0048] The washability potential of a washery coal was re-evaluated after treatment with a molar excess of hot citric acid for 30 minutes. The coal sample (8 mm top size) washability curves are shown in Fig. 1. The results indicate that a cleaner coal can be obtained and that a significant yield increase of a coal at a set ash content can be achieved. i.e. 15% increase in coal yield at 7.4% ash. The increases are more marked as the particle size is reduced.

    INDUSTRIAL APPLICABILITY:



    [0049] From the foregoing description, it is evident that the inventive process has a capability of increasing coal recovery, improving coal quality, enhancing coal ash fusion characteristics, improving coal industry operations and advancing sales of predictable quality coals.


    Claims

    1. A process for the beneficiation of a carbonaceous material which contains at least one mineral comprising:

    a) forming an aqueous solution of a compound selected from the group consisting of citric acid having a concentration of greater than 10% by weight, acetic acid, ascorbic acid, oxalic acid, formic acid, succinic acid, adipic acid, ethylenediaminetetraacetic acid, disodium salts of ethylenediaminetetraacetic acid, 8-hydroxquinoline, mercaptoethanol, sorbital, mannitol, threitol and polysaccharides;

    b) contacting said carbonaceous material with said solution at a temperature less than the boiling point of said solution for a sufficient time to allow the compound to react with the at least one mineral to selectively remove or chemically modify said at least one mineral contained in said carbonaceous material; and

    c) subsequently washing the carbonaceous material with water.


     
    2. A process according to claim 1 wherein steps a), b) and c) are repeated sequentially using a different compound selected from said group for each repetition of step a).
     
    3. A process according to claims 1 or 2 wherein said carbonaceous material is coal.
     
    4. A process according to any one of claims 1 to 3 wherein said carbonaceous material is crushed before contacting with said solution.
     
    5. A process according to any one of claims 1 to 4 wherein said carbonaceous material has a particle size of less than 3mm.
     
    6. A process according to any one of claims 1 to 5 wherein said step b) is for the duration of 30 to 45 minutes.
     
    7. A process according to any one of claims 1 to 6 wherein said compound is a polysaccharide selected from sucrose, maltose, dextrose, lactose, starch, glycogen, cellulose derivatives and galactose.
     
    8. A process according to claim 1 wherein said at least one mineral is an exchangeable mineral and/or a feldspar material.
     
    9. A process according to any one of claims 1 to 6 wherein said at least one mineral is an alkaline mineral and/or a phosphate mineral and said compound is selected from the group consisting of citric acid, acetic acid, ascorbic acid, oxalic acid, formic acid, succinic acid and adipic acid.
     
    10. A process according to claim 9 wherein said alkaline mineral is selected from calcite, dolomite and siderite.
     
    11. A process according to any one of claims 1 to 6 wherein said at least one mineral is a sulphate and/or phosphate mineral and/or an alkali clay, and said compound is selected from ethylenediaminetetraacetic acid, disodium salts of ethylenediaminetetraacetic acid, 8-hydroxyquinoline and mercaptoethanol.
     
    12. A process according to any one of claims 1 to 6 wherein said at least one mineral is a sulphate and/or phosphate mineral and/or an alkali clay, and said compound is selected from sorbitol, mannitol and threitol.
     
    13. A carbonaceous material whenever prepared by a process according to any one of the preceding claims.
     


    Ansprüche

    1. Ein Verfahren zur Aufbereitung eines kohlenstoffhältigen Materials, das zumindest ein Mineral enthält und aus den folgenden Stufen besteht:

    a) Herstellung einer wässrigen Lösung einer Verbindung, die aus einer Gruppe ausgewählt wird, die aus Zitronensäure besteht, und die die folgenden Verbindungen in einer Konzentration von wehr als 10 Gewichtsprozent enthält: Essigsäure, Ascorbinsäure, Oxalsäure, Ameisensäure, Bernsteinsäure, Adipinsäure, Ethylendiamintetraessigsäure, Dinatriumsalze der Ethylendiamintetraessigsäure, 8-Hydroxgchinolin, Mercaptoethanol, Sorbitol, Mannitol, Theitol und Polysaccharide,

    b) Reaktion des besagten kohlenstoffhältigen Materials mit der besagten Lösung, bei einer Temperatur unterhalb des Siedepunktes der besagten Lösung, für eine Zeitdauer, die zur Reaktion der Verbindung mit der zumindest ein Mineral enthaldenden zur selektiven Entfernung oder chemischen Umwandlung des zumindest eines Minerals, welches in dem besagten kohlenstoffhaltigen Material enthalten ist, ausreicht; und

    c) Nachfolgendes Waschen des kohlenstoffhaltigen Materials mit Wasser.


     
    2. Ein Verfahren nach Anspruch 1, in welchem die Stufen a), b) und c) der Reihe nach wiederholt werden, unter Verwendung einer verschiedenen Verbindung von der besagten Gruppe für jede Wiederholung von Stufe a).
     
    3. Ein Verfahren nach Anspruch 1 oder 2 in welchem das besagte kohlenstoffhaltige Material Kohle ist.
     
    4. Ein Verfahren nach einer der Ansprüche 1 bis 3, in welchem das besagte kohlenstoffhaltige Material zerkleinert wird, bevor es mit der besagten Lösung in Berührung gebracht wird.
     
    5. Ein Verfahren nach einem der Ansprüche 1 bis 4, in welchem das besagte kohlenstoffhaltige Material eine Korngröße von weniger als 3 mm hat.
     
