(19)
(11) EP 0 465 094 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.12.1996 Bulletin 1996/50

(21) Application number: 91305740.2

(22) Date of filing: 25.06.1991
(51) International Patent Classification (IPC)6G05F 3/30

(54)

Bandgap voltage reference using a power supply independent current source

Bandlückenspannungsreferenz unter Benutzung einer versorgungsunabhängigen Stromquelle

Référence de tension du type Bandgap utilisant une source de courant indépendant de l'alimentation


(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 02.07.1990 US 546636

(43) Date of publication of application:
08.01.1992 Bulletin 1992/02

(73) Proprietor: MOTOROLA, INC.
Schaumburg, IL 60196 (US)

(72) Inventors:
  • Bennett, Paul Thomas
    Phoenix, Arizona 85108 (US)
  • Davies, Robert Bruce
    Tempe, Arizona 85281 (US)
  • Mietus, David Francis
    Tempe, Arizona 85282 (US)

(74) Representative: Lupton, Frederick et al
Motorola European Intellectual Property, Midpoint, Alencon Link
Basingstoke, Hampshire RG21 1PL
Basingstoke, Hampshire RG21 1PL (GB)


(56) References cited: : 
EP-A- 0 264 563
US-A- 4 628 248
WO-A-85/02472
US-A- 4 820 967
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background of the Invention



    [0001] This invention relates to voltage reference circuits, and more particularly, to a bandgap voltage reference circuit for providing a stable output voltage operating independent of temperature and power supply variations.

    [0002] Voltage reference circuits are common in many modern electronic designs for providing a stable reference signal. The bandgap voltage reference circuit is well suited for this niche due to its temperature independent characteristics as discussed in an article entitled "A SIMPLE THREE-TERMINAL IC BANDGAP REFERENCE" by A. Paul Brokaw, IEEE Journal of Solid State Circuits, Vol. SC-9, No. 6, December, 1974. Briefly, the Brokaw article discloses a two transistor configuration conducting equal currents, but having dissimilar emitter areas, say eight-to-one, creating different current densities and base-emitter junction potentials (Vbe). The first transistor typically possesses the larger emitter area and, correspondingly, the lower current density and the lesser Vbe. By connecting two resistors in series with the emitter path of the first transistor and coupling the emitter of the second transistor to the interconnection thereof, a delta Vbe having a positive temperature coefficient is developed across the upper resistor. If the currents flowing through the first and second transistors are made of appropriate and constant magnitude and equal in value, the positive temperature coefficient of the voltage across the upper resistor tends to cancel the inherent negative temperature coefficient of the base-emitter junction of the first transistor thereby providing an output voltage at the collector of the second transistor which is insensitive to temperature variation, as is understood.

    [0003] The current flowing through the first and second transistors is typically provided by a PNP transistor current mirror configuration having the emitters thereof coupled to the positive power supply conductor. Any transients appearing on the positive power supply are reflected in the current flowing through the first and second transistors, inducing variation in the Vbe's thereof and the potential developed across the emitter resistors. This translates to movement in the collector potential of the second transistor, thus, the output voltage is dependent upon the power supply voltage. The fluctuation in the circuit signal levels attributed to power supply variation is commonly known as the Early voltage effect and is an undesirable condition which adversely influences the regulated output signal.

    [0004] One known bandgap voltage reference circuit that operates independent of power supply variation is disclosed in International Patent Application WO-A 85/02472. Another known bandgap voltage reference circuit that operates independent of power supply variation with all NPN transistors is disclosed in U.S. Patent 4,628,248. Yet another known voltage reference circuit that allows control over the magnitude and temperature coefficient of the output voltage by using a precision thermal current source is disclosed in European Patent Application EP-A-0,264,563.

    [0005] There is, however, a need for an improved voltage reference circuit having an output voltage operating independent of temperature and power supply variations.

    Summary of the Invention



    [0006] Accordingly, an objective of the present invention is to provide an improved voltage reference circuit.

