(19)
(11) EP 0 615 095 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
14.09.1994  Patentblatt  1994/37

(21) Anmeldenummer: 93114746.6

(22) Anmeldetag:  14.09.1993
(51) Internationale Patentklassifikation (IPC)5F23N 1/02, F23N 3/08
(84) Benannte Vertragsstaaten:
CH DE FR IT LI

(30) Priorität: 11.03.1993 CH 732/93

(71) Anmelder: Landis & Gyr Technology Innovation AG
CH-6301 Zug (CH)

(72) Erfinder:
  • Schwendemann, Eckhard, Dipl.-Ing. FH
    D-7580 Bühl (DE)

(74) Vertreter: Müller, Hans-Jürgen, Dipl.-Ing. et al
Patentanwälte Dipl.-Ing. Hans-Jürgen Müller, Dipl.-Chem.Dr. Gerhard Schupfner, Dipl.-Ing. Hans-Peter Gauger, Postfach 101161
80085 München
80085 München (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Feuerungsautomat


    (57) Die Erfindung betrifft einen Feuerungsautomaten (1) zur Ansteuerung eines Gebläses (3) mit einem Gebläseantrieb (2) und einer Brennstoffpumpe (5) mit einem Brennstoffpumpenantrieb (4). Der Feuerungsautomat (1) weist einen Programmgeber (20) auf, der einen Inbetriebsetzungsvorgang und einen fortlaufenden Betrieb steuert und überwacht, wobei Gebläse (3) und Brennstoffpumpe (5) für jeden Arbeitspunkt gemäß den in einem Solldaten-Speicher (22) abgelegten Daten gesteuert werden. Erfindungsgemäß wird dabei der Sollwert für den Gebläseantrieb (2) gemäß einem vorgegebenen Algorithmus durch die mit einem Zuluft-Temperaturfühler (30) gemessene aktuelle Zuluft-Temperatur korrigiert.
    Durch die Erfindung wird es ermöglicht, die Schadstoffemissionen eines durch den Feuerungsautomaten (1) beherrschten Brenners weiter zu senken.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf einen Feuerungsautomaten gemäß dem Oberbegriff des Anspruchs 1.

    [0002] Solche Feuerungsautomaten sind Bestandteil von Einrichtungen zur Steuerung der Verbrennung bei Wärmeerzeugungsanlagen kleiner bis mittlerer Leistung, die mit flüssigen Brennstoffen betrieben werden.

    [0003] Solche Feuerungsautomaten sind beipielsweise aus der Landis & Gyr-Firmendruckschrift 7461D "Feuerungsautomat LFE1" bekannt. Mit Hilfe eines solchen Feuerungsautomaten werden Luftgebläse, Brennstoffpumpe (z.B. Ölpumpe), Brennstoffventil und Zündungseinrichtung gesteuert. Damit ist sowohl der Inbetriebsetzungsvorgang für einen Brenner steuer- und überwachbar als auch der Betrieb im Anschluß an einen solchen Inbetriebsetzungsvorgang, wobei zur Leistungsregelung ein separater Leistungsregler zum Einsatz kommt. Aus der DE-A1-29 20 343 ist eine Vorrichtung zur Steuerung von Brennern bekannt, die auch einen Leistungsregler umfaßt.

    [0004] Darüber hinaus ist es bekannt, zusätzlich zu einem solchen Feuerungsautomaten Verbundregler einzusetzen, die im Betrieb im Anschluß an einen Inbetriebsetzungsvorgang die Stoffmengenflüsse für Brennstoff und Luft so regeln, daß die Verbrennung im Hinblick auf die Verbrennungsbedingungen, inbesondere hinsichtlich Emissionsverhalten, optimiert wird. Ein solcher Verbundregler ist in der DE-C2-30 39 994 beschrieben. An einen solchen Verbundregler ist ein Rechner anschließbar, der den Mikroprozessor des Verbundreglers ersetzt, wenn der Verbundregler bei einer erstmaligen Inbetriebnahme oder einer späteren Justierung an die Gegebenheiten der zu regelnden Verbrennungsanlage angepaßt werden soll. Mindestens bei der Inbetriebnahme wird dabei eine den Abgaszustand erfassende Sonde verwendet.

    [0005] Bekannt ist weiter, daß die tatsächlich zur Verbrennung erforderliche Luftmenge, wenn sie als Volumen betrachtet wird, von der Temperatur der Luft abhängt, da gemäß Allgemeinem Gasgesetz eine deutliche Abhängigkeit des Massengehalts eines bestimmten Gasvolumens von der Temperatur besteht. Aus der DE-C2-36 07 386 ist es bekannt, eine dementsprechende Korrektur der Stellung des Brennstoff-Regelorgans bei einer mit einem Gasgebläsebrenner ausgestatteten Verbrennungsanlage vorzunehmen.

