(19)
(11) EP 0 596 830 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
11.05.1994  Patentblatt  1994/19

(21) Anmeldenummer: 93810729.9

(22) Anmeldetag:  18.10.1993
(51) Internationale Patentklassifikation (IPC)5H05H 1/34, H05H 1/42
(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priorität: 06.11.1992 DE 9215133 U

(71) Anmelder: Sulzer Metco AG
CH-5610 Wohlen (CH)

(72) Erfinder:
  • Landes, Klaus, Dr.
    D-81479 München (DE)

(74) Vertreter: Rottmann, Maximilian R. et al
c/o Rottmann, Zimmermann + Partner AG Glattalstrasse 37
8052 Zürich
8052 Zürich (CH)


(56) Entgegenhaltungen: : 
   
       


    (54) Plasmaspritzgerät


    (57) Das Plasmaspritzgerät dient zum Versprühen von pulverförmigem Material und umfasst ein indirektes Plasmatron, welches eine Kathodenanordnung, eine von der Kathodenanordnung (1) distanzierte, ringförmige Anode (3) und einen von der Kathodenanordnung zur Anode sich erstreckenden Plasmakanal (4) aufweist. Die Kathodenanordnung weist mehrere, im Kreis um die Längsachse (2) des Plasmakanals (4) verteilt angeordnete Kathoden (1, 20) auf. Der Plasmakanal (4) ist durch den Anodenring (3) und eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden (6 bis 12) gebildet. Am anodenseitigen Ende des Plasmatrons ist für die seitliche Zufuhr des Spritzmaterials (SM) in den freien Plasmastrahl (PS) eine auf das anodenseitige Ende (17) des Plasmatrons aufgesetzten Ringanordnung (51) vorgesehen, welche wenigstens einen von aussen nach innen führenden Kanal (52) aufweist, zu dessen äusserem Ende eine Anschlussleitung (53) führt.


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein Plasmaspritzgerät mit indirektem Plasmatron zum Versprühen von pulverförmigem Material, insbesondere zum Beschichten von Werkstückoberflächen.

    [0002] Zum Versprühen von pulverförmigem Material in schmelzflüssigem Zustand sind Plasmasspritzgeräte im Gebrauch, welche mit einem indirekten Plasmatron arbeiten, d.h. einem Plasmaerzeuger mit einem aus einer Düse ausströmenden, elektrisch nicht stromführenden Plasmastrahl. In der Regel wird das Plasma durch einen Lichtbogen erzeugt und durch einen Plasmakanal zu einer Ausströmdüse geleitet, wobei man unterscheidet zwischen Geräten mit Kurzlichtbogen und solchen mit Langlichtbogen.

    [0003] Herkömmliche Plasmaspritzgeräte mit indirektem Plasmatron haben vielfach den Nachteil, dass der freie Plasmastrahl hinsichtlich seiner Wärmeintensität und der Lage seines radialen Temperaturprofils nicht genügend stabil ist, so dass das dem Plasmastrahl zugeführte Spritzmaterial thermisch ungleichmässig behandelt wird und infolgedessen die mit dem versprühten Material erzeugten Schichten nicht die erwünschte Regelmässigkeit aufweisen.

    [0004] Der Grund für diese Unregelmässigkeit des Plasmastrahls liegt bei diesen Geräten einerseits in der Instabilität des Lichtbogens, welche verschiedene Ursachen haben kann. Eine wesentliche Rolle spielt dabei der Umstand, dass der Fusspunkt des an den Elektroden ansetzenden Lichtbogens unter gewissen Voraussetzungen eine Wanderbewegung ausführt. Andererseits kann in Verbindung mit einer Fusspunktwanderung auch der im allgemeinen asymmetrische Verlauf des Lichtbogens bezüglich der Längsachse des Plasmatrons eine Ungleichmässigkeit der thermischen Behandlung des Spritzmaterials bewirken.

    [0005] Besonders ausgeprägt können Fusspunktwanderungen bei Plasmatrons sein, welche mit einem Kurzlichtbogen arbeiten, wobei eine stiftförmige Kathode in eine einteilige, düsenförmige Anode eintaucht (z.B. gemäss DE-GM 1 932 150), da an Anodendüsen mit achsialer Ausdehnung bei dieser Elektrodenanordnung sowohl achsiale als auch periphere Wanderungen des Lichtbogenfusspunktes auftreten können. Zumindest achsiale Fusspunktwanderungen sind auch bei einem ähnlichen Plasmaspritzgerät nach der DE 33 12 232 zu erwarten, welches statt einer mehrere Kathoden aufweist.

