(19)
(11) EP 0 758 733 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.02.1997  Patentblatt  1997/08

(21) Anmeldenummer: 96112620.8

(22) Anmeldetag:  05.08.1996
(51) Internationale Patentklassifikation (IPC)6F25J 3/04
(84) Benannte Vertragsstaaten:
DE DK FR GB NL

(30) Priorität: 11.08.1995 DE 19529681

(71) Anmelder: Linde Aktiengesellschaft
65189 Wiesbaden (DE)

(72) Erfinder:
  • Attlfellner, Helmut, Dipl.-Ing.
    Bayville, NY 11709 (US)

(74) Vertreter: Imhof, Dietmar et al
Linde AG Zentrale Patentabteilung Dr.-Carl-von-Linde-Strasse 6-14
82049 Höllriegelskreuth
82049 Höllriegelskreuth (DE)

   


(54) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation


(57) Bei dem Verfahren und der Vorrichtung wird ein Luftstrom verdichtet und einesteils (4) als Einsatzluftstrom für ein Luftrektifikation (16) und anderenteils (5) als Oxidationsmittel in einer chemischen Reaktion (6) verwendet. Abgas aus der chemischen Reaktion wird arbeitsleistend entspannt. Der erste Teilstrom (4) wird in eine der Rektifiziersäulen (17, 18) eingeführt. Aus einer (18) der Säulen wird ein Flüssigproduktstrom entnommen, auf Druck gebracht (28) und gegen einen nachverdichteten (31, 33) Prozeßstrom (15) der Tieftemperaturrektifikation verdampft. Mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (9) des Abgases der chemischen Reaktion (6) erzeugt wird, wird zur Nachverdichtung (31, 33) des Prozeßstroms verwendet.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation in einem Rektifiziersäulensystem, das mindestens eine Rektifiziersäule aufweist, mit den im Patentanspruch 1 aufgeführten Schritten (a) bis (h).

[0002] Derartige Verfahren integrieren die destillative Luftzerlegung und einen Prozeß, in der Druckluft und gegebenenfalls Luftgase verbraucht werden, indem die Einsatzluft für den Luftzerleger und die in dem chemischen Prozeß benötigte Luft gemeinsam verdichtet werden. Die durch arbeitsleistende Entspannung von Abgasen aus der chemischen Reaktion erzeugte mechanische Energie wird häufig zur Gewinnung elektrischer Energie eingesetzt. Gegebenenfalls kann mechanische Energie auch unmittelbar zur Luftverdichtung verwendet werden. Bei der chemischen Reaktion kann es sich beispielsweise um eine Kohlevergasung oder um eine Verbrennung handeln.

[0003] Bei dem Verfahren wird eines der Produkte flüssig aus der Rektifikation entnommen, im flüssigen Zustand auf Druck gebracht und anschließend gegen einen entsprechend verdichteten Prozeßstrom verdampft, wobei letzterer mindestens teilweise kondensiert. Mit Hilfe dieser Innenverdichtung ist es möglich, ein gasförmiges Produkt, wie es häufig für einen chemischen Prozeß benötigt wird, mit relativ geringem apparativem Aufwand herzustellen.

[0004] Ein Verfahren der eingangs genannten Art ist aus der EP-A-0 584 419 bekannt. Hier wird ein Teil der verdichteten Luft einer Brennkammer zugeführt, der Rest dient als Einsatzluft für die Luftzerlegung. Flüssigsauerstoff wird aus der Niederdruckstufe einer Doppelrektifiziersäule entnommen, mit Hilfe einer Pumpe auf Druck gebracht und gegen nachverdichtete Luft verdampft.

[0005] Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung so auszugestalten, daß der Prozeß energetisch besonders günstig gefahren werden kann.

[0006] Diese Aufgabe wird dadurch gelöst, daß mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung des Abgases der chemischen Reaktion erzeugt wird, zur Nachverdichtung des Prozeßstroms verwendet wird, der zur Verdampfung des Flüssigproduktstroms durch indirekten Wärmeaustausch dient.

[0007] Es braucht damit keine externe Energie für die Nachverdichtung des Prozeßstroms eingesetzt zu werden. Durch einfache mechanische Kopplung der Entspannungsmaschine für Abgas (in der Regel einer Gasturbine) mit einem Kompressor zur Nachverdichtung über eine gemeinsame Welle kann die bei der Entspannung geleistete Arbeit auf den Verdichter übertragen werden. Möglicherweise überschüssige mechanische Energie kann beispielsweise von einem Bremsgebläse aufgenommen werden, günstiger ist jedoch die Umwandlung in elektrische Energie durch Ankopplung eines Generators an die gemeinsame Welle.

[0008] Zusätzlich kann ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung des Abgases der chemischen Reaktion erzeugt wird, auf andere Verdichter übertragen, insbesondere zur gemeinsamen Verdichtung des Luftstroms verwendet werden. Ein Generator/Elektromotor dient zum Ausgleich eines eventuellen Überschusses/Defizits an mechanischer Energie zum Antrieb der zwei oder mehr Verdichter.

