(19)
(11) EP 0 385 778 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.12.1996 Bulletin 1996/50

(21) Application number: 90302195.4

(22) Date of filing: 01.03.1990
(51) International Patent Classification (IPC)6C10L 1/22, C10L 1/24

(54)

Fuel oil compositions

Brennölzusammensetzungen

Compositions d'huile combustible


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 02.03.1989 GB 8904785

(43) Date of publication of application:
05.09.1990 Bulletin 1990/36

(73) Proprietor: EXXON CHEMICAL PATENTS INC.
Florham Park New Jersey 07932 (US)

(72) Inventors:
  • Sexton, Michael David
    Oxfordshire, OX11 0B1 (GB)
  • Strange, Rosalind Heather
    Bath, Avon, BA2 3HH (GB)

(74) Representative: Hart, Richard Joseph et al
Exxon Chemical Limited, Exxon Chemical Technology Centre, P.O. Box 1, Milton Hill
Abingdon, Oxfordshire OX13 6BB
Abingdon, Oxfordshire OX13 6BB (GB)


(56) References cited: : 
EP-A- 0 293 192
DE-C- 1 021 525
US-A- 2 633 415
US-A- 2 900 788
US-A- 3 129 699
US-A- 3 361 546
CH-A- 405 330
US-A- 1 973 676
US-A- 2 867 515
US-A- 3 102 797
US-A- 3 256 074
   
     
    Remarks:
    The file contains technical information submitted after the application was filed and not included in this specification
     
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to fuel oil compositions and more especially to fuel oil compositions containing cracked components which are stabilized against sediment formation and colour development during storage. Cracked components are frequently included to give higher yields of diesel fuel and heating oil.

    [0002] However, when diesel and heating oils containing cracked components are stored at ambient or elevated temperatures in air they become discoloured and precipitate sludge or sediment.

    [0003] It is clear that the problem of discoloration and sediment formation is exacerbated by the presence of cracked components in the fuel. This is demonstrated by the results in Table 1 which show the amount of sediment formed and the colour change when various fuel blends are tested in the AMS 77.061 accelerated stability test. Published research (see, for example, Offenhauer et. al, Industrial and Engineering Chemistry, 1957, Volume 49, page 1265, and the Proceedings of the 2nd International Conference on the Long Term Stability of Liquid Fuels, San Antonio, Texas, published October 1986) suggests that discoloration and sediment result from the oxidation of sulphur and nitrogen compounds present in the fuel. The analysis of cracked components is consistent with this. The results in Table 2 show that cracked components contain significantly larger quantities of nitrogen and sulphur than straight distillates. Also, the addition of nitrogen and sulphur compounds to a stable straight distillate causes an increase in both sediment and colour in the AMS 77.061 test (Table 3) with the worst result being obtained when both nitrogen and sulphur compounds are present in the fuel.

    [0004] We have found that sediment and colour formation in distillate fuels which are stored at ambient temperatures for long periods may be reduced by the addition of certain quaternary ammonium compounds.

    [0005] There are several patents which disclose the use of quaternary ammonium compounds in liquid fuels. Most of these patents disclose the use of quaternary ammonium compounds in which the sum total of carbon atoms in the cation exceeds 10. For example, U.S. Patents Nos. 3,008,813, 3,265,474, 3,397,970 and 3,346,353 all disclose the use of quaternary ammonium compounds containing the cation:

            [R2NMe2] (+)

    where R is C12 to C14, as agents for improving the water tolerance of hydrocarbon oils.

    [0006] U.S. Patents Nos. 3,033,665, 3,158,647 and 3,493,354 disclose the use of quaternary ammonium compounds for various purposes, as do GB-A-973,826, 1,078,497, 1,392,600 and 1,409,019.

    [0007] A number of patents disclose the use of quaternary ammonium compounds in which the total number of carbon atoms in the cation is less than 10. Two of the patents, GB-A-1,199,015 and 1,221,647, disclose the use of quaternary ammonium phosphates and thiophosphates. However phosphorus "poisons" transition metal catalysts such as are commonly used as particulate traps in e.g. diesel engines. A third patent, GB-A-1,432,265, describes quaternary ammonium compounds to be used in combination with a sulphone polymer as an antistatic additive.

    [0008] U.S. Patent No. 2,633,415 describes the use of an aromatic amino compound or a phenol in combination with a quaternary ammonium oxide to stabilize gasolines in storage.

    [0009] DE-B-1,021,525 describes the use of amine salts to inhibit sludge formation in heating and diesel fuel oils.

    [0010] U.S. Patent No. 3,102,797 describes diquaternary ammonium chlorides for use in fuel oils as detergents and to impart oxidative stability.

    [0011] U.S. Patent No. 3,361,546 describes protecting fuel oils against microbial attack by incorpoating an additive having a disubstituted naphthalene-based anion, which is the active part of the molecule, and a quaternary ammonium cation.

    [0012] EP-A-293,192 is concerned with reducing deposits in a diesel engine, and discloses incorporating an oil soluble quaternary ammonium salt in the fuel.

    [0013] The present invention provides a fuel composition comprising a fuel oil obtained by the cracking of heavy oil and a quaternary ammonium compound which is soluble in the fuel and which comprises a hydrocarbyl cation in which the ratio of carbon atoms to quaternary nitrogen atoms is not more than 10:1 and an anion which is derived from an acid which is a carboxylic acid, carboxylic acid anhydride, a phenol, a sulphurized phenol or a sulphonic acid. The hydrocarbyl group or groups optionally carries or carry a tertiary amino nitrogen atom or atoms but is or are otherwise unsubstituted.

