(19)
(11) EP 0 747 590 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
11.12.1996  Patentblatt  1996/50

(21) Anmeldenummer: 96106870.7

(22) Anmeldetag:  02.05.1996
(51) Internationale Patentklassifikation (IPC)6F02D 41/14, F02D 41/26, F02D 37/02
(84) Benannte Vertragsstaaten:
DE FR GB IT

(30) Priorität: 06.06.1995 DE 19520605

(71) Anmelder: Daimler-Benz Aktiengesellschaft
70546 Stuttgart (DE)

(72) Erfinder:
  • Reckzügel, Christoph
    70372 Stuttgart (DE)
  • Hemberger, Hans-Hubert
    73733 Esslingen (DE)
  • Stiltz, Winfried
    71384 Weinstadt (DE)

   


(54) Verfahren und Einrichtung zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor


(57) 

2.1. Die Erfindung bezieht sich auf ein Verfahren und eine Einrichtung zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor, bei dem die Stellgrößen, welche die Verbrennung festlegen, für einen jeweils nachfolgenden Arbeitszyklus durch eine Regeleinrichtung in Abhängigkeit vom erfaßten Verbrennungsverlauf eines vorangegangenen Arbeitszyklus festgelegt werden.

2.2. Es wird vorgeschlagen, die Soll-Durchbrennfunktion für einen jeweiligen Arbeitszyklus mit Hilfe von in einem vorangegangenen Arbeitszyklus erfaßten Werten zugehöriger Einflußfaktoren im voraus zu berechnen, die Ist-Durchbrennfunktion des jeweiligen Arbeitszyklus in Echtzeit zu ermitteln und die Soll- mit der Ist-Durchbrennfunktion zu vergleichen und daraus aktualisierte Werte für die Durchbrennfunktion-Einflußfaktoren zu gewinnen, um diese der Bestimmung der Stellgrößenwerte für einen nachfolgenden Arbeitszyklus zugrundezulegen. Diese thermodynamische Analyse der Brennfunktion erlaubt eine optimale Stellgrößenanpassung, die besonders auch im Instationärbetrieb zu einem sehr zufriedenstellenden Regelungsverhalten führt.

2.3. Verwendung z. B. in Kraftfahrzeugen.






Beschreibung


[0001] Die Erfindung bezieht sich auf ein Verfahren zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor sowie auf eine zur Durchführung eines solchen Verfahrens geeignete Regeleinrichtung. Bei herkömmlichen Motorverbrennungssteuerungen ist es bekannt, eine Vorsteuerung mittels logischer Abfrage in einer Vielzahl von Kennlinien und Kennfeldern zur Bereitstellung der Motorstellgrößen, wie Zündzeitpunkt, Einspritzbeginn, Einspritzende und Drosselklappenwinkel, vorzunehmen. Durch Erfassung der Motorparameter, wie Luftmasse, Motortemperatur, Drehzahl usw., werden diese Stellgrößen während der Ladungswechselphase errechnet. Mit Ausnahme der bekannten Klopfregelung und der Lambda-Regelung erfolgt kein Abgleich mit dem wirklichen Verbrennungsablauf, der erst in der Hochdruckphase einsetzt. Bei der Lambda-Regelung wird dabei nicht der Verbrennungsablauf ausgewertet, sondern das Abgas analysiert.

[0002] Spezieller ist es zur Regelung des Verbrennungsablaufs von Ottomotoren bekannt, die Motorstellgrößenwerte für einen jeweils nachfolgenden Arbeitszyklus durch eine Regeleinrichtung in Abhängigkeit vom anhand entsprechender Istzustandsgrößen erfaßten Verbrennungsverlauf eines vorangangenen Arbeitszyklus unter Benutzung von abgelegten Kennfeldern festzulegen. Herkömmlicherweise dienen dabei die erfaßten Momentanwerte von einer oder mehreren, für den Verbrennungsablauf repräsentativen Meßgrößen direkt als Rückführgrößen, die in der Regeleinheit mit anhand von Kennfeldern abgespeicherten Sollwerten verglichen werden, wonach aus der solchermaßen bestimmten Regelabweichung die Stellglieder für den nächsten Arbeitszyklus im Sinne einer Verkleinerung der Regelabweichung angesteuert werden. So wird beispielsweise in der Offenlegungsschrift DE 31 28 245 A1 ein Verfahren zur Steuerung des Verbrennungsablaufs in Brennkraftmaschinen beschrieben, bei dem der Brennraumdruckverlauf erfaßt und mit einer abgelegten Kennlinie verglichen wird. Festgestellte Regelabweichungen werden dann durch Eingriff in die Gemischbildung und/oder die Zündanlage der Brennkraftmaschine ausgeregelt. Dabei ist es bekannt, zur zylinderspezifischen Motorsteuerung Kennfelder individuell für die einzelnen Zylinder abzuspeichern, siehe die Offenlegungsschrift DE 42 28 053 A1.

