(19)
(11) EP 0 439 775 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
26.10.1994  Patentblatt  1994/43

(21) Anmeldenummer: 90124464.0

(22) Anmeldetag:  17.12.1990
(51) Internationale Patentklassifikation (IPC)5C22C 27/04

(54)

Molybdänmaterial, insbesondere für die Lampenherstellung

Molybdenum material, especially for making lamps

Matériau en molybdène, en particulier pour la fabrication de lampes


(84) Benannte Vertragsstaaten:
AT DE ES FR GB IT SE

(30) Priorität: 01.02.1990 DE 4002974

(43) Veröffentlichungstag der Anmeldung:
07.08.1991  Patentblatt  1991/32

(73) Patentinhaber: Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH
81543 München (DE)

(72) Erfinder:
  • Setti, Cosetta, Dr.
    W-8000 München 60 (DE)


(56) Entgegenhaltungen: : 
EP-A- 0 119 438
US-A- 4 419 602
US-A- 3 676 083
   
  • PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 175 (C-292)(1898), 19. Juli 1985; & JP-A-6046345
  • PATENT ABSTRACTS OF JAPAN, Band 12, Nr. 438 (C-544)(3285), 17. November 1988;& JP-A-63162834
  • Druckschrift der Fa. "Metallwerke Plansee", 1980, Seiten 8-13, Reutte,Tirol; "Molybdän"
   
Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


Beschreibung


[0001] Diese Anmeldung steht in engem Zusammenhang mit der Parallelanmeldung EP-A-439 776. Die Erfindung geht aus von einem Molybdänmaterial nach dem Oberbegriff des Anspruchs 1.

[0002] Unter dem Begriff Molybdänmaterial sollen im folgenden Vormaterialien verstanden werden, die für verschiedene Zwecke, vorzugsweise im Lampenbau, angewendet werden. Das zunächst als Sinterstab vorliegende Endprodukt der Molybdänherstellung wird anschließend nur noch rein mechanisch weiterverarbeitet, so daß sich an der chemischen Zusammensetzung nichts mehr ändert. Durch Walzen, Hämmern und Ziehen entstehen die gewünschten Vormaterialien. Genauer gesagt entstehen bei diesen Prozessen zunächst Drähte oder Stifte. Röhrchen oder Bandmaterial für die Folienherstellung werden dann als Halbzeug wiederum aus Stiften oder Drähten hergestellt.

[0003] Die Dotierung von Molybdänmaterial mit Kalium und Silizium in Form von Kaliumsilikatlösung ist schon seit längerem bekannt. Beispielsweise ist in der US-PS 4 419 602 beschrieben, diese Elemente als Zusatzstoffe für Molybdän-Dichtungsfolien zu verwenden, um die Rekristallisationstemperatur zu erhöhen. Weiterhin ist auch die gemeinsame Dotierung mit Aluminium, Silizium und Kalium aus der EP-A-119 438, der US-A-3 676 083 bzw. der JP-A-63-162 834 bekannt. Es hat sich jedoch gezeigt, daß die Materialeigenschaften des dotierten Molybdäns eine erhebliche Streubreite aufweisen, so daß, falls gewünscht, ein Material mit genau definierten Eigenschaften bisher durch Mischen verschiedener Komponenten in einem sehr diffizilen Arbeitsschritt nachträglich eingestellt werden muß.

[0004] Es ist Aufgabe der vorliegenden Erfindung eine Qualitätsverbesserung der Materialeigenschaften von Molybdän-Halbzeug für die Lampenindustrie zu erzielen und den Ausschuß zu senken.

[0005] Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen der Erfindung finden sich in den Unteransprüchen.

[0006] In den letzten Jahren haben sich die Anforderungen an die thermische und mechanische Belastbarkeit des Molybdänmaterials ständig erhöht, insbesondere im Zusammenhang mit der Entwicklung von Halogenglühlampen und PAR-Lampen. Dies führte zunächst zu einer weitgehenden Spezialisierung der Molybdänmaterialien für verschiedene Einsatzgebiete. Beispielsweise wurden verschiedene Molybdänmaterialien für Kerndrähte, gasdichte Einschmelzstifte, Halterdrähte und Dichtungsfolien hergestellt. Während bei Halterdrähten eine hohe und konstante Dehnung die wichtigste Eigenschaft ist, kommt es bei Dichtungsfolien vor allem auf eine hohe Duktilität und hohe Rekristallisationstemperatur an. Andererseits ist bei Einschmelzstiften und Kerndrähten die geeignete Kombination einer hohen Rekristallisationstemperatur mit einer hohen Biegezahl die entscheidende Größe. Bei Einschmelzstiften spielt zudem die Spaltfreiheit eine wesentliche Rolle.