    6. Ein Verfahren nach einer der Ansprüche 1 bis 5, in welchem die besagte Stufe b) für eine Zeitdauer von 30 bis 45 Minuten durchgeführt wird.
     
    7. Ein Verfahren nach einem der Ansprüche 1 bis 6, in welchem die besagte Verbindung ein Polysaccharid ist, das aus der Gruppe Sucrose, Maltose, Dextrose, Laktose, Stärke, Glykogen, Zellulosederivate und Galaktose, ausgewählt wurde.
     
    8. Ein Verfahren nach Anspruch 1 in welchem das besagte zumindest ein Mineral ein austauschbares und/oder ein Feldspatmineral ist.
     
    9. Ein Verfahren nach einem der Ansprüche 1 bis 6, in welchem das besagte zumindest eine Mineral ein Alkalimineral ist und/oder ein Phosphatmineral, und die besagte Verbindung aus der Gruppe ausgewählt wird, die aus Zitronensäure, Essigsäure, Ascorbin-säure, Oxalsäure, Ameisensäure, Bernsteinsäure und Adipinsäure besteht.
     
    10. Ein Verfahren nach Anspruch 9, in welchem das besagte Alkalimineral aus Kalzit, Dolomit oder Siderit ausgewählt wird.
     
    11. Ein Verfahren nach einem der Ansprüche 1 bis 6, in welchem das zumindest eine Mineral ein Sulfat- und/oder ein Phosphatmineral ist und/oder ein alkalischer Ton ist, und die besagte Verbindung aus Ethylendiamintetraessigsäure, Dinatriumsalze der Ethylendiamintetra-essigsäure, 8-Hyroxychinolin und Mercaptoethanol ausgewählt wird.
     
    12. Ein Verfahren nach einem der Ansprüche 1 bis 6, in welchem das besagte zumindest eine Mineral ein Sulfat- und/oder ein Phosphatmineral ist und/oder ein alkalischer Ton, und die besagte Verbindung aus Sorbitol, Mannitol und Threitol ausgewählt wird.
     
    13. Ein kohlenstoffhältiges Material, wann immer mittels eines Verfahrens nach einem der vorstehenden Ansprüche, hergestellt.
     


    Revendications

    1. Procédé de traitment d'une matière charbonneuse qui contient au moins un minéral, comprenant:

    a) Formant une solution aqueuse d'un composé sélectionné du groupe consistant en acide citrique d'une concentration au dessus de 10% par poids, acide acétique, acide ascorbique, ocide oxalique, acide formique, acide succinique, acide adipique, acide éthylènediaminotétra acétique, sels de disodium d'acide éthylènediaminotètraacétique, 8-hydroxyquinoléine, mercaptoéthanol, sorbitol, mannite, thréitol et. poly-saccharides;

    b) contactant la dite matière charbonneuse avec la dite solution à une temperature au dessous le point d'ébullition pendant un temps suffisant pour laisser réagir le composé avec au moins un minéral pour enlever d'une manière sélective ou modifier chimiquement le dit au moins un minéral contenu dans la dite matière charbonneuse et

    c) par la suite lavant la dite matière charbonneuse dans l'eau.


     
    2. Procédé suivant la revendication 1 dans quoi les étapes a), b) et c ) sont répétés en ordre sequentiel utilisant un composé different selectionné parmi chaque groupe pour chaque répétition d'étape a).
     
    3. Procédé suivant les revendications 1 ou 2 dans quoi la matière charbonneuse est le charbon.
     
    4. Procédé suivant les revendications 1 à 3 quelconque dans quoi la dite-matière charbonneuse est broyée avant contact avec la dite solution.
     
    5. Procédé suivant les revendications 1 à 4 quelconque dans quoi la dite matière charbonneuse est sous forme de particules d'un grandeur moins que 3 mm.
     
    6. Procédé suivant les revendications 1 à 5 quelconque dans quoi l'étape b) est d'une durée de 30 à 45 minutes.
     
    7. Procédé suivant les revendications 1 à 6 quelconque dans quoi lè dit composé est un polysaccharide sélectionné de saccharose, maltose, dextrose, lactose, amidon, glycogène, dérivés de cellulose et galoctose.
     
    8. Procédé suivant la revendication 1 dans quoi le dit au moins un minéral est un minéral échangeable et/ou un matière feldspath.
     
    9. Procédé suivant les revendications 1 à 6 quelconque dans quoi le dit au moins un minéral est un minéral alcalin et/ou un minéral phosphaté et le dit composé est sélectionné du groupe constitué par acide citrique, acide acétique, acide ascorbique, acide oxalique, acide formique, acide succinique et acide adipique.
     
    10. Procédé suivant la revendication 9 dans quoi le dit minéral alcalin est sélectionné de calcite, dolomite et siderite.
     
    11. Procédé suivant les revendications 1 à 6 quelconque dans quoi le dit au moins un mineral est un sulphate et/ou phosphate minéral et/ou une argile minérale et le dit composé est sélectionné d'acide ethylène-diamino tétracetique, sels de disodium d'acide ethylène-diamino tétracetique, 8-hydroxyquinoléine et mercaptoéthanol.
     
    12. Procédé suivant les revendications 1 à 6 quelconque dans quoi le dit au moins un minéral est un sulphate et/ou phosphate minéral et/ou une argile minérale et le dit composé est sélectionné de sorbitol, mannitol et thréitol.
     
    13. Une matiére charbonneuse preparé par un procédé suivant n'importe laquelle les revendications précédentes.
     




    Drawing