    [0014] Advantageously, the quaternary ammonium compound contains 1 to 4 quaternary nitrogen atoms, and not more than 10 carbon atoms.

    [0015] The quaternary ammonium compounds are effective fuel stabilizers in the absence of any other additive. Furthermore, the quaternary ammonium compounds are more effective as fuel stabilizers than quaternary ammonium compounds in which the ratio of carbon atoms to quaternary nitrogen atoms in the cation exceeds 10.

    [0016] Examples of suitable compounds are

    1) Quaternary ammonium compounds in which the structure of the cation is:

            [R1R2R3R4N]+

    in which R1, R2, R3, R4 are alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, alkaryl or aralkyl groups such that the sum total of carbon atoms in the cation does not exceed 10.
    Examples of such cations include tetramethylammonium, ethyltrimethylammonium, n-propyltrimethylammonium, iso-propyltrimethylammonium, n-butyltrimethylammonium, pentyltrimethylammonium, hexyltrimethylammonium, heptyltrimethylammonium, phenyltrimethylammonium, o-tolyltrimethylammonium, m-tolyltrimethylammonium, p-tolyltrimethylammonium, benzyltrimethylammonium, diethyldimethylammonium, di-n-propyldimethylammonium and di-n-butyldimethylammonium.

    2) Quaternary ammonium compounds in which the structure of the cation is:

       - where R5 and R6 are alkyl, cycloalkyl, alkenyl, or cycloalkenyl and may be the same or different but are such that the total number of carbon atoms in the cation does not exceed 10.
    Examples of such cations include methylpyridinium, ethylpyridinium, methyl-2-picolinium, methyl-3-picolinium and methyl-4-picolinium.

    3) Quaternary ammonium compounds in which the structure of the cation is:

    • where R7 is alkyl, cycloalkyl, alkenyl, cycloalkenyl
    • where R8 is nothing, when n = 1, or alkyl, cycloalkyl, alkenyl or cycloalkenyl, when n = 2, such that the ratio of carbon atoms in the cation to quaternary nitrogen atoms does not exceed 10:1.

    Examples of such cations are the cations in which R7 = methyl, R8 is absent, and n = 1, and in which R7 = R8 = methyl, and n = 2.

    4) Quaternary ammonium compounds in which the structure of the cation is:

            [R9R10R11R12N4(CH2)6]m(+)

    • where R9 is alkyl, cycloalkyl, alkenyl, cycloalkenyl
    • where R10, R11, R12 can be nothing, or alkyl, cycloalkyl, alkenyl, cycloalkenyl such that the ratio of carbon atoms in the cation to quaternary nitrogen atoms does not exceed 10:1
    • m is 1 to 4, the value of m being increased from unity by one for each of R10, R11, R12, having a meaning other than zero.

    Examples of such cations are:

            [(CH3)pN4(CH2)6]p(+)

    where p is 1, 2, 3 or 4.



    [0017] It will be understood that in compounds containing two or more quaternary nitrogen compounds the linkages between them will also be hydrocarbyl groups, i.e., the cation consists of quaternary nitrogen, carbon and hydrogen atoms, optionally substituted by tertiary amino nitrogen atoms.

    [0018] Cations in groups (3) and (4) when R8, or one or more of R10, R11, R12, represent zero are examples of hydrocarbyl groups carrying tertiary amino nitrogen atoms.

    [0019] The acid which is used to form the anion may be a carboxylic acid, carboxylic acid anhydride, phenol, sulphurized phenol or sulphonic acid.

    [0020] The carboxylic acid may be e.g.:

    i) An acid of the formula

            R13-COOH

    where R13 is hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl, or aryl. Examples of such acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, palmitic acid, stearic acid, cyclohexanecarboxylic acid,
    2-methylcyclohexanecarboxylic acid, 4-methylcyclohexane carboxylic acid, oleic acid, linoleic acid, linolenic acid, cyclohex-2-eneoic acid, benzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, 4-methylbenzoic acid, salicylic acid, 2-hydroxy-4-methylbenzoic acid,
    2-hydroxy-4-ethylsalicylic acid, p-hydroxybenzoic acid, 3,5-di-tert-butyl-4-hydroxybenzoic acid, o-aminobenzoic acid, p-aminobenzoic acid, o-methoxybenzoic acid and p-methoxybenzoic acid.

    ii) A dicarboxylic acid of the formula

            HOOC-(CH2)n-COOH

    where n is zero or an integer, including e.g. oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and suberic acid. Also included are acids of the formula

    where x is zero or an integer, y is zero or an integer and x and y may be equal or different and R13 is defined as in (i). Examples of such acids include the alkyl or alkenyl succinic acids, 2-methylbutanedioic acid, 2-ethylpentanedioic acid, 2-n-dodecylbutanedioic acid, 2-n-dodecenylbutanedioic acid, 2-phenylbutanedioic acid, and 2-(p-methylphenyl)butanedioic acid. Also included are polysubstituted alkyl dicarboxylic acids wherein other R13 groups as described above may be substituted on the alkyl chain. These other groups may be substituted on the same carbon atom or different atoms. Such examples include 2,2-dimethylbutanedioic acid; 2,3-dimethylbutanedioic acid; 2,3,4-trimethylpentanedioic acid; 2,2,3-trimethylpentanedioic acid; and 2-ethyl-3-methylbutanedioic acid.



    [0021] The dicarboxylic acids also include acids of the formula:

            HOOC-(CrH2r-2)COOH

    where r is an integer of 2 or more. Examples include maleic acid, fumaric acid, pent-2-enedioic acid, hex-2-enedioic acid; hex-3-enedioic acid, 5-methylhex-2-enedioic acid; 2,3-di-methylpent-2-enedioic acid; 2-methylbut-2-enedioic acid; 2-dodecylbut-2-enedioic acid; and 2-polyisobutylbut-2-enedioic acid.