    [0006] Eine achsiale Fusspunktwanderung entsteht prinzipiell dadurch, dass ein zwischen einer Kathode und einer düsenförmigen Anode brennender Lichtbogen unter dem Einfluss der Plasmaströmung bis an eine von der Kathode am weitesten entfernte Stelle der Anode in die Länge gezogen wird, dann an dieser Stelle abreisst und an einer der Kathode am nächsten liegenden Stelle der Anode wieder ansetzt. Erfahrungsgemäss wiederholt sich dieser Vorgang mehr oder weniger periodisch mit einer Wiederholungsfrequenz in der Grössenordnung von mehreren Kilohertz. Die mit den Längenänderungen des Lichtbogens einhergehenden Spannungsänderungen können zu starken Leistungsschwankungen (bis etwa ± 30%) und entsprechenden Intensitätsschwankungen im freien Plasmastrahl führen. Dadurch wird das dem Plasmastrahl zugeführte Spritzmaterial sehr ungleichmässig behandelt.

    [0007] Die Asymmetrie des Lichtbogens hat zur Folge, dass auch das radiale Temperaturprofil des freien Plasmastrahls asymmetrisch verläuft, d.h. dass der heisse Kern des Plasmastrahls eine gewisse Auslenkung aus der Längsachse des Plasmatrons erfährt. Diese Wirkung wird noch unterstützt durch den Umstand, dass das aus der Anodendüse abströmende Plasma am Fusspunkt des Lichtbogens, d.h. an einer exzentrischen Stelle der Anordnung, zusätzlich aufgeheizt wird. Besonders gravierend ist eine derartige Auslenkung des Plasmakerns in Verbindung mit einer peripheren Fusspunktwanderung des Lichtbogens. Dadurch entsteht eine Art Präzessionsbewegung des Plasmastrahls, welche meist unregelmässig verläuft und bei externer Zufuhr des Spritzmaterials aus einer ortsfesten Zufuhreinrichtung ebenfalls eine ungleichmässige thermische Behandlung des Spritzmaterials zur Folge hat.

    [0008] Bessere Verhältnisse erzielt man in dieser Beziehung mit einem Plasmaspritzgerät, dessen Plasmatron mit Langlichtbogen arbeitet und, z.B. gemäss der EP 0 249 238 A2, einen durch einen Anodenring und eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden gebildeten Plasmakanal aufweist. Durch die Kaskadierung des Plasmakanals, d.h. durch die der Anode vorgesetzten Neutroden, wird eine achsiale Wanderung des anodischen Lichtbogenfusspunktes vermieden. Hingegen zeigt sich bei einem derartigen Plasmatron immer noch eine ausgeprägte periphere Wanderung des Lichtbogenfusspunktes an der ringförmigen Anode, sofern der Lichtbogen von einer einzigen Kathode ausgeht, wie das z.B. bei dem Plasmaspritzgerät nach der EP 0 249 238 A2 der Fall ist. In dieser Hinsicht liegen daher ähnliche Verhältnisse vor wie bei dem zuvor beschriebenen Beispiel eines Kurzlichtbogen-Plasmatrons. Auch in diesem Fall ist also eine ungleichmässige Behandlung des seitlich zugeführten Spritzmaterials die Folge.

    [0009] Es ist demnach die Aufgabe der Erfindung, ein Plasmaspritzgerät zu schaffen, das unter Vermeidung der genannten Nachteile einen stabilen freien Plasmastrahl erzeugt und damit sicherstellt, dass das diesem von aussen zugeführte Spritzmaterial gleichmässig aufbereitet wird.

    [0010] Diese Aufgabe wird gemäss der Erfindung durch die Kombination der Merkmale a) bis d) im Kennzeichen des Anspruchs 1 gelöst.

    [0011] Besondere Ausführungsformen und vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind in den abhängigen Ansprüchen 2-9 definiert.

    [0012] Beobachtungen über den Lichtbogenverlauf in einem derartigen Plasmatron liessen erkennen, dass bei einer Kathodenanordnung mit mehreren Kathoden die von den einzelnen Kathoden ausgehenden Lichtbögen sich nicht etwa zu einem einzigen Lichtbogen vereinigen und in einem gemeinsamen, zu peripheren Wanderungen neigendem Fusspunkt am Anodenring enden, sondern dass sich von allen Kathoden her diskrete Lichtbögen ausbilden, welche am Anodenring diskrete Fusspunkte haben. Diese Anodenfusspunkte wandern nicht peripher dem Anodenring entlang, sondern liegen örtlich fest; sie können allenfalls, z.B. bei wirbelförmiger Strömung des Plasmagases, gegenüber den betreffenden Kathodenfusspunkten etwas versetzt sein. Von besonderer Bedeutung ist dabei die weitere Feststellung, dass sich der beobachtete Lichtbogenverlauf auch dann nicht ändert, wenn das Plasmatron einen engen oder stellenweise verengten Plasmakanal aufweist.