    [0006] Der Erfindung liegt die Aufgabe zugrunde, einen Feuerungsautomaten zu schaffen, der unabhängig von der Kennlinie der Stellglieder für Luft- und Brennstoffstrom in der Lage ist, das Emissionsverhalten einer durch diesen Feuerungsautomaten gesteuerten Verbrennungsanlage zu verbessern.

    [0007] Die Lösung dieser Aufgabe hat insofern große Bedeutung, da Verbrennungsanlagen für kleine und mittlere Leistungen sehr große Verbreitung haben und deshalb auch kleinere Beiträge zur Verbesserung des Emissionsverhaltens eine insgesamt deutliche Reduktion der Gesamtmenge der Schadstoffemissionen bewirken.

    [0008] Die genannte Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.

    [0009] Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.

    [0010] Die einzige Figur zeigt ein Schema mit einem erfindungsgemäßen Feuerungsautomaten 1, an den ein Gebläseantrieb 2 eines Gebläses 3 und ein Brennstoffpumpenantrieb 4 einer Brennstoffpumpe 5 angeschlossen sind. Der Gebläseantrieb 2 ist dabei über eine erste Schnittstelle 6 an den Feuerungsautomaten 1 angeschlossen, wobei diese Schnittstelle 6 ihrerseits aus einem Betriebsspannungsanschluß 6b, einem Steueranschluß 6s und einem Rückmeldeanschluß 6r besteht. Analog dazu ist der Brennstoffpumpenantrieb 4 über eine zweite Schnittstelle 7 an den Feuerungsautomaten 1 angeschlossen, die aus einem Betriebsspannungsanschluß 7b, einem Steueranschluß 7s und einem Rückmeldeanschluß 7r besteht.

    [0011] Der Gebläseantrieb 2 ist vorteilhaft ein drehzahlsteuerbarer Motor, beispielsweise ein DC-Motor. Die Antriebsenergie wird ihm über den Betriebsspannungsanschluß 6b zur Verfügung gestellt. Die Drehzahlsteuerung erfolgt über den Steueranschluß 6s. Vorteilhaft erfolgt die Drehzahlsteuerung durch eine Pulsweitenmodulation. Die entsprechende Steuerelektronik ist Bestandteil des als Baueinheit zu betrachtenden Motors. Die Rückmeldung der Drehzahl erfolgt über den Rückmeldeanschluß 6r. Das Rückmeldesignal liefert vorteilhaft eine Hall-Sonde, die samt ihrer Signalaufbereitungsschaltung ebenfalls Bestandteil des eine Baueinheit darstellenden Motors ist. Solche Baueinheiten sind handelsüblich. Wesentlich ist, daß das Rückmeldesignal eine der Drehzahl des Motors proportionale Folge von Pulsen konstanter Länge und konstanter Amplitude ist, so daß die Länge der Pause zwischen den einzelnen Impulsen drehzahlabhängig ist. Dadurch wird erreicht, daß die Verarbeitung des Signals der Drehzahlrückmeldung wahlweise entweder digital durch Zählen der Impulse pro Zeiteinheit oder analog durch Integration dieser Impulse erfolgen kann. Besonders vorteilhaft ist es, beide Signalverarbeitungsarten parallel anzuwenden, d.h. sowohl digital als auch analog. Da Störungen im allgemeinen auf einen digitalen Signalpfad andere Wirkungen als auf einen analogen Signalpfad haben, ist die mit dieser Kombination erreichbare Sicherheit sogar noch größer als bei einer üblichen zweikanaligen Signalverarbeitung.

    [0012] Vorteilhaft ist der Brennstoffpumpenantrieb 4 ebenfalls ein drehzahlsteuerbarer Motor, der analog zum Gebläseantrieb 2 angesteuert werden kann und dessen Rückmeldung ebenfalls entsprechend gestaltet ist.

    [0013] Als Gebläseantrieb 2 und Brennstoffpumpenantrieb 4 können beispielsweise EBM-Motoren des Typs M3G055-BD03-XA, VDB (32-38 V) DC sein, ist aber selbstverständlich nicht darauf beschränkt. Die Verwendung des gleichen Motors für beide Antriebe hat Vorteile hinsichtlich Lagerhaltung, Ersatzteil-Verfügbarkeit und Preis.

    [0014] Der Feuerungsautomat 1 besitzt außerdem Anschlußpunkte für einen Brennstoffvorwärmer 8, für ein Brennstoffventil 9, für eine Zündeinrichtung 10 und für eine Flammenüberwachungseinrichtung 11. Daneben besitzt er einen Anschluß 12 für die Betriebsspannung, üblicherweise für 230 V/50 Hz und/oder 110 V/60 Hz.