[0003] Bei einer in der Patentschrift US 5.200.898 gezeigten Regeleinrichtung für einen Verbrennungsmotor ist ein neuronales Netzwerk vorgesehen, dem periodisch Informationen über den aktuellen Drosselklappenwinkel und dessen Änderungsrate zugeführt werden. Das neuronale Netzwerk nimmt eine Vorausberechnung für den Drosselklappenöffnungswinkel vor, und diese Information wird von der Regeleinrichtung unter anderem für die Ansteuerung einer Kraftstoffeinspritzeinheit verwendet.

[0004] Bei einem in der Offenlegungsschrift EP 0 114 490 A2 offenbarten Zündsystem für einen Verbrennungsmotor wird ein für die Kraftstoffbeladung des Arbeitsraumes repräsentativer Parameter jeweils vor der Zündungsauslösung gemessen, um die Verbrennungscharakteristik für diesen Arbeitstakt und den geeigneten Zündzeitpunkt im Hinblick auf eine Reduzierung der Schwankungen im erzeugten Motordrehmoment von Arbeitstakt zu Arbeitstakt vorauszuschätzen.

[0005] Aus der Offenlegungsschrift JP 5-163996 (A) ist eine Motorregelung bekannt, bei der das Motordrehmoment durch entsprechende Einstellung der Lufteinlaßmenge und des Zündzeitpunktes auf einen gewünschten wert geregelt wird.

[0006] In der Patentschrift US 4.987.888 ist eine Verbrennungsregelung beschrieben, bei der verbrennungsrelevante Istzustandsgrößen erfaßt und in Abhängigkeit davon die Betriebsbedingungen in einem späteren Zustand vorausgeschätzt werden. Insbesondere ist die Vorausschätzung der Lufteinlaßmenge für einen nachfolgenden Arbeitszyklus vorgesehen. Anhand der vorausgeschätzen Betriebsbedingungen werden dann die verbrennungsrelevanten Stellgrößenwerte bestimmt.

[0007] Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens und einer Einrichtung zugrunde, mit denen eine vergleichsweise genaue, die Thermodynamik des Verbrennungsvorgangs möglichst weitgehend berücksichtigende Regelung des Verbrennungsablaufs in einem Otto-Verbrennungsmotor erreicht wird.