    [0013] Auf diese Weise werden also auf der ganzen Lichbogenstrecke stabile Verhältnisse erzielt, was zu einem räumlich und zeitlich stabilen freien Plasmastrahl und dementsprechend zu einem gleichförmigen Energieaustausch mit dem seitlich in den Plasmastrahl eingeführten Spritzmaterial führt.

    [0014] In der beigefügten Zeichnung ist ein Ausführungsbeispiel eines gemäss der Erfindung aufgebauten Plasmaspritzgerätes dargestellt.

    [0015] Das im Längsschnitt gezeigte Plasmaspritzgerät besitzt drei stabförmige Kathoden 1, welche parallel zueinander verlaufen und im Kreis um die zentrale Längsachse 2 des Gerätes gleichmässig verteilt angeordnet sind, ferner eine von den Kathoden 1 distanzierte ringförmige Anode 3 und einen von den Kathoden 1 zur Anode 3 sich erstreckenden Plasmaführungskanal 4. Der Plasmaführungskanal 4 ist durch eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden 6 bis 12 und die ringförmige Anode 3 gebildet.

    [0016] Die Kathodenstäbe 1 sind in einem Kathodenträger 13 aus Isoliermaterial verankert. An diesen schliesst sich ein hülsenförmiger Anodenträger 14 aus Isoliermaterial an, der die Neutroden 6 bis 12 und die Anode 3 umgibt. Das Ganze wird zusammengehalten durch drei Metallhülsen 15, 16 und 17, wobei die erste Hülse 15 mit dem Kathodenträger 13 stirnseitig und die zweite Hülse 16 mit der ersten umfänglich verschraubt ist, während die dritte Hülse 17 einerseits an der zweiten Hülse 16 lose verankert und andererseits mit dem Anodenträger 14 umfänglich verschraubt ist. Die dritte Hülse 17 drückt ausserdem mit einem nach innen gerichteten Flanschrand 18 gegen den Anodenring 3 und hält damit die den Plasmaführungskanal 4 bildenden Elemente zusammen, wobei sich die den Kathoden am nächsten liegende Neutrode 6 an einem Innenbund 19 des Anodenträgers 4 abstützt.

    [0017] Die Kathodenstäbe 1 tragen an ihren freien Enden Kathodenstifte 20, welche aus einem elektrisch und thermisch besonders gut leitenden und zudem hochschmelzenden Material, z.B. Wolfram, bestehen. Dabei sind die Kathodenstifte 20 derart exzentrisch zur jeweiligen Achse der Kathodenstäbe 1 angeordnet, dass deren Längsachsen der zentralen Längsachse 2 näher liegen als diejenigen der Kathodenstäbe 1. An den Kathodenträger 13 ist auf der dem Plasmaführungskanal 4 zugewandten Seite ein zentraler Isolierkörper 21 aus hochschmelzendem, insbesondere glaskeramischem Material angesetzt, aus dem die Kathodenstifte 20 heraus in den Hohlraum 22 der durch die erste Neutrode 6 gebildeten Einlaufdüse ragen. Der freiliegende Teil der äusseren Mantelfläche des Isolierkörpers 21 liegt einem Teil der Düsenwandung radial gegenüber und bildet mit diesem Wandungsteil einen Ringkanal 23 für den Einlass des Plasmagases in den Düsenhohlraum 22.

    [0018] Das Plasmagas PG wird durch einen im Kathodenträger 13 vorgesehenen Querkanal 26 zugeführt, welcher in einen Längskanal 27 übergeht, aus dem das Plasmagas in einen Ringraum 28 und von da in den Ringkanal 23 gelangt. Zur Erzielung einer möglichst laminaren Einströmung des Plasmagases in den Düsenhohlraum 22 ist ein auf dem Isolierkörper 20 sitzender Verteilerring 29 mit einer Mehrzahl von Durchgangsbohrungen 30 vorgesehen, welche den Ringraum 28 mit dem Ringkanal 23 verbinden.