    [0015] Ein solcher Feuerungsautomat 1 wird in der Regel von einem Heizungsregler her angesteuert. Dazu besitzt er einen Steuereingang 13, der vorteilhaft aus drei einzelnen Eingangspunkten besteht: einem ersten Eingangspunkt 13.1 für einen generellen Einschaltbefehl, einem zweiten Eingangspunkt 13.2 für einen Befehl zum Einschalten einer eventuell vorhandenen zweiten Brennerstufe und einem dritten Eingangspunkt 13.m für ein Leistungsanforderungssignal im Falle eines modulierenden Brenners. Besteht der Steuereingang 13 aus diesen drei Eingangspunkten, ist der Feuerungsautomat 1 wahlweise universell für alle vorkommenden Brennerbauarten "Einstufig", "Zweistufig" und "Modulierend" einsetzbar. Dies ist zweckmäßig im Hinblick auf eine variantenarme Serienfertigung, durch die sich die Fabrikationskosten senken lassen.

    [0016] Vorteilhaft ist es, wenn der Feuerungsautomat 1 im Rahmen eines Selbsttests vor der Inbetriebsetzung selbsttätig erkennt, welche der Eingangspunkte verdrahtet sind. Er kann sich dann selbst konfigurieren oder aber bei vorgegebener Konfigurierung selbsttätig erkennen, ob auch die Ansteuerpfade noch betriebsfähig sind.

    [0017] An den Feuerungsautomaten 1 anschließbar ist weiterhin ein Sicherheitstemperaturbegrenzer 14, dessen Kontakt in die Sicherheitskette des Feuerungsautomaten 1 einbezogen werden muß, um unter allen Umständen zu verhindern, daß der Brenner eingeschaltet wird, obwohl der Wärmeerzeuger wegen Überhitzung ausgeschaltet sein muß.

    [0018] Der Feuerungsautomat 1 enthält ein mit dem Anschluß 12 verbundenes Netzteil 15, das alle benötigten Spannungen generiert. Das Netzteil 15 liefert die Betriebsspannung an die Betriebsspannungsanschlüsse 6b und 7b, außerdem über ein Brennstoffvorwärmerrelais 16 an den Brennstoffvorwärmer 8 sowie über besagten Sicherheitstemperaturbegrenzer 14 und ein Schutzrelais 17 einerseits über ein Brennstoffventil-Relais 18 an das Brennstoffventil 9 und andererseits über ein Zündrelais 19 an die Zündeinrichtung 10. Die vier Relais 16, 17, 18 und 19 werden von einem Programmgeber 20 angesteuert, was durch punktierte Linien angedeutet ist. Der Programmgeber 20 ist beispielsweise ein Mikroprozessor mit zugehörigen peripheren Schnittstellen und Bauteilen. Der Programmgeber 20 hat auch einen Eingang, der mit einem Flammenverstärker 21 verbunden ist, der das Signal der Flammenüberwachungseinrichtung 11 verstärkt und in ein für den Programmgeber 20 verträgliches Signal formt.

    [0019] Ausgänge des Programmgebers 20 sind mit den beiden Steueranschlüssen 6s und 7s verbunden. Der Programmgeber 20 ist außerdem erfindungsgemäß mit einem Solldaten-Speicher 22 verbunden, in dem Sollwerte für Drehzahlen von Gebläseantrieb 2 und Brennstoffpumpenantrieb 4 angelegt sind. Zudem ist ein Istdaten-Speicher 23 vorhanden, der mit den Rückmeldeanschlüssen 6r und 7r verbunden ist. SolldatenSpeicher 22 und Istdaten-Speicher 23 stehen mit einem Vergleicher 24 in Verbindung, der seinerseits die Ergebnisse von Vergleichsoperationen an den Programmgeber 20 meldet, wozu eine entsprechende Verbindung vorhanden ist.

    [0020] Darüber hinaus weist der Feuerungsautomat 1 eine weitere Schnittstelle 25 zum Anschluß einer Abgassonde 26 auf, die beispielsweise eine Sauerstoffsonde sein kann. Die Schnittstelle 25 ist verbunden mit einem Sollwert-Generator 27, der mit dem Solldaten-Speicher 22 verbunden ist. Dieser Sollwert-Generator 27 wird angesteuert von einem Betriebsarten-Schalter 28, der auch mit dem Programmgeber 20 verbunden ist. Der Betriebsarten-Schalter 28 besitzt zwei Stellungen: eine erste Stellung, die Stellung "SET", in der der Sollwert-Generator 27 aktiviert ist, und eine zweite Stellung, die Stellung "RUN", in der der Programmgeber 20 sein normales Programm abarbeitet.