[0007] Diesen verschiedenen Anforderungsprofilen wurde durch eine jeweils unterschiedliche Dotierung mit Kalium und eventuell auch Silizium Rechnung getragen. Dadurch wurde die Herstellung des Halbzeugs sehr kompliziert und unrationell, weil die Maschinen immer wieder umgerüstet und neu programmiert werden mußten. Zudem bestand die Gefahr der Verwechslung der verschiedenen Materialien bei der Weiterverarbeitung.

[0008] Darüber hinaus ergab sich lange Zeit ein scheinbar unlösbares Problem in der hohen Streubreite der jeweiligen Dotierungen. Man stand vor der Wahl, entweder einen hohen Ausschuß zu akzeptieren oder das Material trotz schlechterer Qualität weiterzuverarbeiten. Beispielsweise vergrößert eine hohe Spaltigkeit das Risiko, daß in einer Lampe der Halogenkreislauf durch Verunreinigungen gestört wird, was zu Frühausfällen führt.

[0009] Durch eine geeignete zusätzliche Dotierung mit Aluminium ist es nun gelungen, beide Schwierigkeiten zu überwinden. Aluminium bindet das Kalium und Silizium chemisch zu einer hochtemperaturbeständigen Verbindung und hält damit das Kalium, welches ansonsten in unkontrollierter Weise beim Reduktionsprozeß teilweise (d.h. bis zu 50 %!) verdampfen würde, zurück. Durch die gezielte Zugabe einer bestimmten Menge Aluminiums kann jetzt eine gewünschte, genau definierte Menge an Kalium im Molybdänmaterial festgehalten werden. Besonders vorteilhaft ist das 0,8 - 2,0- fache an Kalium. Ohne gleichzeitige Zugabe von Aluminium mußte das Kalium bisher zunächst überdotiert werden, so daß im Laufe des Herstellungsprozesses eine nicht genau festzulegende Teilmenge ausdampfte, was wiederum zur Streuung der Materialeigenschaften führte. Dies wird jetzt durch die Zugabe von Aluminium verhindert. Ähnliches gilt für Silizium.

[0010] Diese positive Eigenschaft wird erzielt durch die Zugabe von 80-600 Gew.-ppm Aluminium; besonders gute Ergebnisse zeigen sich bei Verwendung von 100-300 ppm. Bei der Zugabe einer erheblich größeren Menge an Aluminium (im Promille- und Prozentbereich) wird der kaliumstabilisierende Effekt des Aluminiums durch seine Gettereigenschaft, insbesondere für O2, überdeckt (vgl. Mikrochimica Acta, 1987, I, S. 437-444). Gleichzeitig wird auch das thermische und mechanische Verhalten dabei beeinträchtigt; insbesondere ist dieses Material für die Lampenherstellung nicht mehr geeignet.

[0011] Überraschenderweise hat sich aber gezeigt, daß bei der oben angegebenen sparsamen Dotierung mit Aluminium die Eigenschaften des Molybdänmaterials erheblich verbessert werden können. Es laßt sich ein Molybdänmaterial erzielen, das allen bisher verfügbaren spezifischen Molybdänmaterialien überlegen ist. Dadurch ist es sogar möglich geworden, die verschiedenen o.g. Molybdänmaterialien durch eine einheitliche und zudem verbesserte Molybdäntype zu ersetzen, was die Kosten für die Herstellung senkt. Darüber hinaus ergibt sich bei derartigen neuen Molybdäntypen die Möglichkeit einer Energieeinsparung um bis zu 25 %, da jetzt u.U. auf ein Sintern in direktem Stromdurchgang (Hochsinterung) verzichtet werden kann (vgl. hierzu C. Agte/J. Vacek, Wolfram und Molybdän, Akademie-Verlag, Berlin, 1959, insbes. Kap. 6). Stattdessen kann jetzt der Sinterprozeß in Durchschuböfen bei erheblich niedrigeren Temperaturen (ca. 1700 °C gegenüber ca. 2000 °C) durchgeführt werden.