    [0007] In accordance with the above and other objectives there is provided a voltage reference circuit for providing a voltage at an output, comprising:

    current supply means including an output for supplying a current having a predetermined temperature coefficient;

    a first transistor having a collector, a base and an emitter, said collector being coupled for receiving said current having said selectable temperature coefficient from said output of said current supply means, said base being coupled to the output of the voltage reference circuit, said first transistor having a temperature coefficient across the base-emitter junction thereof;

    circuit means coupled between said collector and base of said first transistor for supplying base drive thereto; and

    a first resistor coupled between said emitter of said first transistor and a first source of operating potential for conducting said current having said predetermined temperature coefficient which develops a potential across said first resistor with a temperature coefficient opposing said temperature coefficient across the base-emitter junction of said first transistor.



    [0008] In another aspect, the present invention comprises a method of developing an output voltage operating independent of temperature, comprising the steps of:

    supplying a first current having a predetermined temperature coefficient;

    passing said first current through a first transistor and a first resistor, said first transistor having a temperature coefficient across the base-emitter junction thereof; and

    developing a potential across said first resistor having a temperature coefficient opposing said temperature coefficient across the base-emitter junction of said first transistor for substantially cancelling temperature induced variation in the output voltage.



    [0009] In another aspect of the present invention, there is provided a circuit for providing a reference signal at an output, comprising:

    a first transistor having a collector, a base and an emitter, said base being coupled to the output of the circuit;

    a first resistor coupled between said emitter of said first transistor and a first source of operating potential;

    a second transistor having a collector, a base and an emitter, said base being coupled to said base of said first transistor;

    a second resistor coupled between said emitter of said second transistor and said first source of operating potential;

    a third transistor having a collector, a base and an emitter, said emitter being coupled to a second source of operating potential;

    a third resistor coupled between said collectors of said second and third transistors;

    a fourth transistor having a collector, a base and an emitter, said base being coupled to said base of said third transistor;

    a fourth resistor coupled between said collectors of said first and fourth transistors;

    a fifth resistor coupled between said emitter of said fourth transistor and said second source of operating potential;

    first means coupled between said collector of said fourth transistor and said bases of said third and fourth transistors for providing base drive thereto;

    second means coupled between said collector of said third transistor and said bases of said first and second transistors for maintaining the potential developed at said bases of said first and second transistors independent of the potential applied at said first source of operating potential; and

    third means for starting the operation of the circuit.


    Brief Description of the Drawings



    [0010] 

    FIG. 1 is a schematic and block diagram illustrating the preferred embodiment of the present invention; and

    FIG. 2 is a schematic diagram illustrating further detail of the current reference circuit.


    Detailed Description of the Preferred Embodiment



    [0011] Referring to FIG. 1, voltage reference circuit 10 is shown comprising current reference circuit 12 having an output for providing a current reference signal flowing into the collector of transistor 20. The emitter of transistor 20 is coupled through resistor 22 to power supply conductor 24, operating at ground potential. The collector and base of transistor 20 are coupled to the base and emitter of transistor 26, respectively, while the collector of transistor 26 is coupled to power supply conductor 27, typically operating at a positive potential such as VCC. An output voltage operating independent of temperature and power supply variation is provided at output terminal 28 that is the base of transistor 20. In addition, resistors 30 and 32 are serially coupled between output terminal 28 and power supply conductor 24 for providing a divider ratio of the output voltage at output 34.