    [0021] Der Feuerungsautomat 1 weist also Elemente 25, 27 und 28 auf, mit denen er in der Lage ist, beim Anschluß einer Abgassonde 26 autonom die für einen optimalen Betrieb der Verbrennungsanlage nötigen Daten zu ermitteln. Im Hinblick auf eine kostengünstige Lösung ist es vorteilhaft, wenn der Sollwert-Generator und gegebenenfalls auch der Betriebsarten-Schalter 28 keine separaten Elemente darstellen, sondern durch Programmsequenzen realisiert sind, die durch den erwähnten Mikroprozessor abgearbeitet werden.

    [0022] Erfindungsgemäß besitzt der Feuerungsautomat 1 eine weitere Schnittstelle 29, an die ein Zulufttemperatur-Fühler 30 anschließbar ist. Diese Schnittstelle 29 ist einerseits mit dem Sollwert-Generator 27 und andererseits mit dem Programmgeber 20 verbunden.

    [0023] Nachstehend wird die Funktionsweise eines solchen Feuerungsautomaten 1 beschrieben, und zwar am Beispiel einer für einen modulierenden Brenner konfigurierten Einrichtung, zunächst hinsichtlich des normalen Betriebs, bei dem sich der Betriebsarten-Schalter 28 in der Stellung "RUN" befndet.

    [0024] Als Ausgangszustand sei der "AUS"-Zustand angenommen. Der übergeordnete, in der Figur nicht dargestellte Heizungsregler verlangt keine Wärme, so daß der Brenner ausgeschaltet ist. Der Feuerungsautomat 1 befindet sich im Zustand "Standby", bei dem der Brennstoffvorwärmer 8 und die Zündeinrichtung 10 ausgeschaltet sind, sich der Gebläseantrieb 2 und der Brennstoffpumpenantrieb 4 im Stillstand befinden und der Flammenwächter 11 keine Flamme melden darf.

    [0025] Verlangt anschließend der Heizungsregler Wärme, so erscheint am Eingangspunkt 13.m ein Signal, das die Größe des Wärmebedarfs angibt. Dieses Signal kann beispielsweise eine normierte Spannung im Bereich von 0 bis 10 V sein, wobei 10 V 100 % Leistungsanforderung (bezogen auf die Nennleistung des Brenners) bedeutet, alternativ aber auch vorteilhaft ein digitales Signal.

    [0026] Dieses Signal gelangt an den Programmgeber 20, im Falle eines Mikroprozessors als Programmgeber 20 und eines analogen Eingangssignal über einen nicht dargestellten Analog-Digital-Wandler. Durch dieses Signal wird durch den Programmgeber 20 der bei Feuerungsautomaten 1 übliche Inbetriebsetzungsvorgang gestartet. Für diesen Inbetriebsetzungsvorgang holt sich der Programmgeber 20 aus dem Solldaten-Speicher 22 einen Wert für die Drehzahl des Gebläseantriebs 2 und die mit dieser Drehzahl abgelegte Zuluft-Temperatur, die im Moment der Ermittlung des entsprechenden Sollwertes für die Drehzahl des Gebläseantriebs 2 geherrscht hat, was im Detail später noch beschrieben wird. Am Programmgeber 20 liegt außerdem der Wert für die im Moment gemessene Zulufttemperatur an. Nun ermittelt der Programmgeber 20 aus dem vorliegenden Sollwert für die Drehzahl des Gebläseantriebs 2, aus dem abgelegten Wert der Zuluft-Temperatur und aus dem momentanen Wert der Zuluft-Temperatur nach einem vorgegebenen Algorithmus einen korrigierten Sollwert für die Drehzahl des Gebläseantriebs 2. Der vorgegebene Algorithmus basiert im wesentlichen auf der Gleichung des Allgemeinen Gasgesetzes. Der korrigierte Sollwert wird als aktueller Sollwert in den Solldaten-Speicher 22 geschrieben. Der Gebläseantrieb 2 wird vom Programmgeber 20 über den Steueranschluß 6s entsprechend angesteuert. Daraufhin sollte das Gebläse 3 anlaufen und nach einer gewissen Hochlaufzeit die Solldrehzahl gemäß dem korrigierten Wert erreichen. Am Rückmeldeanschluß 6r erscheint ein zunächst steigendes Signal für die Drehzahl, das nach dem Verstreichen der Hochlaufzeit einen bestimmten Wert erreicht. Dieses Signal gelangt vom Rückmeldeanschluß 6r zum Istdaten-Speicher 23 und wird dort abgelegt. Der Vergleicher 24 vergleicht nun die Werte von Solldaten-Speicher 22 und Istdaten-Speicher 23 und meldet das Ergebnis an den Programmgeber 20. Es sei hier erwähnt, daß je nach verwendeter Bauart des Programmgebers 20 gewisse Varianten im Aufbau des Feuerungsautomaten 1 möglich sind. Ist der Programmgeber 20 ein Mikroprozessor, so kann der Vergleicher 24 durchaus auch eine Programmsequenz sein, die der Mikroprozessor abarbeitet.