    [0022] The dicarboxylic acids also include aromatic dicarboxylic acids e.g. phthalic acid, isophthalic acid, terephthalic acid and substituted phthalic acids of the formula:

    where R13 is defined as in (i) and n = 1, 2, 3 or 4 and when n > 1 then the R13 groups may be the same or different. Examples of such acids include 3-methylbenzene-1,2-dicarboxylic acid; 4-phenylbenzene-1,3-dicarboxylic acid; 2-(1-propenyl)benzene-1,4-dicarboxylic acid, and 3,4-dimethylbenzene-1,2-dicarboxylic acid.

    [0023] The carboxylic acid anhydrides include the anhydrides that may be derived from the carboxylic acids described above. Also included are the anhydrides that may be derived from a mixture of any of the carboxylic acids described above. Specific examples include acetic anhydride, propionic anhydride, benzoic anhydride, maleic anhydride, succinic anhydride, dodecylsuccinic anhydride, dodecenylsuccinic anhydride, an optionally substituted polyisobutylenesuccinic anhydride, advantageously one having a molecular weight of between 500 and 2000 daltons, phthalic anhydride and 4-methylphthalic anhydride.

    [0024] The phenols from which the anion of the quaternary ammonium compound may be derived are of many different types. Examples of suitable phenols include:

    (i) Phenols of the formula:



    [0025] 

    where n = 1, 2, 3, 4 or 5, where R13 is defined above and when n > 1 then the substituents may be the same or different. The hydrocarbon group(s) may be bonded to the benzene ring by a keto or thio-keto group. Alternatively the hydrocarbon group(s) may be bonded through an oxygen, sulphur or nitrogen atom. Examples of such phenols include o-cresol; m-cresol; p-cresol; 2,3-dimethylphenol; 2,4-dimethylphenol; 2,3,4-trimethylphenol; 3-ethyl-2,4-dimethylphenol; 2,3,4,5-tetramethylphenol; 4-ethyl-2,3,5,6-tetramethylphenol; 2-ethylphenol; 3-ethylphenol; 4-ethylphenol; 2-n-propylphenol; 2-isopropylphenol; 4-n-butylphenol; 4-isobutylphenol; 4-sec-butylphenol; 4-t-butylphenol; 4-nonylphenol; 2-dodecylphenol; 4-dodecylphenol; 4-octadecylphenol; 2-cyclohexylphenol; 4-cyclohexylphenol; 2-allylphenol; 4-allylphenol; 2-hydroxydiphenyl; 4-hydroxydiphenol; 4-methyl-4'-hydroxydiphenyl; o-methoxyphenol; p-methoxyphenol; p-phenoxyphenol; 2-hydroxydiphenylsulphide; 4-hydroxydiphenylsulphide; 4-hydroxyphenylmethylsulphide; and 4-hydroxyphenyldimethylamine. Also included are alkyl phenols where the alkyl group is obtained by polymerization of a low molecular weight olefin e.g. polypropylphenol or polyisobutylphenol.

    [0026] Also included are phenols of the formula:

    and/or

    where R′ and R˝ which may be the same or different are as defined above for R13 and m and n are integers. Examples of such phenols include 2,2′-dihydroxy-5,5′-dimethyldiphenylmethane; 5,5′-dihydroxy-2,2′-dimethyldiphenylmethane; 4,4′-dihydroxy-2,2′-dimethyl-dimethyldiphenylmethane ; 2,2′-dihydroxy-5,5′-dinonyldiphenylmethane; 2,2′-dihydroxy-5,5′-didodecylphenylmethane and 2,2′,4,4′-tetra-t-butyl-3,3′-dihydroxydiphenylmethane.

    [0027] Also included are sulphurized phenols of the formula:

    and/or

    where R′ and R˝ which may be the same or different are as defined above, and m and n are integers and x is 1,2,3 or 4. Examples of such phenols include:

    2,2′-dihydroxy-5,5′dimethyldiphenylsulphide;

    5,5′-dihydroxy-2,2′-di-t-butyldiphenyldisulphide;

    4,4'-dihydroxy-3,3'-di-t-butyldiphenylsulphide;

    2,2'-dihydroxy-5,5'-dinonyldiphenyldisulphide;

    2,2'-dihydroxy-5,5'didodecyldiphenyldisulphide;

    2,2'-dihydroxy-5,5'-didodecyldiphenyltrisulphide; and

    2,2'-dihydroxy-5,5'-didodecyldiphenyltetrasulphide.



    [0028] The sulphonic acids from which the anion of the quaternary ammonium salt can be derived include alkyl and aryl sulphonic acids which have a total of 1-200 carbon atoms per molecule although the preferred range is 1-80 atoms per molecule. Included in this description are aryl sulphonic acids of the formula:

    where n = 1, 2, 3, 4, 5 and when n > 1 the substituents may be the same or different, and R‴ may represent R13 as defined above.