    [0012] Further detail of current reference circuit 12 is shown in FIG. 2 including FET transistor 40 operating as a resistor and having a source coupled to power supply conductor 27, a gate coupled to power supply conductor 24 and a drain coupled to the base and collector of diode configured transistor 42. The emitter of transistor 42 is coupled to the collector and base of transistor 44, while the emitter of transistor 44 is coupled to the base and collector of transistor 46. The emitter of transistor 46 is coupled to the base and collector of transistor 48, and the emitter of the latter is coupled to power supply conductor 24 thereby forming a diode stack for developing a voltage of four base-emitter junction potentials (4Vbe′s) at the collector and base of transistor 50. The emitter of transistor 50 is coupled to the collector of transistor 52, and the emitter of transistor 52 is coupled through resistor 54 to power supply conductor 27, while the emitter of transistor 56 is coupled through resistor 58 to power supply conductor 27, and the base and collector of transistor 56 are coupled together to the collector of transistor 60. The emitter of transistor 60 is coupled through diode configured transistor 62 and resistor 64 to power supply conductor 24, and the base of transistor 60 is coupled to the collector of transistor 66, through capacitor 68 to power supply conductor 24 and through resistor 70 to the collector of transistor 52. The base of transistor 66 is coupled to the base and collector of transistor 72, to the base of transistor 74 and to the emitter of transistor 76. The emitters of transistors 66, 72 and 74 are coupled to power supply conductor 24, the latter path including resistor 78. The collector and base of transistor 76 are coupled to power supply conductor 27 and to the collector of transistor 74, respectively, and the collector of transistor 74 is also coupled through resistor 80 to the collector of transistor 82, which includes an emitter coupled through resistor 84 to power supply conductor 27 and a base coupled to the bases of transistors 52 and 56 for developing a reference potential. The base of transistor 82 is also coupled to the base of transistor 86 which includes an emitter coupled through resistor 88 to power supply conductor 27 and a collector that is the output of current reference circuit 12 for providing the current reference signal.

    [0013] The discussion of voltage reference circuit 10 begins with the operation of current reference circuit 12 as a positive potential, VCC, is applied at power supply conductor 27. FET transistor 40 is selected for providing approximately 100K ohms of resistance between power supply conductor 27 and the top of the diode stack formed of transistors 42-48 for limiting the current flowing therethrough. The potential applied at the collector of transistor 52 is thus 3Vbe′s above ground potential (4Vbe′s less the Vbe of transistor 50) which is sufficient to conduct current through resistor 70 and turn on transistors 60 and 62. The current flowing through transistor 60 reduces the voltage at the base and collector of transistor 56 turning the latter on and completing a first conduction path between power supply conductors 27 and 24 through resistor 58, transistors 56, 60 and 62 and resistor 64. The low potential at the base of transistor 56 also turns on transistors 52 and 82 creating a second conduction path through resistor 54, transistor 52, resistor 70 and transistor 66, and a third conduction path through resistor 84, transistor 82, resistor 80, transistor 74 and resistor 78. Once current reference circuit 12 is started, the voltage developed at the collector of transistor 52 reverse biases the base-emitter junction of transistor 50 thereby removing transistors 40-50 from consideration.

    [0014] The current flowing through the collector-emitter conduction path of transistor 76 supplies the base drive for transistors 66, 72 and 74. This diverts negligible current from the collector of transistor 74 as the base current is effectively divided by the forward current gain of transistor 76. Transistor 72 helps maintain a stable Vbe across the base-emitter junction of transistor 66 as very little current flows through the collector-emitter conduction path thereof. Resistors 54, 58 and 84 are matched (e.g., 2K ohms) for establishing identical Vbe's for transistors 52, 56 and 82 and equal currents, say 50 microamps, flowing through the first, second and third conduction paths defined above. Resistors 70 and 80 are also matched (e.g., 28K ohms) as are resistors 64 and 78 (e.g., 720 ohms) for providing equal potentials at the collectors of transistors 52 and 82 and equal potentials at the collectors of transistors 66 and 74, respectively. That is, the collector voltage of transistor 74 is the Vbe of transistor 76 plus the Vbe of transistor 74 plus the current flowing through the third conduction path times the value of resistor 78, while the collector voltage of transistor 66 is the Vbe of transistor 60 plus the Vbe of transistor 62 plus the potential developed across resistor 64. It is important to note that the emitter areas of transistors 62 and 74 are sized larger than the emitter areas of transistors 60 and 76 and therefore conduct a fraction of the current density. For example, transistors 62 and 74 may be selected with four times the emitter area of transistors 60 and 76 and correspondingly conduct one-fourth the current density. Thus, with the Vbe's of transistors 60 and 76 equal, the Vbe's of transistor 62 and 74 equal and the potentials developed across resistors 64 and 78 equal, the potentials of the collectors of transistors 66 and 74 are also equal.

