(19)
(11) EP 0 515 362 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.05.1994 Bulletin 1994/19

(21) Application number: 90903735.0

(22) Date of filing: 16.02.1990
(51) International Patent Classification (IPC)5D21C 9/16, D21C 9/14
(86) International application number:
PCT/CA9000/052
(87) International publication number:
WO 9112/369 (22.08.1991 Gazette 1991/19)

(54)

BLEACHING OF LIGNOCELLULOSIC MATERIAL WITH DIOXIRANES

VERFAHREN ZUM BLEICHEN VON LIGNOZELLULOSEHALTIGEM MATERIAL MIT DIOXIRANEN

BLANCHIMENT DE MATERIAU LIGNOCELLULOSIQUE A L'AIDE DE DIOXIRANES


(84) Designated Contracting States:
DE FR SE

(43) Date of publication of application:
02.12.1992 Bulletin 1992/49

(73) Proprietor: Pulp and Paper Research Institute of Canada
Quebec H9R 3J9 (CA)

(72) Inventor:
  • LEE, Chung-Li
    Vancouver, BC, V5R 3A2 (CA)

(74) Representative: Archer, Philip Bruce et al
Urquhart-Dykes & Lord European Patent Attorneys New Priestgate House 57 Priestgate
Peterborough Cambridgeshire PE1 1JX
Peterborough Cambridgeshire PE1 1JX (GB)


(56) References cited: : 
   
  • ABSTRACTS BULLETIN OF THE INSTITUTE OF PAPER CHEMISTRY, vol. 39, no. 10, April 1969, Appleton (US); K. KRATZL et al., p. 863#
  • ABSTRACTS BULLETIN OF THE INSTITUTE OF PAPER CHEMISTRY, vol. 57, no. 11, May1987, Appleton (US); K. BACZYNSKA et al., p. 1557#
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention relates to a process for bleaching a chemical pulp.

[0002] In the manufacture of paper, wood is converted into a pulp, usually by chemical means, and then spread on a wire to be dewatered to form the paper.

[0003] Kraft pulping is the most widely practiced form of chemical pulping in North America. The pulp is relatively dark in colour and to produce a commercially acceptable paper, it is generally bleached before being formed into paper.

[0004] A variety of bleaching agents is used. They include chlorine, chlorine dioxide, hypochlorites, hydrogen peroxide and oxygen. Typically, more than one of these chemicals is required and they are used singly or in admixture in sequence. In the art the various bleaching compounds, are designated by letter; chlorine is C, chlorine dioxide is D, caustic extraction is E, hypochlorite is H, hydrogen peroxide is P and oxygen is O.

[0005] The above compounds include chlorine and certain chlorine containing compounds and there are concerns about the use of chlorine and chlorine compounds in bleaching pulp. Chlorine and chlorine containing compounds react with pulp constituents - mainly lignin, fatty acids and resin acids - to produce chlorinated organic compounds. Some of these chlorinated organic compounds are of concern environmentally and some major pulp producing countries have restricted the amount that can be discharged from the bleaching process into waterways. It is reasonable to assume that most countries will introduce legislation restricting the discharge of such compounds.

[0006] The elimination of elemental chlorine and its related compounds in the bleaching process would eliminate the production of chlorinated organic compounds in the effluent but efforts along this line have not been wholly effective.

[0007] The use of elemental chlorine and its related compounds in bleaching may lead to the formation of tetrachlorinated dioxins (TCDD) and furans (TCDF) which are contained in the pulp and in the pulp mill effluent. However, the formation of these two toxins can be eliminated by reducing the amount of chlorine applied. Unfortunately, this is difficult to do with existing technology without sacrificing some pulp quality or introducing further problems into the pulping process.

[0008] Oxygen delignification is a process of treating pulp under oxygen pressure, about 6.9 x 10⁵ N/m² (100 psig), at elevated temperature, about 80° to 120°C, and for extended periods of time, about 30 to 90 minutes. This oxygen delignification process tends to produce weak pulp if delignification is extended too far - i.e. down to about 10 Kappa number. In this regard the Kappa number of a pulp is a measure of the bleachability of the pulp. It is a number indicating the number of milliliters of 0.1 Normal potassium permanganate solution that can be consumed under standard conditions by one gram of pulp (oven dried basis) corrected to 50% consumption of permanganate.