    [0029] The hydrocarbon group(s) may be bonded to the benzene ring through a carbonyl group or the thio-keto group. Alternatively the hydrocarbon group(s) may be bonded to the benzene ring through a sulphur, oxygen or nitrogen atom. Thus examples of sulphonic acids that may be used include: benzene sulphonic acid; o-toluenesulphonic acid, m-toluenesulphonic acid; p-toluenesulphonic acid; 2,3-dimethylbenzenesulphonic acid; 2,4-dimethylbenzenesulphonic acid; 2,3,4-trimethylbenzenesulphonic acid; 4-ethyl-2,3-dimethylbenzenesulphonic acid; 4-ethylbenzenesulphonic acid; 4-n-propylbenzenesulphonic acid; 4-n-butylbenzenesulphonic acid; 4-isobutylbenzenesulphonic acid; 4-sec-butylbenzenesulphonic acid; 4-t-butylbenzenesulphonic acid; 4-nonylbenzenesulphonic acid; 2-dodecylbenzenesulphonic acid; 4-dodecylbenzenesulphonic acid; 4-cyclohexylbenzenesulphonic acid; 2-cyclohexylbenzenesulphonic acid; 2-allylbenzenesulphonic acid; 2-phenylbenzenesulphonic acid; 4(4'methylphenyl)benzenesulphonic acid; 4-methylmercaptobenzenesulphonic acid; 2-methoxybenzene sulphonic acid; 4-phenoxybenzenesulphonic acid; 4-methylaminobenzenesulphonic acid; 2-dimethylaminobenzenesulphonic acid; and 2-phenylaminobenzenesulphonic acid. Also included are sulphonic acids of the type listed above where R‴ is derived from the polymerization of a low molecular weight olefin e.g. polypropylenebenzenesulphonic acid and polyisobutylenebenzenesulphonic acid.

    [0030] Also included are sulphonic acids of the formula:

            R-SO3H

    where R is alkyl, cycloalkyl, alkenyl or cycloalkenyl. Examples of such sulphonic acids that may be used include methylsulphonic acid; ethylsulphonic acid; n-propylsulphonic acid; n-butylsulphonic acid; isobutylsulphonic acid; sec-butylsulphonic acid; t-butylsulphonic; nonylsulphonic acid; dodecylsulphonic acid; polypropylsulphonic acid; polyisobutylsulphonic acid; cyclohexylsulphonic acid; and 4-methylcyclohexylsulphonic acid.

    [0031] Some of the quaternary ammonium salts which may be employed according to the present invention are commercially available. It is preferred to use one of these compounds. Alternatively the quaternary ammonium compounds may be synthesized in any suitable manner. The quaternary ammonium compounds may be prepared by known processes. Two methods are preferred for the synthesis of compounds such as quaternary ammonium sulphonates, sulphurized phenates and carboxylates.

    [0032] In the first method a quaternary ammonium hydroxide is prepared by reacting, for example, a quaternary ammonium chloride with a strong base (for example sodium hydroxide) in an alcohol (for example methanol).



    [0033] After removing the metal halide by filtration, the solution of quaternary ammonium hydroxide is mixed with the acid in a suitable solvent and allowed to react:



    [0034] The rate of reaction may be increased by raising the reaction temperature above ambient. Once the reaction is complete the solvents and water are removed by distillation.

    [0035] In the second method the organic acid is reacted with a metal oxide or hydroxide to form the metal salt:



    [0036] If the reaction is done in a suitable solvent (for example, heptane or toluene) the water formed during the reaction may be removed by refluxing the solvent and using a Dean and Stark trap. Once all the water has been removed the solution of the metal salt is treated with a quaternary ammonium halide:



    [0037] The metal halide is removed by filtration, the solvent is removed by distillation. Alternatively, the solvent can be removed by distillation and the metal halide filtered from the final product.

    [0038] Preferably the fuel composition comprises 5 to 1000 ppm, more preferably 10 to 500 ppm, and most preferably 20 to 200 ppm of quaternary ammonium compound based on parts of the fuel.

    [0039] The cracked component in the fuel oil which leads to the undesirable colour formation and sediment is generally obtained by cracking of heavy oil and may be fuel oil in which the main constituent is a fraction otained from a residual oil.

    [0040] Typical methods available for the thermal cracking are visbreaking and delayed coking. Alternatively the fuels may be obtained by catalytic cracking, the principal methods being moving-bed cracking and fluidized-bed cracking. After cracking, the distillate oil is extracted by normal or vacuum distillation, the boiling point of the distillate oil obtained usually being 60-500°C. Compositions composed entirely of this fuel or fuels which are mixtures of the cracked fraction and normal distillates may be used in the present invention.

    [0041] The present invention accordingly provides a fuel composition comprising a distillate fraction and a cracked fraction and a quaternary ammonium compound soluble in the composition, the quaternary ammonium compound having a cation in which the substituent on the or each quaternary nitrogen is a hydrocarbyl group optionally bearing a tertiary amino nitrogen atom, and in which cation the ratio of carbon atoms to quaternary nitrogen atoms is at most 10:1, the anion being derived from a carboxylic acid or anhydride, a phenol, a sulphurized phenol or a sulphonic acid. The invention also provides the use of such a quaternary ammonium compound in inhibiting sediment and color formation in a fuel oil composition, especially one containing a component obtained by the cracking of heavy oil.

    [0042] The proportion by weight of direct-distillation fraction and cracked fraction in a fuel oil composition which is a mixture can vary considerably, but is usually 1:0.03 - 1:2 and preferably 1:0.05 - 1:1. Typically the content of cracked fraction is usually 5-97%, and preferably 10-50%, based on the weight of the composition.

    [0043] The fuel oil compositions of the present invention may contain other additives such as antioxidants, anticorrosion agents, fluidity improvers, agents absorbing ultraviolet radiation, detergents, dispersants and cetane improvers in small amounts (for example, usually less than 2% based on the weight of the composition).

    [0044] The present invention is illustrated by the following examples:

    Example 1


    Synthesis of Tetramethylammonium Dodecylphenate



    [0045] A solution of sodium hydroxide (10 g; 0.25 moles) in methanol (100 mls) was added slowly, under nitrogen, to a stirred solution of tetramethylammonium bromide (38.5 g; 0.25 moles) in methanol (200 mls). When the addition was complete the solution was stirred for a further 30 minutes.