    [0027] Um höchste Sicherheit zu gewährleisten, kann zusätzlich noch ein Luftdruckwächter vorhanden sein. Durch das Laufen des Gebläses 3 wird ein erhöhter Luftdruck erzeugt, auf den dieser Luftdruckwächter anspricht. Das Ansprechen des Luftdruckwächters wird dem Programmgeber 20 mitgeteilt. Spricht der Luftdruckwächter nicht an, wird die Weiterführung des Programmablaufs gestoppt. Durch diese Maßnahme wird sichergestellt, daß der Brenner nicht in Betrieb gehen kann, wenn zwar der Gebäseantrieb 2 korrekt läuft, durch irgendwelche Umstände aber nicht der erforderliche Luftmassenstrom gefördert wird.

    [0028] Hat der Programmgeber 20 die Nachricht vom ordnungsgemäßen Lauf des Gebläseantriebs 2 erhalten, so wird dann vom Programmgeber 20 die Zündeinrichtung 10 dadurch eingeschaltet, daß das Zündrelais 19 angesteuert wird. Daß die Zündvorrichtung 10 dabei tatsächlich Spannung erhält, hat zur Voraussetzung, daß der Strompfad über den Sicherheitstemperaturbegrenzer 14 und das Schutzrelais 17 geschlossen ist. Der Programmgeber 20 holt außerdem aus dem Solldaten-Speicher 22 einen zum ursprünglichen, nicht temperaturkompensierten Sollwert für die Drehzahl des Gebläseantriebs 2 gehörenden Sollwert für die Drehzahl des Brennstoffpumpenantriebs 4. Der Brennstoffpumpenantrieb 4 wird analog zum Gebläseantrieb 2 angesteuert und überwacht. Im Anschluß daran wird vom Programmgeber 20 das Brennstoffventil-Relais 18 angesteuert, wodurch der Fluß des Brennstoffs freigegeben wird, so daß das Brennstoff-Luft-Gemisch im Brenner nun zünden kann.

    [0029] Bei einwandfreier Funktion, incl. der hier nicht beschriebenen Flammenüberwachung, wird dann vom Programmgeber 20 der am Eingangspunkt 13.m anliegende Wert für den Wärmebedarf gelesen, aus dem Solldaten-Speicher 22 die diesem Leistungswert entsprechenden Sollwerte für die Drehzahlen von Gebläseantrieb 2 und Brennstoffpumpenantrieb 4 geholt und die Motoren entsprechend geregelt. Der Sollwert für die Drehzahl des Gebläseantriebs 2 wird dabei wiederum wie zuvor angegeben gemäß der aktuellen Zuluft-Temperatur korrigiert. Der Eingangspunkt 13.m wird vom Programmgeber 20 zyklisch abgefragt. Jede Änderung des Wärmebedarfs führt zu einer entsprechenden Änderung der Sollwerte für die Drehzahlen von Gebläseantrieb 2 und Brennstoffpumpenantrieb 4. Der Solldaten-Speicher enthält Werte-Quartette: Brenner-Leistung, Drehzahl Gebläseantrieb 2, Drehzahl Brennstoffpumpenantrieb 4, Zuluft-Temperatur. Bei stetiger Ansteuerung (modulierend) hat der Sollwertspeicher eine entsprechende Zahl von Werte-Quartetten, z.B. 128. Bei zweistufigen Brennern braucht der Sollwertspeicher nur 3 Werte-Quartette aufzunehmen (Start, 1. Stufe, 2. Stufe), bei einstufigen Brennern nur 2 (Start, Betrieb).

    [0030] In der Figur nicht dargestellt sind Generatoren für die Steuersignale für Gebläseantrieb 2 und Brennstoffpumpenantrieb 4. Diese Generatoren können beispielsweise pulsweitenmodulierte oder frequenzvariante Steuersignale erzeugen. Im Falle eines mikroprozessorgesteuerten Feuerungsautomaten 1 sind diese Generatoren keine separaten Bauelemente, sondern der als Programmgeber 20 fungierende Mikroprozessor erzeugt direkt die entsprechenden Signale.