[0009] US-A-4,439,271 to O. Samuelson discloses a process using nitrogen dioxide pretreatment before oxygen delignification. The process retards the depolymerization of cellulose during oxygen bleaching. However, the emission of nitrogen-containing compounds from the bleaching effluent may pose another problem and these nitrogen compounds cannot be recovered by existing kraft pulping chemical recovery systems.

[0010] US-A-4,404,061 to J.J. Cael discloses that pulps produced from a standard alkaline pulping process can be bleached with monoperoxysulphate to produce papermaking pulps and bleached pulps. Also, US-A-4,756,800 to E.L. Springer discloses a method of producing salts of monoperoxysulphuric acid and simultaneously bleaching pulp. Neither patent describes the strength properties of the fully bleached pulps.

[0011] There is a need for a bleaching process that produces pulp of good quality and/or which reduces environmental concerns in so doing.

[0012] The dioxiranes are known compounds of the general structural formula:


in which R₁ and R₂ may be aliphatic or aromatic groups and may be linked to form cyclic compounds. The dioxirane compounds and their preparation are described, for example, in the Journal of Organic Chemistry, 50 2847-2853 (1985) by R.W. Murray and R. Jeyaraman.

[0013] According to the present invention there is provided a process of bleaching a chemical pulp as claimed in the accompanying claims.

[0014] In an embodiment of the present invention there is provided a process for the bleaching of chemical pulps without use of elemental chlorine or by using elemental chlorine at a lower level than in the prior art, thus avoiding the production of the toxins TCDD and TCDF.

[0015] In the embodiment, the present invention is a process of bleaching a chemical pulp that comprises contacting the chemical pulp with a dioxirane.

[0016] The dioxirane may be used with known bleaching agents either in combination or in sequence.

[0017] The pulp is desirably one having a kappa number in the range of 15 to 60 if derived from a softwood species and 5 to 25 if derived from a hardwood species. The dioxirane is contacted with the pulp preferably at a temperature in the range of about 5° to 50°C for a time up to about 90 minutes. Preferably the dioxirane is used in amount sufficient to provide an active oxygen charge, i.e. one active oxygen atom per dioxirane molecule, of from 0.2 to 1.0% based on the oven-dried pulp. The dioxirane has the structure:


where R1 and R₂, which may be the same or different, is each an aliphatic or aromatic group and may be linked together to form a ring. One dioxirane compound that has proved useful is dimethyldioxirane but any dioxirane compound is appropriate, for example, those compounds where R₁ and R₂ are each alkyl groups with 1 to 4 carbon atoms.

[0018] If a subsequent bleaching step is used, subsequent that is to the dioxirane treatment then, when the dioxirane-treated pulp has a residual lignin of less than 10 Kappa number, that subsequent bleaching of the pulp may be carried out by chlorine dioxide (D) alone or by the sequence chlorine dioxide, caustic extraction, chlorine dioxide (DED). When the bleaching is carried out using the DED sequence the sequence may be set out as D₁ED₂. Chlorine dioxide in the D₁ stage is used in the range 0.5 to 1%, preferably about 0.8%, caustic in the E stage is in the range 0.2 to 0.7%, preferably about 0.4%, and chlorine dioxide in the D₂ stage is in the range 0.2 to 0.7%, preferably about 0.4%. All the percentages are expressed as weight of oven-dried pulp. If chlorine dioxide alone is used, then it is in the range of 0.5 to 1% by weight of the oven-dried pulp, preferably about 0.8% of the oven-dried pulp.

[0019] When the dioxirane-treated pulp has a residual lignin content corresponding to a Kappa number greater than 10 the subsequent bleaching may be carried out using the sequence: chlorine; caustic extraction; chlorine dioxide; caustic extraction; chlorine dioxide (CEDED). In this sequence, expressing the sequence as CE₁D₁E₂D₂, a substantially reduced amount of chlorine charge is used in stage C, in stage E₁ the caustic charge is 60% of that in the C stage, in stage D₁ 0.5 to 1.2% chlorine dioxide charge is used, in stage E₂ the caustic charge is 50% of that used in D₁ stage and in stage D₂ 0.25 to 0.6% chlorine dioxide charge is used. The percentages are based on the weight of oven-dried pulp. The chlorine used in the C stage is generally applied in combination with varying amounts of chlorine dioxide.

[0020] The invention is illustrated in the examples, which are included for purposes of illustration not limitation.

Example 1



[0021] Aspen pulp (50g oven-dried weight), produced by the kraft process to a Kappa number of 16.4, at 39% pulp consistency, was treated with the dimethyldioxirane (DMD) solution in acetone (280mL, 4.59g/L concentration, i.e. 0.55% active oxygen by weight on oven-dried pulp) at 25°C for one hour. The dimethyldioxirane-treated pulp was then bleached with chlorine dioxide (0.8% by weight on oven-dried pulp) at 70°C for three hours.