[0008] Dieses Problem wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Einrichtung mit den Merkmalen des Anspruchs 4 gelöst. Verfahrensgemäß werden zur Bestimmung der Stellgrößenwerte für einen nachfolgenden Arbeitszyklus aktualisierte Werte der Einflußfaktoren auf die sogenannte Durchbrennfunktion, d.h. des Integrals der Brennverlaufskurve über die Zeit bzw. über den Kurbelwinkel, zugrundegelegt. Diese aktualisierten Einflußfaktorwerte werden aus einem Vergleich einer während der Ladungswechselphase eines Arbeitszyklus vorausberechneten Soll- mit einer in Echtzeit während der Hochdruckphase eines Arbeitszyklus ermittelten Ist-Durchbrennfunktion gewonnen. Die Soll-Durchbrennfunktion für einen jeweiligen Arbeitszyklus wird dabei mit Hilfe von für den Motor-Istzustand eines vorangegangenen Arbeitszyklus repräsentativen, erfaßten bzw. abgeleiteten Werten der Durchbrennfunktion-Einflußfaktoren vorausberechnet. Bei einem Motor mit mehreren Zylindern erfolgt dies vorzugsweise zylinderindividuell. Da die Durchbrennfunktion die Thermodynamik des Verbrennungsvorgangs genauer wiedergibt als einzelne Meßgrößen, wird eine im Vergleich zu Motorregelungen, die auf der Beobachtung lediglich einzelner solcher Meßgrößen beruhen, sehr viel genauere Regelung des Verbrennungsablaufs erzielt. Zu beeinflussende Stellgrößen für den jeweils nächsten Arbeitszyklus können insbesondere der Einspritzbeginn, das Einspritzende, der Zündzeitpunkt und der Drosselklappenwinkel sein. Zur Istzustandsbestimmung können insbesondere die Motorparameter Luftmasse, Temperatur und Drehzahl sowie als weitere Meßgrößen der Restgasgehalt und der Lambdawert herangezogen werden. Mit dieser Vorgehensweise wird die tatsächliche Kraftstoffumsetzung in Wärmeenergie beobachtet und kann unter Berücksichtigung der vorgegebenen Randbedingungen, wie Fahrerwunsch und Betriebsanforderungen, geregelt werden. Mit dem Verfahren kann auf die Größe der zyklischen Schwankung im momentanen Arbeitspunkt geschlossen und diese in die Regelungsstrategie eingearbeitet werden. Besonders das Übergangsverhalten der Motorregelung im Instationärbetrieb wird durch dieses Verfahren gegenüber herkömmlichen Regelungen deutlich verbessert. Bei dieser Art der Verbrennungsregelung entfallen zudem eine Vielzahl von Kennlinien und Kennfeldern, wie sie bei herkömmlichen Motorregelungen erforderlich sind. Die zylinderindividuelle Regelung ermöglicht die Optimierung jedes einzelnen Zylinders unter Beachtung des Zylindergleichlaufs. Durch die Echtzeitbestimmung der Ist-Durchbrennfunktion kann ein separater Klopfsensor entfallen. Serienstreungen, Fertigungstoleranzen, Zündungs- und Entflammungsunterschiede, Alterungserscheinungen sowie Auswirkungen von Brennraumablagerungen können in der Regelung selbst berücksichtigt werden, ohne daß resultierende Sicherheitszuschläge, z.B. eine Zündzeitpunktverschiebung nach spät, erforderlich sind. Eine durch Anspruch 4 charakterisierte Regeleinrichtung eignet sich zur Durchführung dieses Verfahrens.

[0009] In Weiterbildung der Erfindung nach Anspruch 2 wird eine kennfeldbasierte Bestimmung der Verbrennungsschwerpunktlage anhand des Motor-Istzustands und der Ist-Durchbrennfunktion und zur stationären Motorregelung verwendet. Die verfahrensdurchführende Regeleinrichtung kann hierzu gemäß Anspruch 5 eine entsprechende Einheit zur Bestimmung der Verbrennungsschwerpunktlage aufweisen.

[0010] In einer Weiterbildung der Erfindung nach Anspruch 3 ist dieser Stationärregelung eine Instationärregelung überlagert, für die eingangsseitig neben dem Stationärreglerausgangssignal die Information über den momentanen Betriebspunkt und/oder über die momentane Motorleistung oder den Motorverbrauch berücksichtigt werden. Diese Art der Regelung kann durch eine in Anspruch 6 charakterisierte Regeleinrichtung durchgeführt werden.

[0011] In Weiterbildung der Erfindung nach Anspruch 7 erfolgt die Bestimmung der Ist-Durchbrennfunktion mittels eines neuronalen Netzwerks. Dies ermöglicht deren problemlose Bestimmung in Echtzeit, wozu die Generalisierungs- und Lernfähigkeit des Netzes sowie dessen Selbstorganisationsfunktion zur selbständigen Herstellung einer Beziehung eines zu klassifizierenden Eingangssignals zu einem gewollten Ausgangssignal genutzt werden kann. Durch Verwendung derartiger künstlicher Intelligenz entfällt die Notwendigkeit, die für die Durchbrennfunktion charakteristischen thermodynamischen Gleichungen in aufwendiger Weise mittels eines Rechners in Echtzeit lösen und über dem Kurbelwinkel iterieren zu müssen.

[0012] Eine bevorzugte Ausführungsform der Erfindung ist in der Zeichnung dargestellt und wird nachfolgend beschrieben.

[0013] Die einzige Figur zeigt ein Blockdiagramm einer Verbrennungsregelung für einen Otto-Verbrennungsmotor.