[0012] Im folgenden sollen zwei Ausführungsbeispiele näher erläutert werden.

[0013] Eine erste Molybdäntype verwendet eine Dotierung von ca. 160 ppm Aluminium, 275 ppm Kalium und 500 ppm Silizium. Die Spaltfreiheit beträgt unter 1 %, während die Biegezahl bei 11,5 liegt. Diese Werte sind jeweils gemessen an einem Draht mit 600 µm Durchmesser.

[0014] Eine zweite Molybdäntype verwendet eine Dotierung von ca. 150 ppm Aluminium, 150 ppm Kalium und 300 ppm Silizium. Die Spaltfreiheit beträgt etwa 8 %, während die Biegezahl bei 6 liegt, wiederum gemessen an einem Draht mit 600 µm Durchmesser.

[0015] Beide Ausführungsbeispiele sind jedes für sich dazu geeignet, das breite Anwendungsspektrum, das bisher durch verschiedene Molybdäntypen abgedeckt wurde, allein zu umfassen.

[0016] Die Erfindung kann jedoch umgekehrt auch gezielt dazu benutzt werden, das Kristallgefüge des Molybdänmaterials im Hinblick auf eine ganz bestimmte Anwendung zu optimieren, da die Art des Gefüges maßgeblich die Eigenschaften des Materials bestimmt.

[0017] Die in den beiden Ausführungsbeispielen beschriebenen besonders bevorzugten Molybdänmaterialien (Spalte I) haben als Draht folgende Eigenschaften gegenüber herkömmlichen Materialien (in Spalte II ist jeweils der beste verfügbare Wert des herkömmlichen Materials angegeben):



[0018] Diese Tabelle zeigt die Verbesserung der Eigenschaften, insbesondere die Verringerung in der Streubreite des Kaliumgehalts, auf eindrucksvolle Weise.

[0019] Das Verfahren zur Herstellung des Molybdänmaterials läuft im Prinzip nach dem Coolidge-Verfahren ab: Ausgangsstoff für die Herstellung der Molybdänerzeugnisse ist MoO₃ mit einer Reinheit von 99,97 Gew.-%. In zwei Schritten wird das MoO₃ über MoO₂ zu Mo reduziert bei Temperaturen von ca. 500 - 600 °C (1. Schritt) bzw. 1000 - 1100 °C (2. Schritt). Diese Reduktionen des Molybdänoxids werden in an sich bekannter Weise mit einem H₂/N₂-Gemisch und reinem H₂-Gas durchgeführt. Vorteilhaft wird ein Drehrohrofen statt eines mit Schiffchen zu bestückenden Vorschubofens verwendet. Dem zunächst als Pulver vorliegenden Molybdäntrioxid werden entweder vor (wie im Fall des Ausführungsbeispiels 2 geschehen) oder nach (wie im Fall des Ausführungsbeispiels 1 geschehen) der ersten Reduktion als Dotierstoffe Kalium und Silizium in an sich bekannter Weise als wässerige Kaliumsilikatlösung zugegeben. Gleichzeitig wird das Aluminium als Nitrat (Al (NO₃)₃) beigefügt. Denkbar wäre auch die Verwendung einer anderen instabilen Aluminiumverbindung, z.B. AlCl₃. Hingegen ist eine Verbindung hoher Stabilität, z.B. Al₂O₃, ungeeignet, da das Aluminium trotz der hohen Temperaturen bei den Reduktionen nicht freigesetzt würde.

[0020] Um die gewünschten duktilen Materialien herstellen zu können, wird das Molybdän-Pulver auf hydraulischen Pressen in Stahlmatrizen verpreßt. Unter Umständen ist an dieser Stelle eine Vorsinterung vorteilhaft. Anschließend erfolgt die übliche Hochsinterung im direkten Stromdurchgang (5000 A) in einer Sinterglocke bei Temperaturen bis zu 2000 °C. Dieser Prozeß wird eher bei höheren Dotierungen (Ausführungsbeispiel 1) verwendet. Alternativ kann dieser Prozeß jetzt kapazitätserweiternd und energiesparend in einem Durchschubofen erfolgen, was vor allem bei niedrigeren Dotierungen (Ausführungsbeispiel 2) angewendet wird. Der dabei gebildete Sinterstab wird anschließend durch Walzen, Hämmern und Ziehen zu Molybdändraht verarbeitet. Dieser Draht kann nun als Stromzuführung, Halterstift oder sog. Elektrode eingesetzt werden (z.B. für Kfz-Halogenglühlampen) oder als Kerndraht für die Wolfram-Wendelherstellung. Das Bandmaterial für die Folien kann aus dem Molybdändraht durch weiteres Walzen gewonnen werden, während die Röhrchen durch Walzen des Drahtes und anschließendem Längsbiegen zu einem "Schlauch" hergestellt werden.