[0022] A second sample of the same aspen kraft pulp (100g oven-dried weight) was delignified by molecular oxygen at 10.7% pulp consistency using sodium hydroxide (4% by weight on oven-dried pulp), magnesium sulphate (0.5% by weight on oven-dried pulp), molecular oxygen (100 psig) at 115°C for one and half hours. This molecular-oxygen-delignified pulp was then bleached with elemental chlorine (1.8% available chlorine by weight on oven-dried pulp) at 20°C for one hour at 3% pulp consistency, extracted with sodium hydroxide (1.1% by weight on oven-dried pulp) at 74°C for two hours at 12% pulp consistency, and further delignified with chlorine dioxide (0.5% by weight on oven-dried pulp) at 74°C for three hours at 6% pulp consistency. This bleaching sequence will be referred to as OCED.

[0023] A third sample of the same aspen kraft pulp (50g oven-dried weight) was also bleached by a conventional process using a CED sequence. Elemental chlorine bleaching was carried out at 3% pulp consistency and 20°C for one hour using 3.3% available chlorine charge on oven-dried pulp, extraction at 74°C for two hours using sodium hydroxide (2.0% by weight on oven-dried pulp) at 12% pulp consistency, and chlorine dioxide (1.0% by weight on oven-dried pulp) delignification at 74°C for three hours at 6% pulp consistency.

[0024] The results, shown in Table 1, illustrate that aspen kraft pulp treated with DMD to a level of 80% delignification has better mechanical properties than that treated with molecular oxygen to a level of 67% delignification. This fully bleached pulp at 86.8% Elrepho, which was DMD-treated, has similar zero-span tensile strength to that of a pulp, at 89.9% Elrepho, bleached by a conventional CED bleaching process.
TABLE 1
Physical and optical properties of aspen kraft pulp bleached with dimethyldioxirane or molecular oxygen or by a conventional bleaching process.
Aspen Pulp Kappa Number Degree of Delig. (%) Zero Span Tensile (km) Elrepho Brightness (%)
Unbleached 16.4 - 16.3 40.6
DMD-Treated 3.4 80 17.0 59.4
DMD-D Bleached - - 17.4 86.8
0₂-Delig. 5.4 67 10.6 70.7
OCED Bleached     10.0 91.5
CED Bleached - - 18.4 89.9


[0025] In these Examples Elrepho Brightness was measured with a Technobrite (trade mark) Micro TB-1C apparatus at 457 nm. The standard test is set out in TAPPI T-452 om-87 and CPPA E.1.

[0026] Zero span tensile strength was measured according to TAPPI T231 cm-85 using Pulmac Instruments' The Troubleshooter (trade mark) zero span tester.

Example 2



[0027] A fourth sample of aspen pulp (50g oven-dried weight), produced by the kraft process to a Kappa number 16.4, at 39% pulp consistency, was treated with DMD solution in acetone (170 mL, 4.44g/L concentration, i.e. 0.33% active oxygen by weight on oven-dried pulp) and 80 mL of acetone at 25°C for three hours. This DMD treated pulp was filtered and washed with a large amount of distilled water. The resulting pulp was then further delignified with chlorine dioxide (1.0% by weight on oven-dried pulp) at 74°C for three hours at 6% pulp consistency, extracted with sodium hydroxide (0.72% by weight on oven-dried pulp) at 10% pulp consistency and 74°C for two hours , and bleached by another chlorine dioxide stage (0.5% by weight on oven-dried pulp) at 6% pulp consistency and 74°C for three hours.

[0028] A fifth sample of the same aspen kraft pulp (100g oven-dried weight) was delignified by molecular oxygen at 12% pulp consistency using sodium hydroxide (4.0% by weight on oven-dried pulp), magnesium sulphate (0.5% by weight on oven-dried pulp), and molecular oxygen (100 psig) at 110°C for one and a half hours. This molecular-oxygen-delignified aspen pulp was further bleached with elemental chlorine (2% available chlorine by weight on oven-dried pulp) at 20°C for one hour at 3% pulp consistency, extracted with sodium hydroxide (1.2% by weight on oven-dried pulp) at 12% pulp consistency and 74°C for two hours, and bleached with chlorine dioxide (0.5% by weight on oven-dried pulp) at 6% pulp consistency and 74°C for three hours.