[0014] Die Regeleinrichtung mit dem gezeigten Aufbau überwacht den Istzustand des Verbrennungsablaufs an dem zu regelnden Motor (1) mittels einer Istzustandserfassungseinheit (2), welche die für den Verbrennungsvorgang relevanten Meßgrößen erfaßt und die übrigen relevanten Motorparameter errechnet. Dies sind insbesondere die Motordrehzahl, die Anfangstemperatur und der Anfangsdruck eines Arbeitszyklus sowie der Restgasgehalt und der Lambdawert. Mittels dieser erfaßten Größen ist es einer nachgeschalteten Einheit (3) möglich, die Soll-Durchbrennfunktion in der Ladungswechselphase des jeweiligen Arbeitszyklus vorauszuberechnen. Die Durchbrennfunktion ergibt sich bekanntermaßen als Integral des Brennverlaufs über der Zeit bzw. über dem Kurbelwinkel. Für die Vorausberechnung der Durchbrennfunktion werden Einflußfaktorgleichungen zugrundegelegt, welche die Einflüsse der einzelnen Betriebsparameter in ihrer Wirkung auf das Verhalten des Motors voneinander getrennt beschreiben. Um also zu ermitteln, wie die Durchbrennfunktion auf Änderungen der Betriebsparameter reagiert, wird vorab der Motortyp in geeigneten Betriebspunkten indiziert und es werden systematische Meßreihen gefahren, bis die Einflußfaktorgleichungen mit ausreichender Sicherheit bestimmt sind. Die Vorausberechnung stützt sich auf geeignete Referenzpunkte, von denen mehrere über den gesamten Betriebsbereich vorgesehen sind. Parallel dazu ist ein neuronales Netzwerk (4) vorgesehen, dem eingangsseitig eine oder mehrere, für den Verbrennungsverlauf repräsentative, erfaßte Größen, beispielsweise der Verlauf des Brennraumdrucks in Abhängigkeit vom Kurbelwinkel und/oder der Lambdawert und die Abgastemperatur, zugeführt werden und das hieraus in der Hochdruckphase des jeweiligen Arbeitszyklus die zugehörige Ist-Durchbrennfunktion in Echtzeit ermittelt. Durch die Verwendung einer solchen Stufe mit künstlicher Intelligenz ist es möglich, die Ist-Durchbrennfunktion problemlos in Echtzeit zu ermitteln, ohne eine sehr rechenintensive Lösung der zugrundeliegenden thermodynamischen Gleichungen und eine Iteration über den Kurbelwinkel vornehmen zu müssen. Aus der ermittelten Durchbrennfunktion lassen sich bekanntlich die brennverlaufrelevanten Größen, wie Brenndauer, scheinbarer Zündverzug, Restgasgehalt und innerer Mitteldruck ableiten. Daneben ist gleichzeitig eine Klopferkennung möglich, was einen separaten Klopfsensor überflüssig macht.

[0015] Einer anschließenden Vergleichsstufe (5) werden die Daten der vorausberechneten Soll-Durchbrennfunktion und der ermittelten Ist-Durchbrennfunktion zugeführt, woraufhin diese Einheit (5) einen Soll-Istwertvergleich der Durchbrennfunktionen vornimmt. In Umkehrung des für die Vorausberechnung der Durchbrennfunktion verwendeten funktionalen Zusammenhangs ermittelt sie dann aktuelle Werte der die Durchbrennfunktion bestimmenden Einflußfaktoren, wie Zündzeitpunkt, Lambdawert, Anfangstemperatur und Anfangsdruck, Restgasgehalt und Drehzahl, in Abhängigkeit der maßgeblichen Durchbrennfunktionsparameter, wie Brenndauer, scheinbarer Zündverzug und Formparameter, d.h. Steigungsanpassung der Durchbrennfunktionskurve, dergestalt, daß diese Werte zu der vom neuronalen Netzwerk (4) in Echtzeit bestimmten Ist-Durchbrennfunktion passen.

[0016] Diese Information über die optimalen, momentanen Einflußfaktorwerte wird einem nachgeschalteten Stationärregler (6) zugeführt, der damit für die Bereitstellung optimierter Stellgrößen, d.h. Zündzeitpunkt (ZZP), Einspritzbeginn (ti), Einspritzende (ta) und Drosselklappenwinkel (DK), sorgt, wobei er für die Zündzeitpunktbestimmnung den scheinbaren Zündverzug sowie die Verbrennungsschwerpunktlage und für den Lambdawert den scheinbaren Zündverzug, die Brenndauer und den Formparameter der Durchbrennfunktion als Regelungskriterien benutzt. Die Kenntnis der Verbrennungsschwerpunktlage wird ihm von einer vorgeschalteten Einheit (6) geliefert, in der ein diesbezügliches Kennfeld abgelegt ist und der eingangsseitig die Ist-Durchbrennfunktion vom neuronalen Netzwerk (4) sowie die aktuellen Meßgrößen und Motorparameter der Istzustandserfassungseinheit (2) zugeführt sind.