    [0015] The feedback loop formed of transistors 56, 60 and 62 provides the immunity from power supply variations. If the voltage applied at power supply conductor 27 falls, the potential at the emitters of transistors 52, 56 and 82 also drops thereby decreasing the Vbe′s thereof and the current flow through the second and third conduction paths. The collector voltage of transistors 66 and 74 tends to rise as less potential is developed across resistors 70 and 80 thereby increasing the Vbe of transistor 60, drawing more collector current and reducing the voltage developed at the collector of transistor 56 which compensates the Vbe′s of transistors 52, 56 and 82 re-establishing the nominal current flow through the second and third conduction paths. Alternately, if the voltage applied at power supply conductor 27 rises, the potential at the emitters of transistors 52, 56 and 82 increases the Vbe′s thereof and the current flow through the second and third conduction paths. The collector voltage of transistors 66 and 74 falls as more potential is developed across resistors 70 and 80, decreasing the Vbe of transistor 60 which draws less collector current and increases the collector voltage of transistor 56 and compensating the Vbe′s of transistors 52, 56 and 82 again re-establishing the nominal current flow through the second and third conduction paths. Capacitor 68 is provided for decoupling the high frequency components at the base of transistor 60 slowing and stabilizing the response of the feedback loop. Hence, the potential developed at the bases of transistors 52, 56 and 82 is substantially independent of variation in power supply conductor 27 so as to eliminate the Early voltage effect. Moreover, the base currents of transistors 60 and 76 are equal, and the collector voltage of transistors 52 and 82 are equal and constant regardless of the supply voltage.

    [0016] The reference signal developed at the base of transistors 52, 56 and 82 is determined by the Vbebe of transistor 82 and the current flowing through the third conduction path times the value of resistor 84. Since transistors 66 and 74 operate at different current densities, their Vbe′s are dissimilar and a delta Vbe is developed across resistor 78 having a positive temperature coefficient. Thus, the current IC flowing through resistor 78 may be calculated as follows:

    where:
    V66 =
    Vbe of transistor 66
    V74 =
    Vbe of transistor 74
    R78 =
    value of resistor 78
    k =
    Boltzman's constant
    T =
    absolute temperature
    q =
    the electron charge
    IC66 =
    collector current through transistor 66
    IS66 =
    saturation current through transistor 66
    IC74 =
    collector current through transistor 74
    IS74 =
    saturation current through transistor 74


    [0017] As stated, the emitter area of transistor 74 is four times (4A) the emitter area of transistor 66 (1A). By combining terms and dividing out the collector current and saturation current ratios, equation (1) may be reduced to:



    [0018] The current IC is determined by resistor 78 from equation (2); however, observe that the current flowing through the first, second and third conduction paths and correspondingly the reference signal provided at the bases of transistors 52, 56 and 82 is still of function of temperature. This temperature dependency may be used advantageously as will be shown.

    [0019] Returning to FIG. 1, the value of resistor 88 is matched with resistors 54, 58 and 84 for providing a current reference signal flowing through transistor 86 and transistor 20 and resistor 22 equal to that of the third conduction path, current IC, and having a similar temperature coefficient and operating independent of the power supply. The base current for transistor 20 is supplied through the collector-emitter conduction path of transistor 26 thereby diverting negligible current from the collector of transistor 20 due to its forward current gain. The temperature and power supply regulated output voltage provided at output terminal 28 is thus equal to the Vbe of transistor 20 plus the value of resistor 22, say 10K ohms, times the current IC, or approximately 1.18 volts. Resistors 30 and 32 form a conventional voltage divider circuit for providing a reduced output voltage at output 34. Furthermore, the output voltage is independent of power supply because the current reference signal provided by the current reference circuit 12 as shown is also independent of power supply variation.