[0029] In this particular example, the aspen kraft pulp was delignified to the same extent (63%) by either the DMD bleaching agent or molecular oxygen. Results, shown in Table 2, illustrate that the fully bleached aspen pulp produced from the DMD treatment followed by DED bleaching without elemental chlorine has better zero span tensile strength than that produced by molecular oxygen delignification followed by CED bleaching with 2% available chlorine charge on oven-dried pulp at the elemental chlorine stage. On the other hand the DMD-treated pulp yields a fully bleached pulp with similar zero span tensile strength to that produced by a conventional process involving the use of elemental chlorine for bleaching.
TABLE 2
Zero span strengths and viscosities of DMD-treated, molecular-oxygen-delignified pulps and the produced by a conventional process.
Aspen Pulp Kappa Number Degree of Delig. (%) Zero-Span Tensile (km) Elrepho Brightness (%)
Unbleached 16.4 - 16.3 40.6
DMD-Treated 6.0 63 15.0 54.0
DMD-DED Bleached - - 15.9 91.4
O₂-Delig. 6.1 63 12.7 66.7
OCED Bleached - - 12.6 91.0
CED Bleached - - 18.4 89.9

Example 3



[0030] A sixth sample of aspen pulp (50g oven-dried weight), produced by the kraft process to a Kappa number of 16.4, at 35% pulp consistency, was treated with DMD solution in acetone (643 mL, 2.0g/L concentration, i.e. 0.55% active oxygen by weight on oven-dried pulp) at 25°C for one hour. The resulting pulp was then washed thoroughly with a large quantity of deionized water.

[0031] A seventh sample of the same aspen kraft pulp (100g oven-dried weight) was delignified by molecular oxygen at 12% pulp consistency using sodium hydroxide (4% by weight on oven-dried pulp), magnesium sulphate (0.5% by weight on oven-dried pulp), molecular oxygen under a pressure of about 6.9 x 10⁵ N/m² (100 psig) at 115°C for one and a half hours. The resulting oxygen-delignified pulp was thoroughly washed with a large amount of deionized water.

[0032] The results, shown in Table 3, illustrate that the DMD- treated pulp has a better yield than that bleached by molecular oxygen to the same degree of delignification. This illustrates that DMD has better selectivity toward lignin than does molecular oxygen.
TABLE 3
Pulp yields after DMD treatment and oxygen delignification.
Aspen Pulp Kappa Number Degree of Delig. (%) Yield % Unbleached Pulp
Unbleached 16.4 - -
DMD-Treated 5.3 68 98.0
O₂-Delignified 5.4 67 92.7

Example 4



[0033] Spruce pulp (50g oven-dried weight), produced by the kraft process to a Kappa number of 32, at 37% pulp consistency, was treated with a solution of DMD in acetone (330 mL, 4.6g/L concentration, i.e. 0.65% active oxygen by weight on oven-dried pulp) at 25°C for half an hour. The DMD-treated pulp was further bleached by a CED sequence. Elemental chlorine bleaching was carried out at a 3% pulp consistency and 20°C for one hour using 2.8% available chlorine by weight on oven-dried pulp, extraction at 74°C for two hours using sodium hydroxide (1.7% by weight on oven-dried pulp) at 12% pulp consistency, and chlorine dioxide (0.8% by weight on oven-dried pulp) delignification at 6% pulp consistency and 74°C for three hours.

[0034] A second sample of the same spruce kraft pulp (50g oven-dried weight) was also bleached by a conventional process using CED sequence. Bleaching with elemental chlorine was carried out at a 3% pulp consistency and 20°C for one hour using 6.4% available chlorine on oven-dried pulp, extraction at 12% pulp consistency and 74°C for two hours using sodium hydroxide (3.8% by weight on oven-dried pulp), and chloride dioxide (1% by weight on oven-dried pulp) bleaching at 6% pulp consistency and 74°C for three hours.