[0017] Das Ausgangssignal des Stationärreglers (6) wird einem nachfolgenden Instationärregler (9) zugeführt, der als Fuzzy-Regler oder als konventioneller PI(D)-Regler ausgeführt ist. Als weitere Eingangsinformationen dienen die aktuelle Leistung und der aktuelle Verbrauch im jeweiligen Arbeitszyklus, wie sie von einer vorgeschalteten Einheit (7) aus der Ist-Durchbrennfunktion des neuronalen Netzes (4) und den Motor-Istzustandsdaten der Istzustandserfassungseinheit (2) ermittelt werden. Mit den gleichen Eingangsinformationen ermittelt eine dazu parallele Einheit (8), in der ein Betriebspunkt-Kennfeld abgelegt ist, die Gewichtsfaktoren für die Art der fahrergewünschten Motorregelung, d.h. für den jeweiligen Betriebspunkt hinsichtlich Leistung, Verbrauch und Emission. Dabei wird der Fahrerwunsch über die Drosselklappenänderung sowie durch Beobachten vergangener Arbeitzyklen und eventueller Vorhersage des künftigen Arbeitszyklus erfaßt. Unter Einbeziehung auch dieser Informationen korrigiert der Instationärregler (9) gegebenenfalls das Ausgangssignal des Stationärreglers durch Berücksichtigung des Fahrwunsches und der jeweiligen Betriebspunktanforderungen, wobei das gesamte, oben beschriebene Regelungsgeschehen unter Beachtung des Zylindergleichlaufs für jeden Zylinder individuell abläuft. In einer ausgangsseitigen Einheit (10) wird das Ausgangssignal des Instationärreglers (9) in entsprechende Motor-Aktorstellgrößenwerte umgewandelt, die dem Motor (1) für einen jeweils nachfolgenden Arbeitszyklus zur Verfügung gestellt werden.

[0018] Das beschriebene Regelungskonzept ermöglicht eine kontrollierte Mehrgrößenregelung, bei der Betriebspunktänderungen einer entsprechenden Stellgrößenänderung zugeordnet werden. Es wird die tatsächliche Kraftstoffumsetzung in Wärmeenergie verfolgt und entsprechend den vorgegebenen Randbedingungen, wie Fahrerwunsch und Betriebspunktanforderungen, geregelt, was eine optimale Stellgrößenanpassung realisiert. Durch die Verwendung eines neuronalen Netzes zur Ermittlung der Ist-Durchbrennfunktion und/oder eines Fuzzy-Reglers als Instationärregler wird die Echtzeitanwendung dieser Regelung erleichtert. Eine auf entsprechenden Fahrerwunsch zurückgehende Betriebspunktänderung wird an die Anforderungen hinsichtlich Leistungswunsch, Verbrauch, Emmission, Laufruhe und Geräusch problemlos angepaßt, und die Stellgrößenoptimierung erfolgt individuell für jeden Zylinder durch thermodynamische Analyse und Auswertung der aus einer brennverlaufsbestimmenden Größe, wie dem Brennraumdruckverlauf, mittels des neuronalen Netzes gewonnenen Ist-Durchbrennfunktion und der vorausberechneten Soll-Durchbrennfunktion.

[0019] Es versteht sich, daß die in der Figur einzeln dargestellten Regelungseinheiten keine separaten Bauteile zu sein brauchen, sondern vielmehr als einzelne Funktionseinheiten zur Veranschaulichung des Regelungsablaufs anzusehen sind, die in geeigneter Weise zu jeweiligen Regelungs-Hardwarekomponenten zusammengefaßt sein können.