    [0019] Die den Plasmaführungskanal 4 bildenden Elemente, nämlich die Anode 3 und die Neutroden 6 bis 12, sind durch Ringscheiben 31 aus Isoliermaterial, z.B. Bornitrid, gegeneinander elektrisch isoliert und durch Dichtungsringe 32 gasdicht miteinander verbunden. Der Plasmaführungskanal 4 weist im kathodennahen Bereich eine Einschnürungszone 33 auf und erweitert sich im Anschluss an diese Einschnürungszone 33 zur Anode 3 hin auf einen Durchmesser, welcher mindestens 1,5-mal so gross ist wie der Kanaldurchmesser an der engsten Stelle der Einschnürungszone 33. Nach dieser Erweiterung verläuft der Plasmaführungskanal 4 zylindrisch bis an sein anodenseitiges-Ende. Während die Neutroden 6 bis 12 z.B. aus Kupfer bestehen, ist die Anode 3 aus einem Aussenring 34, z.B. aus Kupfer, und einem Innenring 35 aus einem elektrisch und thermisch besonders gut leitenden und zudem hochschmelzenden Material, z.B. Wolfram, aufgebaut.

    [0020] Um die Plasmaströmung, insbesondere im Düsenbereich, nicht durch Spalte in der Wandung des Plasmaführungskanals 4 zu behindern, erstreckt sich die den Kathodenstäben 1 am nächsten liegende Neutrode 6 über die ganze Einschnürungszone 33, damit die Kanalwandung 52 bis über die engste Stelle der Einschnürungszone hinaus einen stetigen Verlauf aufweist.

    [0021] Die der Lichtbogen- und Plasmawärme unmittelbar ausgesetzten Teile sind weitgehend wassergekühlt. Zu diesem Zweck sind im Kathodenhalter 13, in den Kathodenstäben 1 und im Anodenhalter 14 verschiedene Hohlräume für die Zirkulation des Kühlwassers KW vorgesehen. Der Kathodenhalter 13 weist drei Ringräume 36, 37 und 38 auf, die mit Anschlussleitungen 39, 40 bzw. 41 verbunden sind, und der Anodenhalter 14 weist im Bereich der Anode 3 einen Ringraum 42 und im Bereich der Neutroden 6 bis 12 einen alle Neutroden umgebenden Hohlraum 43 auf. Kühlwasser KW wird über die Anschlussleitungen 39 und 41 zugeführt. Das Kühlwasser der Anschlussleitung 39 gelangt durch einen Längskanal 44 zunächst zu dem die thermisch am stärksten belastete Anode 3 umgebenden Ringraum 42. Von da strömt das Kühlwasser durch den Hohlraum 43 der Mantelfläche der Neutroden 6 bis 12 entlang zurück durch einen Längskanal 45 in den Ringraum 37. Das Kühlwasser der Anschlussleitung 41 fliesst in einen Ringraum 38 und aus diesem in je einen Hohlraum 46 der Kathodenstäbe 1, welcher durch eine zylindrische Trennwand 47 unterteilt ist. Aus den Kathodenstäben 1 gelangt das Kühlwasser schliesslich ebenfalls in den Ringraum 37, aus dem es über die Anschlussleitung 40 abfliesst.

    [0022] In die Figur ist auch der ungefähre Verlauf der einzelnen Lichtbögen 50 (zwei sichtbar) schematisch angedeutet. Deren anodenseitige Fusspunkte verteilen sich gleichmässig über den inneren Umfang des Anodenrings 3. Ferner ist mit gestrichelten Linien der Anfangsabschnitt des aus dem Plasmakanal 4 achsialsymmetrisch austretenden freien Plasmastrahls PS angedeutet.

    [0023] Die Zufuhr des Spritzmaterials, z.B. Metallpulver, in den freien Plasmastrahl PS erfolgt mit Hilfe einer auf die anodenseitige Metallhülse 17 aufgesetzten Ringanordnung 51 aus temperaturbeständigem Material, welche mit Kanälen 52 in Form von Radialbohrungen versehen ist, denen das Spritzmaterial SM mit einem Trägergas über Anschlussleitungen 53 zugeführt wird. Im vorliegenden Beispiel liegen zwei Radialbohrungen einander diametral gegenüber. Es kann jedoch auch eine Ringanordnung mit nur einem Kanal 52 oder eine solche mit mehr als zwei, z.B. drei Kanälen vorhanden sein, wobei im letzteren Fall die Kanäle vorzugsweise gleichmässig über den Umfang der Ringanordnung 51 verteilt angeordnet sind. Ferner besteht die Möglichkeit, die Kanäle jeweils in einer Achsialebene der Ringanordnung 51 schräg anzuordnen, und zwar können diese in bezug auf die Richtung des Plasmastrahls PS sowohl nach vorne als nach hinten gerichtet sein.