    [0046] The sodium bromide was filtered off and the solution of the tetramethylammonium hydroxide added directly to a solution of dodecylphenol (65.5 g; 0.25 moles) in toluene (200 mls). The reaction mixture was heated to reflux for 1 hour and then the solvents were removed by heating to 150°C under vacuum.

    [0047] Stanco 150 (83.8 g), a mineral oil base stock (Exxon), was added to the product which was then filtered through Dicalite 4200 (diatomaceous earth).

    TABLE 1 Shows the effect of blending different amounts of a straight distillate with an unhydrofined catalytically cracked gas oil on sediment and colour in the AMS 77.061 accelerated stability test.

    TABLE 2 Shows typical nitrogen and sulphur levels for straight run distillates and unhydrofined catalytically cracked gas oils.

    TABLE 3 Shows the effect of doping a stable fuel with compounds containing nitrogen and sulphur.

    TABLE 4 Shows AMS 77.061 test results on fuels treated with quaternary ammonium compounds in accordance with the present invention. From a comparison of the results for the treated fuels with the results for the untreated fuel, it is clear that the compounds of this invention give good control of colour and sediment.



    TABLE 2
    The Nitrogen and Sulphur Contents of Various Fuels
    Type of Fuel Nitrogen (ppm) Sulphur (%)
    Unhydrofined CCGO 695 1.11
    Unhydrofined CCGO 650 1.70
    Straight distillate 50 0.24
    Straight distillate 70 0.25
    Straight distillate 97 0.23
    Straight distillate 128 0.24
    TABLE 3
    The Effect of Doping with Dimethyl Pyrrole (DMP) and a Sulphonic Acid (SA) on the Stability of a Straight Distillate Fuel in the AMS 77.061 Test
    DMP (ppm) (a) SA (ppm) (b) Sediment (mg/100 ml) Colour
          Before After
    NIL NIL 0.06, 0.10 < 0.5 < 1.0
     
    NIL 50 0.02, 0.00 < 0.5 < 1.5
          < 0.5 < 1.5
     
    50 NIL 0.76, 0.59 < 0.5 < 1.0
          < 0.5 < 1.0
     
    50 50 1.06, 1.01 < 1.5 < 3.0
          < 1.5 < 3.0
    (a) 2,5-dimethylpyrrole
    (b) a commercially available alkyl-aryl sulphonic acid having a SAN of approximately 80 mg KOH/g of acid





    Claims

    1. A fuel composition comprising a diesel fuel or a heating oil obtained by the cracking of heavy oil and a quaternary ammonium compound which is soluble in the fuel and which comprises a hydrocarbyl cation in which the hydrocarbyl group or groups optionally carries or carry a tertiary amino nitrogen atom or atoms but is or are otherwise unsubstituted, and in which cation the ratio of carbon atoms to quaternary nitrogen atoms is not more than 10:1, and an anion which is derived from an acid which is a carboxylic acid, carboxylic acid anhydride, phenol, sulphurized phenol or sulphonic acid, other than an anion derived from a dihydroxy-, hydroxycarboxy-, or dicarboxy-naphthalene.
     
    2. A composition according to claim 1, in which the cation of the quaternary ammonium compound contains from 1 to 4 quaternary nitrogen atoms.
     
    3. A fuel composition according to claim 1, in which the cation is of the formula:

            [R1R2R3R4N]+

    in which R1, R2, R3, and R4, which may be the same or different, are each alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, aralkyl or alkaryl such that the number of carbon atoms in the cation does not exceed 10.
     
    4. A composition according to claim 3, in which the cation is tetramethylammonium.
     
    5. A composition according to claim 1, in which the cation is of the formula:

    in which R5 and R6 which may be the same or different are each alkyl, cycloalkyl, alkenyl, or cycloalkenyl such that the number of carbon atoms in the cation does not exceed 10.
     
    6. A composition according to claim 1, in which the cation is of the formula:

    in which R7 is alkyl, cycloalkyl, alkenyl or cycloalkenyl; R8 is nothing in which case n is 1 or alkyl, cycloalkyl, alkenyl, or cycloalkenyl in which case n is 2, such that the ratio of carbon atoms to quaternary nitrogen atoms in the cation does not exceed 10.
     
    7. A composition according to claim 1, in which the cation is of the formula:

            [R9R10R11R12N4(CH2)6]m(+)

    in which R9 is alkyl, cycloalkyl, alkenyl or cycloalkenyl; R10, R11 or R12 which may be the same or different are each nothing, alkyl, cycloalkyl, alkenyl or cycloalkenyl, such that the ratio of carbon atoms to quaternary nitrogen atoms in the cation does not exceed 10; and m is an integer of 1 to 4, the value of m increasing from unity by one for each of R10, R11, and R12 that represents a substituent.
     
    8. A composition according to claim 7, in which the cation is N-methylhexamethylenetetrammonium or N,N′N˝,N‴-tetramethylhexamethylenetetrammonium.
     
    9. A composition according to any one of the preceding claims in which the anion of the quaternary ammonium compound is derived from a carboxylic acid.
     
    10. A composition according to claim 9, in which the carboxylic acid is of the formula:

            R13-COOH

    or

    in which p and q which may be the same or different are each zero or an integer or

            HOOC - (CrH2r-2) - COOH

    in which r is an integer of 2 or more or

            HOOC - (CH2)z - COOH

    in which z is zero or an integer of 1 or more or

    in which R13 is hydrogen, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, alkaryl or aralkyl.
     