    [0020] For the temperature compensation feature, the goal is balance the negative temperature coefficient of the Vbe of transistor 20, approximately -1.68 mV/°K, against the positive temperature coefficient of the potential developed across resistor 22. The positive temperature coefficient as seen in equation (2) in combination with resistor 22, which is fabricated from the same base material (125 ohms/square) of similar geometries as resistor 78 and therefore matched with a temperature coefficient of about 688 ppm/°K, substantially cancels the negative temperature coefficient of transistor 20 thereby providing an output voltage independent of temperature. The cancellation of the temperature coefficients between the potential across resistor 22 and the Vbe of transistor 20 is further demonstrated as follows. The output voltage provided at output terminal 28 is given as:



    [0021] Taking the derivative with respect to temperature yields:



    [0022] Substituting equation (2) into equation (4) produces:



    [0023] Since resistors 22 and 78 are fabricated from the same base material and have similar geometries, it can be shown that:



    [0024] Furthermore, a typical value for the temperature coefficient of the Vbe of transistor 20 is -1.68 mV/°K. By selecting IC at 50 microamps, resistor 22 at 10K ohms and resistor 78 at 720 ohms with a nominal temperature of 300°K, equation (5) reduces to:



    [0025] Notably, the temperature coefficient of the output voltage can be made non-zero and easily controlled with a positive or negative slope by adjusting the values of resistors 78 and 22. For example, by increasing the value of resistor 22, the output voltage at output terminal 28 will have a positive slope temperature coefficient. Conversely, the temperature coefficient of the output voltage may have a negative slope by decreasing the value of resistor 22.

    [0026] Hence, what has been described is a novel voltage reference circuit using a current reference signal flowing through a first transistor and a first resistor, operating independent of the power supply and having predetermined temperature coefficient for developing a potential across the first resistor with a positive temperature coefficient which substantially cancels the negative temperature coefficient of the Vbe of the first transistor for providing an output voltage operating independent of temperature and power supply variation.


    Claims

    1. A voltage reference circuit for providing a voltage at an output, comprising:

    current supply means (12) including an output for supplying a current having a predetermined temperature coefficient;

    a first transistor (20) having a collector, a base and an emitter, said collector being coupled for receiving said current having said predetermined temperature coefficient from said output of said current supply means, said base being coupled to the output of the voltage reference circuit, said first transistor having a temperature coefficient across the base-emitter junction thereof;

    circuit means (26) coupled between said collector and base of said first transistor for supplying base drive thereto; and

    a first resistor (22) coupled between said emitter of said first transistor and a first source of operating potential for conducting said current having said predetermined temperature coefficient which develops a potential across said first resistor with a temperature coefficient opposing said temperature coefficient across the base-emitter junction of said first transistor.


     
    2. The voltage reference circuit of claim 1 wherein said circuit means includes a second transistor (26) having a collector, a base and an emitter, said base being coupled to said collector of said first transistor, said emitter being coupled to said base of said first transistor, said collector being coupled to a second source of operating potential.
     
    3. The voltage reference circuit of claim 2 wherein said current supply means comprises:

    third means (40-84) for providing a reference signal at an output;

    a third transistor (86) having a collector, a base and an emitter, said base being responsive to said reference signal, said collector being coupled to said collector of said first transistor; and

    a second resistor (88) coupled between said emitter of said third transistor and said second source operating potential.


     
    4. The voltage reference circuit of claim 1 wherein the current supply means (12) comprises:

    a first transistor (82) having a collector, a base and an emitter, said base being coupled to the output of the current supply means (12);

    a first resistor (84) coupled between said emitter of said first transistor and a first source of operating potential (27);

    a second transistor (52) having a collector, a base and an emitter, said base being coupled to said base of said first transistor;

    a second resistor (54) coupled between said emitter of said second transistor and said first source of operating potential;

    a third transistor (66) having a collector, a base and an emitter, said emitter being coupled to a second source of operating potential (24);

    a third resistor (70) coupled between said collectors of said second and third transistors;

    a fourth transistor (74) having a collector, a base and an emitter, said base being coupled to said base of said third transistor;

    a fourth resistor (80) coupled between said collectors of said first and fourth transistors;

    a fifth resistor (78) coupled between said emitter of said fourth transistor and said second source of operating potential;

    first means (72, 76) coupled between said collector of said fourth transistor and said bases of said third and fourth transistors for providing base drive thereto;

    second means (56-68) coupled between said collector of said third transistor and said bases of said first and second transistors for maintaining the potential developed at said bases of said first and second transistors independent of the potential applied at said first source of operating potential; and

    third means (40-50) for starting the operation of the circuit.