[0035] Results, shown in Table 4, illustrate that the DMD-treated pulp can be bleached to the same brightness as that bleached by a conventional process. The former uses a significantly reduced amount of elemental chlorine compared with that required by the conventional process. The zero span tensile strengths and viscosity of the pulps bleached by both processes are similar.
TABLE 4
Physical and optical properties of spruce kraft pulps bleached with DMD or by a conventional process.
Spruce Pulp Kappa Number Degree of Delig. (%) Zero Span Tensile (km) Viscosity (mPa.s) Elrepho Brightness (%)
Unbleached 32.0 - 19.4 35.0 32.7
DMD-Treated 18.8 41 18.8 23.0 40.2
DMD-CED Bleached - - 18.3 18.3 82.5
CED Bleached - - 19.1 25.0 82.3


[0036] Thus, the present invention provides a process for treating pulp that can be subsequently fully bleached to 90% Elrepho, either without or with only small amounts of elemental chlorine. The DMD-treated pulps that have a residual lignin content corresponding to 5 Kappa number or less have pulp strengths equivalent to those of the untreated pulps. The fully-bleached pulps produced by the process of the invention have strength properties similar to those produced by conventional bleaching processes using high elemental chlorine charge.

[0037] The bleaching of chemical pulps with the dioxirane compounds can be modified for a range of bleaching conditions, bleaching sequences and combinations with molecular oxygen and other bleaching agents, not specifically exemplified above, for example, hydrogen peroxide, oxygen and monoperoxysulphate. The treatment with dioxirane can also be combined with oxygen delignification, being placed before or after the oxygen treatment. The use of two oxygen containing compounds can have the virtue of eliminating a wash step needed between stages of a sequence when chlorine and compounds of chlorine are used.

[0038] The pulps used in this invention can be kraft, sulphite, soda, or other types of chemical pulps from hardwood and softwood species. The invention extends to chemical pulps and this term is intended to extend to pulps produced by the treatment of wood species with organic solvents to separate the wood components.


Claims

1. A process of bleaching a chemical pulp that comprises contacting the chemical pulp with a dioxirane.
 
2. A process as claimed in claim 1 in which the chemical pulp has a Kappa number in the range 15 to 60 if derived from a softwood species and 5 to 25 if derived from a hardwood species.
 
3. A process as claimed in claim 1 in which the dioxirane is contacted with the pulp at a temperature in the range about 5° to about 50°C for a time up to about 90 minutes
 
4. A process as claimed in claim 1 in which the dioxirane is used in amount sufficient to provide an active oxygen charge of from 0.2 to 1.0% based on the oven-dried pulp.
 
5. A process as claimed in claim 1 including, when the dioxirane-treated pulp has a residual lignin corresponding to less than 10 Kappa units further bleaching the pulp by chlorine dioxide (D) or by the sequence chlorine dioxide, caustic extraction, chlorine dioxide (DED).
 
6. A process as claimed in claim 5 in which the bleaching is carried out using a D₁ E D₂ sequence using chlorine dioxide in the D₁ stage in the range 0.5 to 1%, caustic in the E stage in the range 0.2 to 0.7% and chlorine dioxide in the D₂ stage 0.2 to 0.7%, all percentages being on the weight of the oven-dried pulp.
 
7. A process as claimed in claim 6 in which the chlorine dioxide in stage D₁ is about 0.8%, the caustic in the E stage is about 0.4% and the chlorine dioxide in the D₂ stage is about 0.4%.
 
8. A process as claimed in claim 5 in which the bleaching is carried out with chlorine dioxide in the range 0.5 to 1% by weight of the oven-dried pulp.
 
9. A process as claimed in claim 8 in which the chlorine dioxide is about 0.8% of the oven-dried pulp.
 
10. A process as claimed in claim 1 in which, when the dioxirane-treated pulp has a residual lignin content corresponding to a Kappa number exceeding 10, further bleaching is carried out using the sequence chlorine, caustic extraction, chlorine dioxide, caustic extraction, chlorine dioxide (CEDED).
 
11. A process as claimed in claim 10 in which the sequence is CE₁D₁E₂D₂ using in stage C an amount of chlorine appropriate for the Kappa number of the pulp after contact with the dioxirane, in stage E₁ the caustic charge is 60% of the charge used in the C stage, in stage D₁ 0.5 to 1.2% chlorine dioxide charge is used, in stage E₂ the caustic charge is 50% of that used in the D₁ stage and in stage D₂ 0.25 to 0.6% chlorine dioxide charge is used, the percentages being based on the oven-dried pulp.
 
12. A process as claimed in claim 1 in which the dioxirane has the structure

where R1 and R2, which may be the same or different, is each an aliphatic or aromatic group and may be linked together to form a ring.
 