    11. A composition according to any one of claims 1 to 8, in which the anion of the quaternary ammonium compound is derived from a carboxylic acid anhydride, advantageously a carboxylic acid as defined in claim 10 or is a substituted succinic anhydride of the formula:

    in which R13 is defined as in claim 10, or is a substituted anhydride with an optionally substituted polyisobutylene, in which the polyisobutylene advantageously has a molecular weight of between 500 to 2000 daltons.
     
    12. A composition according to any one of claims 1 to 8, in which the anion of the quaternary ammonium compound is derived from a phenol, advantageously one of the formula:

    in which s is an integer from 0 to 5 and R13 is defined as in claim 10, and when s is greater than 1 each R13 may be the same or different, preferably nonylphenol or dodecylphenol; or of the formula:

    in which t and u, which may be the same or different, are each an integer from 0 to 4; or of the formula:

    in which v and w, which may be the same or different, are each an integer from 0 to 4; R13 is as defined in claim 10, and for each t, u, v and w greater than 1, each R13 may be the same or different; and x is zero or an integer from 1 to 10.
     
    13. A composition according to claim 12 in which:

    - R13 is C9

    - v is 1 or 2

    - w is 1 or 2

    - x is 1 to 6 or in which

    - R13 is C12

    - both v and w are 1

    - x is 1 to 6.


     
    14. A composition according to any one of claims 1 to 8, in which the anion of the quaternary ammonium compound is derived from a sulphonic acid, preferably one of the formula:

    or R13SO3H in which y is an integer from 0 to 5; R13 is as defined in claim 10, and when y is greater than 1 each R13 may be the same or different.
     
    15. A composition as defined in any one of the preceding claims in which the fuel oil comprises a direct-distillation fraction and a cracked fraction, the cracked fraction comprising 5 to 97% by weight of the composition.
     
    16. A composition as defined in any one of the preceding claims which comprises from 5 to 1000 ppm, advantageously 10 to 500 ppm, and preferably 20 to 200 ppm, of the quaternary ammonium compound.
     
    17. Use of a quaternary ammonium compound as defined in any one of claims 1 to 14 for inhibition of sediment and colour formation in a diesel fuel or heating oil.
     


    Ansprüche

    1. Brennstoffzusammensetzung, die einen Dieselkraftstoff oder ein Heizöl, die durch Cracken von Schweröl erhalten worden sind, und eine quartäre Ammoniumverbindung umfaßt, die in dem Kraftstoff bzw. Brennstoff löslich ist und ein Kohlenwasserstoffkation, in dem die Kohlenwasserstoffgruppe oder die Kohlenwasserstoffgruppen gegebenenfalls ein tertiäres Aminostickstoffatom oder tertiäre Aminostickstoffatome trägt bzw. tragen, aber ansonsten unsubstituiert ist bzw. sind, wobei das Verhältnis von Kohlenstoffatomen zu quartären Stickstoffatomen in dem Kation nicht mehr als 10:1 beträgt, und ein Anion umfaßt, das von einer Säure abgeleitet ist, die eine Carbonsäure, ein Carbonsäureanhydrid, Phenol, sulfuriertes Phenol oder eine Sulfonsäure ist, aber von einem Anion verschieden ist, das von einem Dihydroxy-, Hydroxy-, Carboxy- oder Dicarboxynaphthalin abgeleitet ist.
     
    2. Zusammensetzung nach Anspruch 1, in der das Kation der quartären Ammoniumverbindung 1 bis 4 quartäre Stickstoffatome enthält.
     
    3. Brennstoffzusammensetzung nach Anspruch 1, in der das Kation die Formel

            [R1R2R3R4N]+

    hat, in der R1, R2, R3 und R4, die gleich oder verschieden sein können, jeweils Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Aryl, Aralkyl oder Alkaryl sind, so daß die Anzahl der Kohlenstoffatome in dem Kation 10 nicht übersteigt.
     
    4. Zusammensetzung nach Anspruch 3, in der das Kation Tetramethylammonium ist.
     
    5. Zusammensetzung nach Anspruch 1, in der das Kation die Formel

    hat, in der R5 und R6, die gleich oder verschieden sein können und jeweils Alkyl, Cycloalkyl, Alkenyl oder Cycloalkenyl sind, so daß die Anzahl der Kohlenstoffatome in dem Kation 10 nicht übersteigt.
     
    6. Zusammensetzung nach Anspruch 1, in der das Kation die Formel

    hat, in der R7 Alkyl, Cycloalkyl, Alkenyl oder Cycloalkenyl ist, R8 nichts ist, wobei in diesem Fall n gleich 1 ist, oder Alkyl, Cycloalkyl, Alkenyl oder Cycloalkenyl ist, wobei in diesem Fall n gleich 2 ist, so daß das Verhältnis von Kohlenstoffatomen zu quartären Stickstoffatomen in dem Kation 10 nicht übersteigt.
     
    7. Zusammensetzung nach Anspruch 1, in der das Kation die Formel

            [R9R10R11R12N4(CH2)6]m(+)

    hat, in der R9 Alkyl, Cycloalkyl, Alkenyl oder Cycloalkenyl ist, R10, R11 oder R12, die gleich oder verschieden sein können, jeweils nichts, Alkyl, Cycloalkyl, Alkenyl oder Cycloalkenyl sind, so daß das Verhältnis von Kohlenstoffatomen zu quartären Stickstoffatomen in dem Kation 10 nicht übersteigt, und m eine ganze Zahl von 1 bis 4 ist, wobei der Wert von m von eins ausgehend für jedes von R10, R11 und R12, das einen Substituenten wiedergibt, um eins erhöht wird.
     