     
    5. The voltage reference circuit of claim 4 wherein said first means includes:

    a fifth transistor (76) having a collector, a base and an emitter, said base being coupled to said collector of said fourth transistor, said collector being coupled to said first source of operating potential, said emitter being coupled to said bases of said third and fourth transistors; and

    a sixth transistor (72) having a collector, a base and an emitter, said base and collector being coupled together to said base of said third transistor, said emitter being coupled to said second source of operating potential.


     
    6. A method of developing an output voltage operating independent of temperature, comprising the steps of:

    supplying a first current having a predetermined temperature coefficient;

    passing said first current through a first transistor (20) and a first resistor (22), said first transistor having a temperature coefficient across the base-emitter junction thereof; and

    developing a potential across said first resistor having a temperature coefficient opposing said temperature coefficient across the base-emitter junction of said first transistor for substantially cancelling temperature induced variation in the output voltage.


     


    Ansprüche

    1. Spannungsreferenzschaltung, die eine Spannung an einem Ausgang bereitstellt, umfassend:

    eine Stromversorgungseinrichtung (12) mit einem Ausgang zum Liefern eines Stromes mit einem vorbestimmten Temperaturkoeffizienten;

    einen ersten Transistor (20) mit einem Kollektor, einer Basis und einem Emitter, wobei der Kollektor geschaltet ist, den Strom mit dem vorbestimmten Temperaturkoeffizienten von dem Ausgang der Stromversorgungseinrichtung zu empfangen, und die Basis mit dem Ausgang der Spannungsreferenzschaltung verbunden ist, wobei der erste Transistor über seinem Basis-Emitter-übergang einen Temperaturkoeffizienten aufweist;

    eine Schaltungseinrichtung (26), die zwischen den Kollektor und die Basis des ersten Transistors geschaltet ist, um einen Basisantrieb dafür zu liefern, und

    einen ersten Widerstand (22), der zwischen den Emitter des ersten Transistors und eine erste Betriebspotentialquelle geschaltet ist und den Strom mit dem vorbestimmten Temperaturkoeffizienten leitet, der über dem ersten Widerstand ein Potential mit einem Temperaturkoeffizienten entwickelt, der dem Temperaturkoeffizienten über dem Basis-Emitter-Übergang des ersten Transistors entgegengesetzt ist.


     
    2. Spannungsreferenzschaltung nach Anspruch 1, bei der die Schaltungseinrichtung einen zweiten Transistor (26) mit einem Kollektor, einer Basis und einem Emitter umfaßt, wobei die Basis mit dem Kollektor des ersten Transistors verbunden ist, der Emitter mit der Basis des ersten Transistors verbunden ist und der Kollektor mit einer zweiten Betriebspotentialquelle verbunden ist.
     
    3. Spannungsreferenzschaltung nach Anspruch 2, bei der die Stromversorgungseinrichtung umfaßt:

    eine dritte Einrichtung (40-84), die an einem Ausgang ein Referenzsignal bereitstellt;

    einen dritten Transistor (86) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis auf das Referenzsignal anspricht und der Kollektor mit dem Kollektor des ersten Transistors verbunden ist, und

    einen zweiten Widerstand (88) der zwischen den Emitter des dritten Transistors und die zweite Betriebspotentialquelle geschaltet ist.