    [0031] Der Feuerungsautomat 1 ist dadurch charakterisiert, daß der Zusammenhang zwischen der Drehzahl des Gebläseantriebs 2 und der Drehzahl des Brennstoffpumpenantriebs 4 durch Speicherwerte festgelegt ist, die frei wählbar sind, wobei jedem Wertepaar eine Zuluft-Temperatur zugeordnet ist, für die das Wertepaar exakt gilt. Da beim späteren Abruf dieser Speicherwerte die Drehzahl der Gebläseantriebs 2 erfindungsgemäß entsprechend dem Verhältnis der Zuluft-Temperaturen zum Zeitpunkt der Sollwert-Bildung und im Moment des Abrufs korrigiert wird, kann unter allen Umständen für jeden Arbeitspunkt der optimale Luftüberschuß eingestellt werden. Vorteilhaft ist, daß sich die Varianten des Feuerungsautomaten 1 für einstufige, zweistufige und modulierende Brenner nur in der Größe des Solldaten-Speichers unterscheiden. Dadurch sind große Stückzahlen und somit niedrige Fertigungskosten zu erreichen. Die Verwendung geregelter DC-Motoren als Antriebe für Gebläse 3 und Brennstoffpumpe 5 hat Vorteile hinsichtlich Robustheit und Baugröße. Die Verwendung von DC-Motoren mit 35 V Nennspannung hat zusätzlich Vorteile hinsichtlich Sicherheit, z.B. Berührungsschutz.

    [0032] Das Programm des Programmgebers 20 kann vorteilhaft so gestaltet sein, daß bei einer Erhöhung des Wärmebedarfs zuerst die Drehzahl des Gebläseantriebs 2 erhöht und erst zeitverzögert auch die Drehzahl des Brennstoffpumpenantriebs 4 erhöht wird. Umgekehrt kann bei einer Verminderung des Wärmebedarfs zuerst die Drehzahl des Brennstoffpumpenantriebs 4 vermindert und zeitverzögert die Drehzahl des Gebläseantriebs 2 vermindert werden. Dadurch wird bei Lastwechseln kurzzeitig für einen Luftüberschuß gesorgt, so daß Luftmangel mit den daraus folgenden ungünstigen Emissionswerten sicher vermieden wird.

    [0033] Durch Betätigen des Betriebsarten-Schalters 28 kann gewählt werden, ob der Feuerungsautomat 1 gemäß den in seinem Solldaten-Speicher 22 abgelegten Daten den Verbrennungsprozeß steuern soll (Stellung "RUN"), oder ob neue Daten für den Solldaten-Speicher 22 gewonnen werden sollen (Stellung "SET").

    [0034] Vorteilhaft kann der Programmgeber 20 selbsttätig den Betriebsarten-Schalter 28 in die Stellung "SET" schalten, wenn er im Solldaten-Speicher 22 keine Werte vorfindet. In diesem Fall kann er eine Anzeigelampe ansteuern oder auf einem Display eine Meldung ausgeben, daß der "SET"-Betrieb aktiv ist, in dem an den Feuerungsautomaten 1 an die Schnittstelle 25 eine Abgassonde 26 anzuschließen ist.

    [0035] Vorteilhaft ist es auch, wenn der Betriebsarten-Schalter 28 automatisch in die Stellung "SET" gesteuert wird, sobald an der Schnittstelle 25 ein Signal der Abgassonde 26 anliegt. Diese Wirkbeziehung ist in der Figur durch eine strichpunktierte Linie zwischen der Schnittstelle 25 und dem Betriebsarten-Schalter 28 angedeutet.

    [0036] Ist die Abgassonde 26 angeschlossen und steht - wie erwähnt vorteilhafterweise dadurch automatisch ausgelöst - der Betriebsarten-Schalter 28 in der Stellung "SET", wird durch den Programmgeber 20 ein spezielles Programm "Eichung" abgearbeitet.

    [0037] Dabei werden nacheinander etliche vorgegebene Arbeitspunkte für die Brennstoffmenge angefahren und folglich die Brennstoffpumpe 5 entsprechend gesteuert. Ein Arbeitspunkt ist eine bestimmte gewünschte Brennerleistung, zu der eine bestimmte Brennstoffmenge und eine bestimmte Luftmenge gehört. Die Luftmenge für jeden der Arbeitspunkte wird durch Einwirkung auf den Gebläseantrieb 2 so lange variiert, bis die Abgassonde 26 ein vorgegebenes Signal für den gewünschten Abgaszustand feststellt, bis also beispielsweise der Sauerstoffgehalt im Abgas innerhalb eines Sollwertbereichs liegt. Die Variation der Luftmenge erfolgt dabei so, daß immer mit zunächst zu großen Vorgabewerten begonnen wird und dann schrittweise die Luftmenge verringert wird. Dadurch wird auch im Programmablauf zur Ermittlung der optimalen Solldaten sichergestellt, daß bei der Verbrennung nie ein Luftmangel entsteht, der schädliche Abgase entstehen ließe. Jene zu einem Arbeitspunkt gehörende Luftmenge, bei der die Abgaszusammensetzung den gewünschten Werten entspricht, wird für den jeweiligen Arbeitspunkt im Solldaten-Speicher 22 abgelegt. Zu jedem dieser Arbeitspunkte wird erfindungsgemäß der momentane Wert der Zuluft-Temperatur mit abgespeichert. Dadurch entstehen die erwähnten Werte-Quartette: Brennerleistung, Sollwert für den Gebläseantrieb 2, Sollwert für den Brennstoffpumpenantrieb 4 und zugehörige Zuluft-Temperatur.