    [0024] Unter Umständen kann es zweckmässig sein, ausser der anodenseitigen Zufuhr des Spritzmaterials SM in den freien Plasmastrahl PS auch eine Zufuhr von Spritzmaterial am kathodenseitigen Ende des Plasmatrons vorzusehen. Zu diesem Zweck kann ein achsiales Führungsrohr vorgesehen sein, welches den Kathodenhalter 13 und den Isolierkörper 21 zentral durchsetzt. Bei der kathodenseitigen Zufuhr lässt sich in bekannter Weise die gesamte Lichtbogenenergie, also nicht nur der aus dem Lichtbogen in den freien Plasmastrahl übergehende Energieanteil, zum Aufschmelzen des Spritzmaterials ausnützen. Im Hinblick auf die genannten Energieverhältnisse und die hohe Energiedichte im Kathodenraum erscheint es zweckmässig, hochschmelzendes Spritzmaterial kathodenseitig und leichtschmelzendes Spritzmaterial anodenseitig zuzuführen. Unter diesen Umständen könnte das Plasmatron gleichzeitig oder wechselweise mit anodenseitiger und kathodenseitiger Zufuhr von Spritzmaterial betrieben werden.


    Ansprüche

    1. Plasmaspritzgerät mit indirektem Plasmatron zum Versprühen von pulverförmigem Material, insbesondere zum Beschichten von Werkstückoberflächen, gekennzeichnet durch die Kombination folgender Merkmale:

    a) Das Plasmatron weist eine Kathodenanordnung, eine von der Kathodenanordnung (1) distanzierte, ringförmige Anode (3) und einen von der Kathodenanordnung zur Anode sich erstreckenden Plasmakanal (4) auf;

    b) die Kathodenanordnung weist mehrere, im Kreis um die Längsachse (2) des Plasmakanals (4) verteilt angeordnete Kathoden (1, 20) auf;

    c) der Plasmakanal (4) ist durch den Anodenring (3) und eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden (6 bis 12) gebildet; und

    d) am anodenseitigen Ende des Plasmatrons sind Mittel (51) für die seitliche Zufuhr des Spritzmaterials (SM) in den freien Plasmastrahl (PS) vorgesehen.


     
    2. Plasmaspritzgerät nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel für die Zufuhr des Spritzmaterials (SM) aus einer auf das anodenseitige Ende (17) des Plasmatrons aufgesetzten Ringanordnung (51) bestehen, welche wenigstens einen von aussen nach innen führenden Kanal (52) aufweist, zu dessen äusserem Ende eine Anschlussleitung (53) führt.
     
    3. Plasmaspritzgerät nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal (52) radial verläuft.
     
    4. Plasmaspritzgerät nach Anspruch 2, dadurch gekennzeichnet, dass der Kanal in einer Achsialebene der Ringanordnung schräg verläuft und in Bezug auf die Richtung des freien Plasmastrahls (PS) nach vorne oder nach hinten gerichtet ist.
     
    5. Plasmaspritzgerät nach Anspruch 2, dadurch gekennzeichnet, dass zwei Kanäle (52) vorgesehen sind, welche einander diametral gegenüberstehen.
     
    6. Plasmaspritzgerät nach Anspruch 2, dadurch gekennzeichnet, dass mehrere Kanäle vorhanden sind, welche gleichmässig über den Umfang der Ringanordnung (51) verteilt angeordnet sind.
     
    7. Plasmaspritzgerät nach Anspruch 1, dadurch gekennzeichnet, dass zusätzlich Mittel für die achsiale Zufuhr von Spritzmaterial am kathodenseitigen Ende des Plasmatrons vorgesehen sind.
     
    8. Plasmaspritzgerät nach Anspruch 7, dadurch gekennzeichnet, dass als zusätzliches Mittel ein zentrales Rohr vorgesehen ist, das auf den Plasmakanal (4) achsial ausgerichtet ist und in den Hohlraum (22) der den Kathoden (1, 20) am nächsten liegenden Neutrode (6) ragt.
     
    9. Plasmatron nach Anspruch 1, dadurch gekennzeichnet, dass der Plasmakanal (4) im kathodennahen Bereich der Lichtbogenstrecke eine Einschnürungszone (33) aufweist und sich von dieser Einschnürungszone zur Anode (3) hin erweitert.
     




    Zeichnung







    Recherchenbericht