     
    4. Spannungsreferenzschaltung nach Anspruch 1, bei dem die Stromversorgungseinrichtung (12) umfaßt:

    einen ersten Transistor (82) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis mit dem Ausgang der Stromversorgungseinrichtung (12) verbunden ist;

    einen ersten Widerstand (84), der zwischen den Emitter des ersten Transistors und eine erste Betriebspotentialquelle (27) geschaltet ist;

    einen zweiten Transistor (52) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis mit der Basis des ersten Transistors verbunden ist;

    einen zweiten Widerstand (54), der zwischen den Emitter des zweiten Transistors und die erste Betriebspotentialquelle geschaltet ist;

    einen dritten Transistor (66) mit einem Kollektor, einer Basis und einem Emitter, wobei der Emitter mit einer zweiten Betriebspotentialquelle (24) verbunden ist;

    einen dritten Widerstand (70), der zwischen die Kollektoren des zweiten und dritten Transistors geschaltet ist;

    einen vierten Transistor (74) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis mit der Basis des dritten Transistors verbunden ist;

    einen vierten Widerstand (80), der zwischen die Kollektoren des ersten und vierten Transistors geschaltet ist;

    einen fünften Widerstand (78), der zwischen den Emitter des vierten Transistors und die zweite Betriebspotentialquelle geschaltet ist;

    eine erste Einrichtung (72, 76). die zwischen den Kollektor des vierten Transistors und die Basen des dritten und vierten Transistors geschaltet ist und einen Basisantrieb dafür liefert;

    eine zweite Einrichtung (56-68), die zwischen den Kollektor des dritten Transistors und die Basen des ersten und zweiten Transistors geschaltet ist und das an den Basen des ersten und zweiten Transistors hervorgebrachte Potential unabhängig von dem an die erste Betriebspotentialquelle angelegten Potential aufrechterhält, und

    eine dritte Einrichtung (40-50), die den Betrieb der Schaltung startet.


     
    5. Spannungsreferenzschaltung nach Anspruch 4, bei der die erste Einrichtung umfaßt:

    einen fünften Transistor (76) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis mit dem Kollektor des vierten Transistors verbunden ist, der Kollektor mit der ersten Betriebspotentialquelle verbunden ist und der Emitter mit den Basen des dritten und vierten Transistors verbunden ist, und

    einen sechsten Transistor (72) mit einem Kollektor, einer Basis und einem Emitter, wobei die Basis und der Kollektor zusammen mit der Basis des dritten Transistors verbunden sind und der Emitter mit der zweiten Betriebspotentialquelle verbunden ist.


     
    6. Verfahren zum Hervorbringen einer Ausgangsspannung, die unabhängig von der Temperatur arbeitet, wobei das Verfahren die Schritte umfaßt:

    Liefern eines ersten Stromes mit einem vorbestimmtem Temperaturkoeffizienten;

    Führen des ersten Stromes durch einen ersten Transistor (20) und einen ersten Widerstand (22), wobei der erste Transistor über seinem Basis-Emitter-Übergang einen Temperaturkoeffizienten aufweist, und

    Hervorbringen eines Potentials über dem ersten Widerstand mit einem Temperaturkoeffizienten, der dem Temperaturkoeffizienten über dem Basis-Emitter-Übergang des ersten Transistors entgegengesetzt ist, um die temperaturbewirkte Änderung in der Ausgangsspannung im wesentlichen aufzuheben.


     


    Revendications

    1. Circuit de référence de tension pour fournir une tension sur une sortie, comprenant :

    un moyen de fourniture de courant (12) comprenant une sortie pour fournir un courant ayant un coefficient de température prédéterminé ;

    un premier transistor (20) ayant un collecteur, une base et un émetteur, ledit collecteur étant couplé pour recevoir ledit courant ayant ledit coefficient de température prédéterminé à partir de ladite sortie dudit moyen de fourniture de courant, ladite base étant couplée à la sortie du circuit de référence de tension, ledit premier transistor ayant un coefficient de température a travers la jonction base-émetteur de celui-ci ;

    un moyen de circuit (26) couplé entre ledit collecteur et la base dudit premier transistor pour fournir une commande de base à celui-ci ; et

    une première résistance (22) couplée entre ledit émetteur dudit premier transistor et une première source d'un potentiel de fonctionnement pour conduire ledit courant ayant ledit coefficient de température prédéterminé qui développe un potentiel à travers ladite première résistance avec un coefficient de température opposé audit coefficient de température à travers la jonction base-émetteur dudit premier transistor.