[0021] Im übrigen hat die erfindungsgemäße Dotierung des Molybdäns mit Kalium, Silizium, Aluminium (z.B. 275 ppm K) nichts mit der zufälligerweise ähnlichen Dotierung des Wolfram mit den gleichen Substanzen (z.B. 75 ppm K) zu tun. Während erfindungsgemäß beim Molybdän die Dotierung die Verbesserung einer ganzen Reihe von Eigenschaften bewirkt, ist beim Wolfram diese Dotierung vor allem für die Ausbildung des Längenwachstums der Körner verantwortlich, was letztendlich das Durchhängen des Wolframdrahtes verhindern soll. Auch das pulvermetallurgische Verhalten beider Elemente ist nicht vergleichbar (Wolfram wird bei 2800 °C hochgesintert). Die Reaktionen des Molybdäns beim Dotieren und bei der Reduktion unterscheiden sich grundsätzlich von denen des Wolframs. Als Ursache wird die erheblich schwächere Bindungsenergie der Molybdänverbindungen im Vergleich zu entsprechenden Wolframverbindungen angesehen. Beispielsweise bildet sich beim Molybdän im Gegensatz zum Wolfram während der Reduktion keine stabile β-Phase aus, die den Einbau des Kaliums in das Kristallgitter - wie dies bei Wolfram geschieht - erlauben würde. Die Wirkung der Dotierung bei Molybdän kann daher eher als Oberflächeneffekt in bezug auf das Kristallgefüge charakterisiert werden. Hingegen kann man beim Wolfram von einem Volumeneffekt sprechen.

[0022] Die beim Wolfram gewonnenen Erfahrungen in bezug auf die Dotierung mit Kalium, Silizium und Aluminium lassen sich daher nicht auf die spezifischen Probleme bei der Molybdänherstellung übertragen.

[0023] Der erfindungsgemäße Molybdändraht wird beispielsweise in einer Kfz-Halogenglühlampe eingesetzt, die einen zylindrischen Kolben aus Hartglas oder Quarzglas besitzt, in dem die beiden Leuchtkörper für Abblendlicht bzw. Fernlicht mittels dreier Stromzuführungen gehaltert sind. Unter Umständen ist auch ein Abblendschirm vorgesehen. Eine derartige Lampe ist beispielsweise in der DE-OS 28 29 677 beschrieben. Die Stromzuführungen und evtl. auch der Abblendschirm sind in einem besonders bevorzugten Ausführungsbeispiel aus Molybdändraht mit einem Zusatz von 150 ppm Aluminium, 150 ppm Kalium und 300 ppm Silizium gefertigt. Im Fall eines Kolbens aus Quarzglas kann der Molybdändraht für die Halterstifte und Folien eingesetzt werden, im Fall eines Hartglaskolbens wird er für die durchgehenden Stromzuführungen (Elektroden) verwendet.

[0024] Ein anderes Einsatzgebiet ist eine einseitig oder zweiseitig gequetschte Hochvolthalogenglühlampe mit einem langen axialen Leuchtkörper oder eine einseitig gequetschte Halogenglühlampe mit einem U-förmig oder V-förmig gebogenen Leuchtkörper. Zur Stützung des Leuchtkörpers kann im ersten Fall die sockelferne Stromzuführung im Kolben abgestützt sein, wie im DE-GM 88 12 010 beschrieben. Bei einer Soffittenlampe können Stützhalter für den Leuchtkörper vorgesehen sein (z.B. EP-OS 150 503). Schließlich kann im dritten Fall der U-förmig oder V-förmig gebogene Leuchtkörper am sockelfernen Ende durch ein Gestell gehaltert sein (vgl. z.B. EP-OS 173 995). Auch in diesen Fällen wird obiges bevorzugtes Ausführungsbeispiel verwendet.