13. A process as claimed in claim 12 in which R₁ and R₂ are each aromatic groups.
 
14. A process as claimed in claim 12 in which R₁ and R₂ are each aliphatic groups.
 
15. A process as claimed in claim 14 in which the aliphatic groups are alkyl groups with 1 to 4 carbon atoms.
 
16. A process as claimed in claim 12 in which the dioxirane is dimethyldioxirane.
 
17. A process for bleaching chemical pulp as claimed in claim 1,

(a) characterized in that said dioxirane has the formula

in which R₁ and R₂ is each an aliphatic or aromatic group and may be linked together to form a ring at an active oxygen charge of 0.2 to 1% by weight of the oven-dried pulp; and

(b) said process comprising bleaching the resulting pulp using the sequence chlorine dioxide (D) or chlorine dioxide, caustic extraction, chlorine dioxide (DED) when the pulp has a residual content corresponding to a Kappa number below 10; and

(c) when the pulp has a residual lignin content corresponding to a Kappa number greater than 10 bleaching the pulp with the sequence chlorine, caustic extraction, chlorine dioxide, caustic extraction, chlorine dioxide (CEDED) using a significantly reduced amount of elemental chlorine charge.


 
18. A process as claimed in claim 17 in which the dioxirane is dimethyldioxirane.
 
19. A process as claimed in claim 17 in which the dioxirane is contacted with the pulp at a temperature in the range of about 5° to 50°C for a time up to about 90 minutes.
 


Ansprüche

1. Verfahren zum Bleichen einer chemischen Cellulosepulpe, das das In-Kontakt-Bringen der chemischen Cellulosepulpe mit einem Dioxiran umfaßt.
 
2. Verfahren nach Anspruch 1, worin die chemische Pulpe eine Kappa-Zahl im Bereich von 15 bis 60 aufweist, wenn sie von einer Weichholz-Spezies abstammt, und eine Kappa-Zahl im Bereich von 5 bis 25 aufweist, wenn sie von einer Hartholz-Spezies stammt.
 
3. Verfahren nach Anspruch 1, worin das Dioxiran mit der Pulpe bei einer Temperatur im Bereich von etwa 5 °C bis etwa 50 °C für eine Zeit bis zu etwa 90 Minuten in Kontakt gebracht wird.
 
4. Verfahren nach Anspruch 1, worin das Dioxiran in einer Menge verwendet wird, die ausreichend ist, um eine aktive Sauerstoffmenge von 0,2 bis 1 % bereitzustellen, bezogen auf ofentrockene Pulpe.
 
5. Verfahren nach Anspruch 1, das dann, wenn die mit einem Dioxiran behandelte Pulpe einen Rest-Lignin-Gehalt aufweist, der weniger als 10 Kappa-Einheiten entspricht, das weitere Bleichen der Pulpe mit Chlordioxid (D) oder mit einer Sequenz aus Chlordioxid, kaustischer Extraktion und Chlordioxid (DED) einschließt.
 
6. Verfahren nach Anspruch 5, worin der Bleichvorgang unter Anwendung einer D₁ED₂-Sequenz durchgeführt wird, wobei man Chlordioxid in der D₁-Stufe in einer Menge im Bereich von 0,5 bis 1 % anwendet, Alkali in der E-Stufe in einer Menge im Bereich von 0,2 bis 0,7 % einsetzt und Chlordioxid in der D₂-Stufe in einer Menge von 0,2 bis 0,7 % einsetzt, wobei alle Prozentangaben auf das Gewicht der ofentrockenen Pulpe bezogen sind.
 
7. Verfahren nach Anspruch 6, worin das Chlordioxid in Stufe D₁ eingesetzt wird in einer Menge von etwa 0,8 %, das Alkali in der E-Stufe eingesetzt wird in einer Menge von etwa 0,4 % und das Chlordioxid in der D₂-Stufe eingesetzt wird in einer Menge von etwa 0,4 %.
 
8. Verfahren nach Anspruch 5, worin der Bleichvorgang durchgeführt wird mit Chlordioxid in einer Menge im Bereich von 0,5 bis 1 Gew-%, bezogen auf ofentrockene Pulpe.
 
9. Verfahren nach Anspruch 8, worin die Chlordioxid-Menge etwa 0,8 % beträgt, bezogen auf die ofentrockene Pulpe.
 
10. Verfahren nach Anspruch 1, worin dann, wenn die mit einem Dioxiran behandelte Pulpe einen Rest-Lignin-Gehalt aufweist, der einer Kappa-Zahl über 10 entspricht, ein weiterer Bleichvorgang unter Anwendung der Sequenz Chlor, kaustische Extraktion, Chlordioxid, kaustische Extraktion, Chlordioxid (CEDED) durchgeführt wird.
 