Ansprüche

1. Verfahren zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor, bei dem

- die den Verbrennungsverlauf bestimmenden Stellgrößen (ZZP, ti, ta, DK) für einen jeweils nachfolgenden Arbeitszyklus durch eine Regeleinrichtung in Abhängigkeit vom erfaßten Verbrennungsverlauf eines vorangegangenen Arbeitszyklus festgelegt werden,
dadurch gekennzeichnet, daß

- eine Soll-Durchbrennfunktion für einen jeweiligen Arbeitszyklus während dessen Ladungswechselphase mit Hilfe von erfaßten Istwerten von Durchbrennfunktions-Einflußfaktoren eines vorangegangenen Arbeitszyklus vorausberechnet wird,

- die Ist-Durchbrennfunktion während der Hochdruckphase des jeweiligen Arbeitszyklus in Echtzeit ermittelt wird und

- die vorausberechnete Soll- mit der Ist-Durchbrennfunktion verglichen und daraus aktualisierte Werte für die Durchbrennfunktions-Einflußfaktoren gewonnen werden, die der verbrennungsregelnden Bestimmung von Stellgrößenwerten (ZZP, ti, ta, DK) für einen nachfolgenden Arbeitszyklus zugrundegelegt werden.


 
2. Verfahren nach Anspruch 1, weiter
dadurch gekennzeichnet, daß
die aktualisierten Werte für die Durchbrennfunktions-Einflußfaktoren zusammen mit der für den jeweiligen Arbeitszyklus anhand eines Kennfeldes ermittelten Verbrennungsschwerpunktlage zur Bestimmung von stationärbetriebsgeregelten Stellgrößenwerten (ZZP, ti, ta, DK) herangezogen werden.
 
3. Verfahren nach Anspruch 2, weiter
dadurch gekennzeichnet, daß
die stationärbetriebsgeregelten Stellgrößenwerte unter Berücksichtigung des momentanen Betriebspunktes und/oder der ermittelten momentanen Motorleistung und/oder dem ermittelten momentanen Verbrauch geregelt in Instationärbetrieb-Stellgrößenwerte überführt werden.
 
4. Einrichtung zur Regelung des Verbrennungsablaufs bei einem Otto-Verbrennungsmotor, mit

- einer Einheit (2) zur Erfassung von Motor-Istzustandsgrößen und

- einer Reglereinheit, (6, 9), deren Ausgangssignal die Einstellung der Motorstellglieder bestimmt,

gekennzeichnet durch
folgende weitere Elemente zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3:

- eine der die Motor-Istzustandsgrößen bestimmenden Einheit (2) nachgeschaltete Einheit (3) zur Vorausberechnung der Soll-Durchbrennfunktion während einer Arbeitszyklus-Ladungswechselphase,

- eine Einheit (4) zur Ermittlung der Ist-Durchbrennfunktion während einer Arbeitszyklus-Hochdruckphase und

- eine der Reglereinheit (6, 9) vorgeschaltete Einheit (5) zur Ermittlung der zur jeweils ermittelten Ist-Durchbrennfunktion gehörigen Einflußfaktorwerte durch Vergleich der vorausberechneten Soll-Durchbrennfunktion mit der ermittelten Ist-Durchbrennfunktion.


 
5. Regeleinrichtung nach Anspruch 4, weiter
gekennzeichnet durch
einer der Reglereinheit (6, 9) parallel zu der die Einflußfaktorwerte ermittelnden Einheit (5) vorgeschaltete Einheit (6) zur kennfeldbasierten Bestimmung der Verbrennungsschwerpunktlage anhand der ermittelten Ist-Durchbrennfunktion und der erfaßten Motor-Istzustandsgrößen.
 
6. Regeleinrichtung nach Anspruch 4 oder 5, weiter
dadurch gekennzeichnet, daß
die Reglereinheit aus einem vorgeordneten Stationärregler (6) und einem nachgeordneten Instätionärregler (9) besteht, wobei letzterem parallel zum Stationärregler eine Einheit (7) zur aktuellen Leistungs- und Verbrauchsberechnung und/oder eine Einheit (8) zur kennfeldbasierten Betriebspunktermittlung vorgeschaltet sind, denen jeweils die Ausgangssignale der Einheit (4) zur Ermittlung der Ist-Durchbrennfunktion und der Einheit (2) zur Erfassung der Istzustandsgrößen zugeführt sind.
 
7. Regeleinrichtung nach einem der Ansprüche 4 bis 6, weiter
dadurch gekennzeichnet, daß
die Einheit zur Ermittlung der Ist-Durchbrennfunktion aus einem neuronalen Netzwerk (4) besteht.
 




Zeichnung