    [0038] Ist der letzte der vorgesehenen Arbeitspunkte erreicht, so ist die Einstellung abgeschlossen. Der Betriebsarten-Schalter 28 wird dann - vorteilhaft automatisch - in die Stellung "RUN" gestellt. Danach steuert und regelt der Feuerungsautomat 1 den Brenner und die Organe zur Brennstoff- und Luftversorgung entsprechend dem Leistungsbedarf, der an seinen Eingängen anliegt. Erwähnt sei, daß es auch möglich ist, im Rahmen der Abarbeitung der verschiedenen Arbeitspunkte und im Regelbetrieb des Feuerungsautomaten 1 die Luftmenge vorzugeben und die Brennstoffmenge nachzuregeln.

    [0039] Vorteilhaft ist es, wenn der Programmgeber 20 im Rahmen des Programms "Eichen" nicht zu viele Arbeitspunkte anfahren muß. Deshalb ist es vorteilhaft, wenn zu gemessenen Arbeitspunkten Zwischenwerte interpoliert werden. Dadurch wird erreicht, daß die Abarbeitung des Programms "Eichen" schneller abgeschlossen ist und nicht unnütz Wärme produziert wird. Letzteres ist vor allem vorteilhaft, wenn die erste Inbetriebnahme oder eine Neueichung im Rahmen der Kontrolle durch einen Kaminfeger im Sommer stattfindet. Würde der Brenner lange Zeit in Betrieb sein und die produzierte Wärme nicht abgenommen, könnte der Sicherheitstemperaturbegrenzer ansprechen und das vollständige "Eich"-Programm nicht durchgeführt werden.

    [0040] Vorteilhaft kann die Wahl der Zahl der Arbeitspunkte selbständig erfolgen: Zuerst werden drei Arbeitspunkte, eine minimale Leistung Nmin, eine mittlere Leistung Nmittel und eine größte Leistung Nmax ausgemessen. Liegen die drei Punkte für den Sollwert der Stellgrößen für Brennstoff und Luft nicht annähernd auf einer Geraden, erfolgt die Messung von Zwischenpunkten. Liegen diese mit den benachbarten Punkten immer noch nicht annähernd auf einer Geraden, werden weitere Zwischenpunkte ausgemessen. Das Einstellverfahren wird somit im Hinblick auf die Linearität der Stellorgane selbsttätig optimiert.

    [0041] Die Erfindung bietet gegenüber dem Bekannten eine Reihe von Vorteilen. So wird für den Regelbetrieb der Feuerungsanlage eine teure und wartungsintensive Abgassonde 26 nicht benötigt, was bei kleineren Heizungsanlagen von großer Bedeutung ist. Es wird nur eine einzige, für eine Vielzahl von Feuerungsanlagen verwendbare Abgassonde 26 benötigt, die beispielsweise der Kaminfeger für die Durchführung der Kontrolluntersuchungen mit sich führt. Durch die erfindungsgemäße Berücksichtigung der Zulufttemperatur werden die Emissionswerte der mit dem Feurungsautomaten 1 betriebenen Heizungsanlage gegenüber dem Bekannten reduziert.

    [0042] Durch den Anschluß der Abgassonde 26 bei der ersten Inbetriebnahme des zugehörigen Brenners wird selbsttätig der Datenspeicher des Feuerungsautomaten 1 mit Werten für die Quartette Brennerleistung/Brennstoffmenge/Luftmenge/Zulufttemperatur besetzt, bei denen eine optimale Verbrennung mit minimalen Emissionswerten stattfindet. Eine Einstellung durch einen ausgewiesenen Fachmann ist entbehrlich.

    [0043] Dieses Vorgehen berücksichtigt automatisch unterschiedliche Bauarten von Vorrichtungen, die der Brennstoff- und Luft-Mengenregulierung dienen. Eine Eingabe von Kennlinien solcher Vorrichtungen ist nicht erforderlich, so daß der mit der Einstellung Beauftragte die technischen Daten der Stellglieder gar nicht kennen muß.