[0025] Bei der Wendelherstellung wird der Wendeldraht auf einen Kerndraht aus Molybdän aufgewickelt, welcher letztendlich durch Eintauchen in eine Säure wieder herausgelöst wird.


Ansprüche

1. Molybdänmaterial für die Lampenherstellung, wobei das Molybdän nur mit Kalium, Silizium und Aluminium dotiert ist, dadurch gekennzeichnet, daß der Aluminiumgehalt zwischen 80 und 600 ppm, bezogen auf das Gewicht, beträgt, wobei das Gewichtsverhältnis Al/K etwa 1:0,8 bis 1:2,0 beträgt, während das Gewichtsverhältnis Aluminium/Silizium etwa 1:1,8 bis 1:3,8 beträgt.
 
2. Molybdänmaterial nach Anspruch 1, dadurch gekennzeichnet, daß der Aluminiumgehalt zwischen 100 und 300 ppm beträgt.
 
3. Molybdänmaterial nach Anspruch 2, dadurch gekennzeichnet, daß der Aluminiumgehalt zwischen 140 und 180 ppm beträgt.
 
4. Molybdänmaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Gehalt an Kalium 100-400 ppm und der Gehalt an Silizium 200-700 ppm (jeweils Gew.-Anteil) beträgt.
 
5. Molybdänmaterial nach Anspruch 4, dadurch gekennzeichnet, daß der Kaliumgehalt zwischen 250 und 300 ppm und der Gehalt an Silizium zwischen 400 und 600 ppm beträgt.
 
6. Molybdänmaterial nach Anspruch 4, dadurch gekennzeichnet, daß der Kaliumgehalt zwischen 130 und 170 ppm und der Siliziumgehalt zwischen 270 und 320 ppm beträgt.
 


Claims

1. Molybdenum material for making lamps, the molybdenum being doped only with potassium, silicon and aluminium, characterized in that the aluminium content is between 80 and 600 ppm by weight, the Al/K weight ratio being about 1:0.8 to 1:2.0, while the aluminium/silicon weight ratio is about 1:1.8 to 1:3.8.
 
2. Molybdenum material according to Claim 1, characterized in that the aluminium content is between 100 and 300 ppm.
 
3. Molybdenum material according to Claim 2, characterized in that the aluminium content is between 140 and 180 ppm.
 
4. Molybdenum material according to one of the preceding claims, characterized in that the potassium content is 100-400 ppm and the silicon content is 200-700 ppm (each by weight).
 
5. Molybdenum material according to Claim 4, characterized in that the potassium content is between 250 and 300 ppm and the silicon content is between 400 and 600 ppm.
 
6. Molybdenum material according to Claim 4, characterized in that the potassium content is between 130 and 170 ppm and the silicon content is between 270 and 320 ppm.
 


Revendications

1. Matériau à base de molybdène pour la fabrication de lampes, le molybdène n'étant dopé que par du potassium, du silicium et de l'aluminium, caractérisé en ce que la teneur en aluminium est comprise entre 80 et 600 ppm en poids, le rapport pondéral Al/K étant d'environ 1:0,8 à 1:2,0, tandis que le rapport pondéral aluminium/silicium est d'environ 1:1,8 à 1:3,8.
 
2. Matériau à base de molybdène suivant la revendication 1, caractérisé en ce que la teneur en aluminium est comprise entre 100 et 300 ppm.
 
3. Matériau à base de molybdène suivant la revendication 2, caractérisé en ce que la teneur en aluminium est comprise entre 140 et 180 ppm.
 
4. Matériau à base de molybdène suivant l'une des revendications précédentes, caractérisé en ce que la teneur en potassium est comprise entre 100 et 400 ppm et la teneur en silicium est comprise entre 200 et 700 ppm (toutes les deux en partie en poids).
 
5. Matériau à base de molybdène suivant la revendication 4, caractérisé en ce que la teneur en potassium est comprise entre 250 et 300 ppm et la teneur en silicium est comprise entre 400 et 600 ppm.
 
6. Matériau à base de molybdène suivant la revendication 4, caractérisé en ce que la teneur en potassium est comprise entre 130 et 170 ppm et la teneur en silicium est comprise entre 270 et 320 ppm.