11. Verfahren nach Anspruch 10, worin die Sequenz CE₁D₁E₂D₂ ist, wobei man in Stufe C eine Chlormenge anwendet, die für die Kappa-Zahl der Pulpe nach Kontakt mit dem Dioxiran geeignet ist, die Sodamenge in der E₁-Stufe 60 % der Menge beträgt, die in der C-Stufe angewendet wird, in der Stufe D₁ eine Chlordioxid-Menge von 0,5 bis 1,2 % angewendet wird, in der Stufe E₂ die Alkalimenge 50 % der Menge beträgt, die in der D₁-Stufe angewendet wird, und in der Stufe D₂ eine Chlordioxid-Menge von 0,25 bis 0,6 % angewendet wird, wobei die Prozentangaben bezogen sind auf die ofentrockene Pulpe.
 
12. Verfahren nach Anspruch 1, worin das Dioxiran die Struktur

hat, worin R₁ und R₂, die gleich oder verschieden sein können, jeweils für eine aliphatische oder aromatische Gruppe stehen und miteinander unter Bildung eines Rings verbunden sein können.
 
13. Verfahren nach Anspruch 12, worin beide Reste R₁ und R₂ aromatische Gruppen sind.
 
14. Verfahren nach Anspruch 12, worin beide Gruppen R₁ und R₂ aliphatische Gruppen sind.
 
15. Verfahren nach Anspruch 14, worin die aliphatischen Gruppen Alkylgruppen mit 1 bis 4 Kohlenstoffatomen sind.
 
16. Verfahren nach Anspruch 12, worin das Dioxiran Dimethyldioxiran ist.
 
17. Verfahren zum Bleichen chemisch behandelter Cellulosepulpe nach Anspruch 1, dadurch gekennzeichnet, daß

(a) das Dioxiran die Formel

aufweist, worin R₁ und R₂ jeweils eine aliphatische oder aromatische Gruppe sind und miteinander unter Bildung eines Rings verbunden sein können, bei einer Aktivsauerstoff-Menge von 0,2 bis 1 Gew-%, bezogen auf die ofentrockene Pulpe; und

(b) das Verfahren das Bleichen der resultierenden Cellulosepulpe unter Anwendung der Sequenz Chlordioxid (D) oder Chlordioxid/kaustische Extraktion/Chlordioxid (DED) umfaßt, wenn die Pulpe einen Rest-Lignin-Gehalt aufweist, der einer Kappa-Zahl unter 10 entspricht; und

(c) dann, wenn die Pulpe einen Rest-Lignin-Gehalt aufweist, der einer Kappa-Zahl größer als 10 entspricht, Bleichen der Pulpe unter Anwendung der Sequenz Chlor, kaustische Extraktion, Chlordioxid, kaustische Extraktion, Chlordioxid (CEDED) unter Verwendung einer signifikant verringerten Menge an elementarem Chlor.


 
18. Verfahren nach Anspruch 17, worin das Dioxiran Dimethyldioxiran ist.
 
19. Verfahren nach Anspruch 17, worin das Dioxiran mit der Cellulosepulpe bei einer Temperatur im Bereich von etwa 5 °C bis 50 °C für eine Zeit bis zu etwa 90 Minuten in Kontakt gebracht wird.
 


Revendications

1. Procédé de blanchiment d'une pâte chimique qui comprend la mise en contact de la pâte chimique avec un dioxiranne.
 
2. Procédé tel que revendiqué dans la revendication 1, dans lequel la pâte chimique a un indice kappa compris dans l'intervalle de 15 à 60 si elle provient d'une espèce de bois résineux et de 5 à 25 si elle provient d'une espèce de bois feuillu.
 
3. Procédé tel que revendiqué dans la revendication 1, dans lequel le dioxiranne est mis en contact avec la pâte à une température située dans l'intervalle d'environ 5° à environ 50°C pendant un temps d'au plus environ 90 minutes.
 
4. Procédé tel que revendiqué dans la revendication 1, dans lequel le dioxiranne est utilisé en une quantité suffisante pour fournir une charge d'oxygène actif de 0,2 à 1,0% par rapport à la pâte séchée à l'étuve.
 
5. Procédé tel que revendiqué dans la revendication 1, comprenant, lorsque la pâte traitée au dioxiranne a une teneur en lignine résiduelle correspondant à moins de 10 unités kappa, un blanchiment supplémentaire de la pâte par le bioxyde de chlore (D) ou par la séquence bioxyde de chlore, extraction par base caustique, bioxyde de chlore (DED).
 