    8. Zusammensetzung nach Anspruch 7, in der das Kation N-Methylhexamethylentetrammonium oder N,N',N",N‴-Tetramethylhexamethylentetrammonium ist.
     
    9. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der das Anion der quartären Ammoniumverbindung von einer Carbonsäure abgeleitet ist.
     
    10. Zusammensetzung nach Anspruch 9, in der die Carbonsäure die Formel

            R13-COOH

    oder

    in der p und q, die gleich oder verschieden sein können, jeweils Null oder eine ganze Zahl sind, oder

            HOOC - (CrH2r-2) - COOH ,

    in der r eine ganze Zahl von 2 oder mehr ist, oder

            HOOC - (CH2)z - COOH ,

    in der z Null oder eine ganze Zahl von 1 oder mehr ist, oder

    hat, in denen R13 Wasserstoff, Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Aryl, Alkaryl oder Aralkyl ist.
     
    11. Zusammensetzung nach einem der Ansprüche 1 bis 8, in der das Anion der quartären Ammoniumverbindung von einem Carbonsäureanhydrid, vorteilhafterweise von einer Carbonsäure gemäß Anspruch 10 abgeleitet ist oder ein substituiertes Bernsteinsäureanhydrid mit der Formel

    in der R13 wie in Anspruch 10 definiert ist, oder ein mit einem gegebenenfalls substituierten Polyisobutylen substituiertes Anhydrid ist, in dem das Polyisobutylen vorteilhafterweise ein Molekulargewicht zwischen 500 und 2 000 Dalton hat.
     
    12. Zusammensetzung nach einem der Ansprüche 1 bis 8, bei der das Anion der quartären Ammoniumverbindung von einem Phenol, vorteilhafterweise einem Phenol mit der Formel

    in der s eine ganze Zahl von 0 bis 5 ist und R13 wie in Anspruch 10 definiert ist, und jeder R13 gleich oder verschieden sein kann, wenn s größer als 1 ist, vorzugsweise Nonylphenol oder Dodecylphenol, oder von der Formel

    in der t und u, die gleich oder verschieden sein können und jeweils eine ganze Zahl von 0 bis 4 sind, oder von der Formel

    in der v und w, die gleich oder verschieden sein können und jeweils eine ganze Zahl von 0 bis 4 sind, R13 wie in Anspruch 10 definiert ist und jedes R13 für jedes t, u, v und w größer als 1 gleich oder verschieden sein kann, und x Null oder eine ganze Zahl von 1 bis 10 ist, abgeleitet ist.
     
    13. Zusammensetzung nach Anspruch 12, in der

    - R13 C9 ist,

    - v 1 oder 2 ist,

    - w 1 oder 2 ist,

    - x 1 bis 6 ist, oder in der

    - R13 C12 ist,

    - v und w beide gleich 1 sind und

    - x 1 bis 6 ist.


     
    14. Zusammensetzung nach einem der Ansprüche 1 bis 8, in der das Anion der quartären Ammoniumverbindung von einer Sulfonsäure, vorzugsweise einer Sulfonsäure mit der Formel

    oder R13SO3H
    abgeleitet ist, in der y eine ganze Zahl von 0 bis 5 ist, R13 wie in Anspruch 10 definiert ist, und jedes R13 gleich oder verschieden sein kann, wenn y größer als 1 ist.
     
    15. Zusammensetzung nach einem der vorhergehenden Ansprüche, in der das Brennstofföl eine Direktdestillationsfraktion und eine gecrackte Fraktion umfaßt, wobei die gecrackte Fraktion 5 bis 97 Gew.% der Zusammensetzung ausmacht.
     
    16. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, die 5 bis 1000 ppm, vorteilhafterweise 10 bis 500 ppm und vorzugsweise 20 bis 2000 ppm der quartären Ammoniumverbindung umfaßt.
     
    17. Verwendung einer quartären Ammoniumverbindung gemäß einem der Ansprüche 1 bis 14 zur Hemmung der Sediment- und Farbbildung in Dieselkraftstoff oder Heizöl.
     


    Revendications

    1. Composition de combustible comprenant un combustible diesel ou une huile de chauffe, obtenu par craquage d'un pétrole lourd, et un composé d'ammonium quaternaire qui est soluble dans le combustible et qui comprend un cation hydrocarbyle, dans lequel le ou les groupes hydrocarbyle portent facultativement un ou plusieurs atomes d'azote de groupe amino tertiaire mais sont par ailleurs non substitués, et cation dans lequel le rapport des atomes de carbone aux atomes d'azote quaternaires est non supérieur à 10:1, et un anion qui est dérivé d'un acide qui est un acide carboxylique, un anhydride d'acide carboxylique, un phénol, un phénol sulfuré ou un acide sulfonique, autre qu'un anion dérivé d'un dihydroxy-, hydroxycarboxy- ou dicarboxy-naphtalène.
     
    2. Composition suivant la revendication 1, dans laquelle le cation du composé d'ammonium quaternaire contient 1 à 4 atomes d'azote quaternaires.
     
    3. Composition de combustible suivant la revendication 1, dans laquelle le cation répond à la formule :

            [R1R2R3R4N]+

    dans laquelle R1, R2, R3 et R4, qui peuvent être identiques ou différents, représentent chaucn un groupe alkyle, cycloalkyle, alcényle, cycloalcényle, aryle, aralkyle ou alkaryle de telle sorte que le nombre d'atomes de carbone dans le cation n'excède pas 10.
     
    4. Composition suivant la revendication 3, dans laquelle le cation est un cation tétraméthylammonium.
     
    5. Composition suivant la revendication 1, dans laquelle le cation répond à la formule :

    dans laquelle R5 et R6, qui peuvent être identiques ou différents, représentent chacun un groupe alkyle, cycloalkyle, alcényle ou cycloalcényle de telle sorte que le nombre d'atomes de carbone dans le cation n'excède pas 10.
     