     
    2. Circuit de référence de tension selon la revendication 1, dans lequel ledit moyen de circuit comprend un second transistor (26) ayant un collecteur, une base et un émetteur, ladite base étant couplée audit collecteur dudit premier transistor, ledit émetteur étant couplé à ladite base dudit premier transistor, ledit collecteur étant couplé à une seconde source de potentiel de fonctionnement.
     
    3. Circuit de référence de tension selon la revendication 2, dans lequel ledit moyen de fourniture de courant comprend :

    un troisième moyen (40-84) pour fournir un signal de référence sur une sortie ;

    un troisième transistor (86) ayant un collecteur, une base et un émetteur, ladite base étant sensible audit signal de référence, ledit collecteur étant couplé audit collecteur dudit premier transistor ; et

    une seconde résistance (88) couplée entre ledit émetteur dudit troisième transistor et ledit second potentiel de source de fonctionnement.


     
    4. Circuit de référence de tension selon la revendication 1, dans lequel le moyen de fourniture de courant (12) comprend :

    un premier transistor (82) ayant un collecteur, une base et un émetteur, ladite base étant couplée à la sortie dudit moyen de fourniture de courant (12) ;

    une première résistance (84) couplée entre ledit émetteur dudit premier transistor et une première source de potentiel de fonctionnement (27) ;

    un second transistor (52) ayant un collecteur, une base et un émetteur, ladite base étant couplée à ladite base dudit premier transistor ;

    une seconde résistance (54) couplée entre ledit émetteur dudit second transistor et ladite première source de potentiel de fonctionnement ;

    un troisième transistor (66) ayant un collecteur, une base et un émetteur, ledit émetteur étant couplé à une seconde source de potentiel de fonctionnement (24) ;

    une troisième résistance (70) couplée entre lesdits collecteurs desdits second et troisième transistors ;

    un quatrième transistor (74) ayant un collecteur, une base et un émetteur, ladite base étant couplée à ladite base dudit troisième transistor ;

    une quatrième résistance (80) couplée entre lesdits collecteurs desdits premier et quatrième transistors ;

    une cinquième résistance (78) couplée entre ledit émetteur dudit quatrième transistor et ladite seconde source de potentiel de fonctionnement ;

    un premier moyen (72, 76) couplé entre ledit collecteur dudit quatrième transistor et lesdites bases desdites troisième et quatrième transistors pour fournir une commande de base à celui-ci ;

    un second moyen (56-68) couplé entre ledit collecteur dudit troisième transistor et lesdites bases desdits premier et second transistors pour maintenir le potentiel développé sur lesdites bases desdits premier et second transistors indépendant du potentiel appliqué à ladite première source de potentiel de fonctionnement ; et

    un troisième moyen (40-50) pour commencer le fonctionnement du circuit.


     
    5. Circuit de référence de tension selon la revendication 4, dans lequel ledit premier moyen comprend :

    un cinquième transistor (76) ayant un collecteur, une base et un émetteur, ladite base étant couplée audit collecteur dudit quatrième transistor, ledit collecteur étant couplé à ladite première source de potentiel de fonctionnement, ledit émetteur étant couplé auxdites bases desdits troisième et quatrième transistors ; et

    un sixième transistor (72) ayant un collecteur, une base et un émetteur, ladite base et ledit collecteur étant couplés ensemble à ladite base dudit troisième transistor, ledit émetteur étant couplé à ladite seconde source de potentiel de fonctionnement.


     
    6. Procédé de développement d'une tension de sortie fonctionnant indépendamment de la température, comprenant les étapes de :

    fourniture d'un premier courant ayant un coefficient de température prédéterminé ;

    passage dudit premier courant à travers un premier transistor (20) et une première résistance (22), ledit premier transistor ayant un coefficient de température à travers la jonction base-émetteur de celui-ci ; et

    développement d'un potentiel à travers ladite première résistance ayant un coefficient de température opposé audit coefficient de température à travers la jonction base-émetteur dudit premier transistor pour annuler substantiellement une variation induite par la température dans la tension série.


     




    Drawing