6. Procédé tel que revendiqué dans la revendication 5, dans lequel le blanchiment est effectué en utilisant une séquence D₁ED₂ en utilisant le bioxyde de chlore au stade D₁ à raison de 0,5 à 1%, la base caustique au stade E à raison de 0,2 à 0,7% et le bioxyde de chlore au stade D₂ à raison de 0,2 à 0,7%, tous les pourcentages étant exprimés par rapport au poids de la pâte séchée à l'étuve.
 
7. Procédé tel que revendiqué dans la revendication 6, dans lequel la charge de bioxyde de chlore au stade D₁ est d'environ 0,8%, la charge de base caustique au stade E est d'environ 0,4% et la charge de bioxyde de chlore au stade D₂ est d'environ 0,4%.
 
8. Procédé tel que revendiqué dans la revendication 5, dans lequel le blanchiment est effectué avec du bioxyde de chlore à raison de 0,5 à 1% du poids de la pâte séchée à l'étuve.
 
9. Procédé tel que revendiqué dans la revendication 8, dans lequel la charge de bioxyde de chlore est d'environ 0,8% de la pâte séchée à l'étuve.
 
10. Procédé tel que revendiqué dans la revendication 1, dans lequel, lorsque la pâte traitée au dioxiranne a une teneur en lignine résiduelle correspondant à un indice kappa dépassant 10, un blanchiment supplémentaire est effectué en utilisant la séquence chlore, extraction par base caustique, bioxyde de chlore, extraction par base caustique, bioxyde de chlore (CEDED).
 
11. Procédé tel que revendiqué dans la revendication 10, dans lequel la séquence est CE₁D₁E₂D₂ utilisant au stade C une quantité de chlore appropriée pour l'indice kappa de la pâte après contact avec le dioxiranne, au stade E₁ la charge de base caustique est de 60% de la charge utilisée au stade C, au stade D₁ une charge de 0,5 à 1,2% de bioxyde de chlore est utilisée, au stade E₂ la charge de base caustique est de 50% de celle utilisée au stade D₁, et, au stade D₂ une charge de 0,25 à 0,6% de bioxyde de chlore est utilisée, les pourcentages étant basés sur la pâte séchée à l'étuve.
 
12. Procédé tel que revendiqué dans la revendication 1, dans lequel le dioxiranne possède la structure

où R₁ et R₂, qui peuvent être identiques ou différents, sont chacun un groupe aliphatique ou aromatique et peuvent être liés ensemble pour former un cycle.
 
13. Procédé tel que revendiqué dans la revendication 12, dans lequel R₁ et R₂ sont tous deux des groupes aromatiques.
 
14. Procédé tel que revendiqué dans la revendication 12, dans lequel R₁ et R₂ sont tous deux des groupes aliphatiques.
 
15. Procédé tel que revendiqué dans la revendication 14, dans lequel les groupes aliphatiques sont des groupes alkyle de 1 à 4 atomes de carbone.
 
16. Procédé tel que revendiqué dans la revendication 12, dans lequel le dioxiranne est le diméthyldioxiranne.
 
17. Procédé de blanchiment d'une pâte chimique tel que revendiqué dans la revendication 1, caractérisé en ce que

(a) ledit dioxiranne répond à la formule

dans laquelle R₁ et R₂ sont chacun un groupe aliphatique ou aromatique et peuvent être liés ensemble pour former un cycle, et fournit une charge d'oxygène actif de 0,2 à 1% du poids de la pâte séchée à l'étuve ; et

(b) ledit procédé comprend un blanchiment de la pâte résultante en utilisant le bioxyde de chlore (D) ou la séquence bioxyde de chlore, extraction par base caustique, bioxyde de chlore (DED) lorsque la pâte a une teneur en lignine résiduelle correspondant à un indice kappa inférieur à 10 ; et

(c) lorsque la pâte a une teneur en lignine résiduelle correspondant à un indice kappa supérieur à 10, un blanchiment de la pâte par la séquence chlore, extraction par base caustique, bioxyde de chlore, extraction par base caustique, bioxyde de chlore (CEDED) en utilisant une charge notablement réduite de chlore élémentaire.


 
18. Procédé tel que revendiqué dans la revendication 17, dans lequel le dioxiranne est le diméthyldioxiranne.
 
19. Procédé tel que revendiqué dans la revendication 17, dans lequel le dioxiranne est mis en contact avec la pâte à une température située entre environ 5° et 50°C pendant un temps d'au plus environ 90 minutes.