    6. Composition suivant la revendication 1, dans laquelle le cation répond à la formule :

    dans laquelle R7 représente un groupe alkyle, cycloalkyle, alcényle ou cycloalcényle ; R8 est absent, auquel cas n est égal à 1 ou représente un groupe alkyle, cycloalkyle, alcényle ou cycloalcényle, auquel cas n est égal à 2, de telle sorte que le rapport des atomes de carbone aux atomes d'azote quaternaires dans le cation n'excède pas 10.
     
    7. Composition suivant la revendication 1, dans laquelle le cation répond à la formule :

            [R9R10R11R12N4 (CH2)6]m(+)

    dans laquelle R9 représente un groupe alkyle, cycloalkyle, alcényle ou cycloalcényle ; R10, R11 ou R12, qui peuvent être identiques ou différents, ne représentent chacun rien ou bien représentent chacun un groupe alkyle, cycloalkyle, alcényle ou cycloalcényle, de telle sorte que le rapport des atomes de carbone aux atomes d'azote quaternaires dans le cation n'excède pas 10 ; et m est un nombre entier de 1 à 4, la valeur de m augmentant d'une unité à la fois pour chacun des groupes R10, R11 et R12 représentant un substituant.
     
    8. Composition suivant la revendication 7, dans laquelle le cation est un cation N-méthylhexaméthylènetétrammonium ou N,N',N',N‴-tétraméthylhexaméthylènetétrammonium.
     
    9. Composition suivant l'une quelconque des revendications précédentes, dans laquelle l'anion du composé d'ammonium quaternaire est dérivé d'un acide carboxylique.
     
    10. Composition suivant la revendication 9, dans laquelle l'acide carboxylique répond à la formule :

            R13-COOH

    ou

    dans laquelle p et q, qui peuvent être identiques ou différents, sont chacun égaux à zéro ou à un nombre entier, ou à la formule

            HOOC - (CrH2r-2) - COOH

    dans laquelle r est un nombre entier égal ou supérieur à 2, ou à la formule

            HOOC - (CH2)z - COOH

    dans laquelle z est égal à zéro ou à un nombre entier égal ou supérieur à 1, ou à la formule

    dans laquelle R13 représente l'hydrogène, un groupe alkyle, cycloalkyle, alcényle, cycloalcényle, aryle, alkaryle ou aralkyle.
     
    11. Composition suivant l'une quelconque des revendications 1 à 8, dans laquelle l'anion du composé d'ammonium quaternaire est dérivé d'un anhydride d'acide carboxylique, avantageusement un acide carboxylique répondant à la définition suivant la revendication 10, ou bien consiste en un anhydride succinique substitué, de formule :

    dans laquelle R13 répond à la définition suivant la revendication 10, ou bien représente un anhydride substitué avec un polyisobutylène facultativement substitué, dans lequel le polyisobutylène a avantageusement un poids moléculaire compris dans l'intervalle de 500 à 2000 daltons.
     
    12. Composition suivant l'une quelconque des revendications 1 à 8, dans laquelle l'anion du composé d'ammonium quaternaire est dérivé d'un phénol, avantageusement d'un phénol répondant à la formule :

    dans laquelle s est un nombre entier de 0 à 5 et R13 répond à la définition suivant la revendication 10 et, lorsque s est supérieur à 1, les groupes R13 peuvent être identiques ou différents et représentent chacun de préférence un groupe nonylphénol ou dodécylphénol ; ou bien à la formule :

    dans laquelle t et u, qui peuvent être identiques ou différents, représentent chacun un nombre entier de 0 à 4 ; ou bien à la formule :

    dans laquelle v et w, qui peuvent être identiques ou différents, représentent chacun un nombre entier de 0 à 4 ; R13 répond à la définition suivant la revendication 10 et, pour chacun des indices t, u, v et w supérieur à 1, les groupes R13 peuvent être identiques ou différents ; et x est égal à zéro ou à un nombre entier de 1 à 10.
     
    13. Composition suivant la revendication 12, dans laquelle :

    - R13 est un groupe en C9

    - v est égal à 1 ou 2

    - w est égal à 1 ou 2

    - x a une valeur de 1 à 6, ou dans laquelle

    - R13 représente un groupe en C12

    - v et w sont l'un et l'autre égaux à 1

    - x a une valeur de 1 à 6.


     
    14. Composition suivant l'une quelconque des revendications 1 à 8, dans laquelle l'anion du composé d'ammonium quaternaire est dérivé d'un acide sulfonique, de préférence d'un acide sulfonique de formule :

    ou R13SO3H
    dans laquelle y est un nombre entier de 0 à 5 ; R13 répond à la définition suivant la revendication 10 et, lorsque y est supérieur à 1, les groupes R13 peuvent être identiques ou différents.
     
    15. Composition répondant à la définition suivant l'une quelconque des revendications précédentes, dans laquelle l'huile combustible comprend une fraction de distillation directe et une fraction de craquage, la fraction de craquage représentant 5 à 97 % en poids de la composition.
     
    16. Composition répondant à la définition suivant l'une quelconque des revendications précédentes, qui comprend 5 à 1000 ppm, avantageusement 10 à 500 ppm et de préférence 20 à 200 ppm du composé d'ammonium quaternaire.
     
    17. Utilisation d'un composé d'ammonium quaternaire répondant à la définition suivant l'une quelconque des revendications 1 à 14 pour inhiber la formation d'un sédiment et l'apparition d'une couleur dans un combustible diesel ou une huile de chauffe.