    [0044] Die beschriebene Lösung ist bei nicht modulierenden und modulierenden Brennern in gleicher Weise brauchbar. Besonders vorteilhaft ist sie bei modulierenden Brennern, weil der konventionelle Prozeß zur Festlegung und Eingabe der Wertequartette Brennerleistung/Brennstoffmenge/Luftmenge/Zulufttemperatur außerordentlich zeitraubend und infolge der Durchführung durch einen Spezialisten auch kostenintensiv ist.


    Ansprüche

    1. Feuerungsautomaten (1) zur Ansteuerung eines Gebläses (3) mit einem Gebläseantrieb (2) und einer Brennstoffpumpe (5) mit einem Brennstoffpumpenantrieb (4), wobei der Feuerungsautomat (1) einen dem Ein- und Ausschalten und der Leistungsvorgabe dienenden Steuereingang (13), einen Solldaten-Speicher (22) für zu einzelnen Leistungen gehörenden Sollwerten für den Betrieb von Aggregaten zur Luftmengen- und Brennstoffmengen-Steuerung und einen Programmgeber (20) aufweist, der einen Inbetriebsetzungsvorgang und einen fortlaufenden Betrieb eines mit flüssigem Brennstoff betriebenen Brenners in einer Heizungsanlage kleiner bis mittlerer Leistung steuert und überwacht, dadurch gekennzeichnet, daß

    - der Feuerungsautomat (1) eine Schnittstelle (29) zum Anschluß eines Zulufttemperatur-Fühlers (30) aufweist, daß

    - der Solldaten-Speicher (22) Meßwert-Quartette enthält, wobei jedes Meßwert-Quartett besteht aus:

    - einer Brennerleistung,

    - einem dieser Brennerleistung zugeordneten Sollwert für die Drehzahl des Brennstoffpumpenantriebs (4),

    - einem dieser Brennerleistung zugeordneten Sollwert für die Drehzahl des Gebläseantriebs (2) und

    - einem Wert für die Zuluft-Temperatur, bei der die vorgenannte Drehzahl des Gebläseantriebs (2) gültig ist, daß

    - der Programmgeber (20) den aus dem Solldaten-Speicher (22) stammenden Sollwert für die Drehzahl des Gebläseantriebs (2) nach einem vorgegebenen Algorithmus nach Maßgabe der im Solldaten-Speicher (22) abgelegten Zuluft-Temperatur und der vom Zuluft-Temperaturfühler (30) ermittelten aktuellen Temperatur korrigiert, und daß

    - der Gebläseantrieb (2) gemäß diesem korrigierten Sollwert angesteuert wird.


     
    2. Feuerungsautomat (1) nach Anspruch 1, dadurch gekennzeichnet, daß

    - der Feuerungsautomat (1) einen von einem Betriebsarten-Schalter (28) aktivierbaren Sollwert-Generator (27) aufweist, daß

    - der Betriebsarten-Schalter (28) zwei mögliche Stellungen aufweist, nämlich

    - eine erste Stellung "RUN", in der der Betrieb der von dem Feuerungsautomaten (1) beherrschten Verbrennungseinrichtung durch den Programmgeber 20) gemäß den im Solldaten-Speicher (22) abgelegten Daten gesteuert wird, und

    - eine zweite Stellung "SET", in der der Sollwert-Generator (27) unter Berücksichtigung von Meßdaten einer an eine Schnittstelle (25) angeschlossenen Abgassonde (26) Sollwerte für die Aggregate zur Luftmengen- und Brennstoffmengen-Steuerung ermittelt und zusammen mit dem Meßwert der Zuluft-Temperatur in den Solldaten-Speicher (22) einschreibt.


     
    3. Feuerungsautomat (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Betriebsarten-Schalter (28) durch ein an der Schnittstelle (25) anliegendes Signal der Abgassonde (26) automatisch in die Stellung "SET" steuerbar ist.
     
    4. Feuerungsautomat (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Betriebsarten-Schalter (28) durch den Programmgeber (20) in die Stellung "SET" steuerbar ist.
     
    5. Feuerungsautomat (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Sollwert-Generator (27) selbsttätig nacheinander verschiedene vorgegebene Arbeitspunkte anfährt.
     
    6. Feuerungsautomat (1) nach Anspruch 5, dadurch gekennzeichnet, daß die Zahl der vorgegebenen Arbeitspunkte auf drei beschränkt ist, wobei ein erster Arbeitspunkt für eine minimale Leistung Nmin, ein zweiter Arbeitspunkt für eine mittlere Leistung Nmittel und ein dritter Arbeitspunkt für eine größte Leistung Nmax Geltung haben, und daß der Sollwert-Generator (27) selbsttätig weitere zwischen diesen vorgegebenen Arbeitspunkten liegende Arbeitspunkte anfährt, wenn die drei Arbeitspunkte nicht annähernd eine Gerade bilden.
     




    Zeichnung







    Recherchenbericht