[0009] Der Prozeßstrom zur Verdampfung des Flüssigprodukts kann durch einen Teil des ersten Teilstroms der verdichteten Luft oder durch einen Stickstoff-Produktstrom aus der oder einer der Rektifiziersäulen gebildet werden. Im ersten Fall wird vorzugsweise ein Teil der auf mindestens Rektifizierdruck verdichteten Einsatzluft nachverdichtet, gegen das verdampfende Flüssigprodukt teilweise oder vollständig kondensiert und anschließend in die oder eine der Rektifiziersäulen eingespeist. Im zweiten Fall wird gasförmiger Stickstoff beispielsweise aus der Drucksäule einer Doppelrektifiziersäule entnommen, nachverdichtet, mindestens teilweise kondensiert und als Rücklauf auf eine der Rektifiziersäulen aufgegeben und/oder als Flüssigprodukt abgezogen.

[0010] Es ist ferner günstig, wenn ein Teil des nachverdichteten Prozeßstroms, der nicht in indirekten Wärmeaustausch mit dem verdampfenden Flüssigproduktstrom gebracht wird, arbeitsleistend entspannt wird. Damit können die Verdampfung des innenverdichteten Produkts und ein Kältekreislauf, der beispielsweise mit Luft oder Stickstoff betrieben wird, integriert werden.

[0011] Im Kältekreislauf erzeugte Arbeit kann zur Nachverdichtung des Prozeßstroms verwendet werden, beispielsweise über einen zweiten Verdichter, der mechanisch mit der Entspannungsmaschine für den Prozeßstrom gekoppelt ist. Dieser zweite Verdichter kann dem mit der Gasturbine gekoppelten Kompressor vor- oder nachgeschaltet sein.

[0012] Wenn das Rektifiziersäulensystem eine aus Drucksäule und Niederdrucksäule bestehende Doppelsäule aufweist, kann der Flüssigproduktstrom aus dem unteren Bereich der Niederdrucksäule entnommen werden, so daß gasförmiger Sauerstoff als innenverdichtetes Druckprodukt gewonnen wird. Alternativ oder zusätzlich können Stickstoff (beispielsweise vom Kopf der Drucksäule) oder Argon aus einer angeschlossenen Argonrektifikation flüssig auf Druck gebracht und gegen den nachverdichteten Prozeßstrom verdampft werden. Selbstverständlich ist es möglich, das oder die Flüssigprodukte vor oder nach der Innenverdichtung in einem Flüssigtank zwischenzuspeichern.

[0013] Die Erfindung betrifft außerdem eine Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation gemäß Patentanspruch 8.

[0014] Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1
ein besonders bevorzugtes Ausführungsbeispiel für das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung, bei dem der nachverdichtete Prozeßstrom durch einen Teil der verdichteten Einsatzluft gebildet wird, und
Figur 2
ein weiteres Ausführungbeispiel mit Stickstoff als nachverdichtetem Prozeßstrom.


[0015] Zunächst werden anhand von Figur 1 diejenigen Vefahrensschritte und Apparateteile beschrieben, die beiden Ausführungsbeispielen gemeinsam sind.

[0016] Atmosphärische Luft wird bei 1 durch ein Filter 2 angesaugt, in einem Luftverdichter 3 auf einen Druck von 5 bis 14 bar, vorzugsweise 5,5 bis 6,5 bar komprimiert und anschließend in einen ersten Teilstrom 4 und einen zweiten Teilstrom 5 geteilt. Der zweite Teilstrom 5 wird einer Brennkammer 6 zugeführt und dort mit einem Brennstoff 7 verbrannt. Das Abgas 8 aus der Verbrennung wird in einer Gasturbine 9 arbeitsleistend entspannt.

[0017] Der erste Teilstrom 4 wird von der Kompressionswärme befreit (Nachkühler 10), in direktem Wärmeaustausch mit Wasser 11 weiter abgekühlt, in einer Molsiebanlage 12 gereinigt und über Leitung 13 dem Hauptwärmetauscher 14 zugeleitet. Die auf etwa Taupunkt abgekühlte Luft wird über Leitung 15 der Drucksäule 17 einer Doppelrektifiziersäule 16 zugeleitet, vorzugsweise direkt oberhalb des Sumpfes. Der Betriebsdruck der Drucksäule 17 beträgt 5 bis 14 bar, vorzugsweise 5,5 bis 6,5 bar. Am Kopf der Drucksäule 17 anfallender gasförmiger Stickstoff wird im Hauptkondensator 19 gegen verdampfenden Sauerstoff aus dem Sumpf der Niederdrucksäule 18 verflüssigt. Das Kondensat 20 wird als Rücklauf auf die Drucksäule 17 (Leitung 21) beziehungsweise - nach Unterkühlung im Gegenströmer 23 - auf die Niederdrucksäule 18 aufgegeben (Leitung 22). Sauerstoffangereicherte Sumpfflüssigkeit 24 aus der Drucksäule 17 wird ebenfalls unterkühlt (23) und auf einem Zwischenniveau in die Niederdrucksäule 18 (Betriebsdruck 1,3 bis 2 bar, vorzugsweise 1,5 bis 1,7 bar) eingespeist. Gasförmiger Stickstoff 25 vom Kopf der Niederdrucksäule kann nach Anwärmung im Gegenströmer 23 und im Hauptwärmetauscher 14 über Leitung 26 als Produkt abgezogen werden.

[0018] Mindestens ein Teil des in der Niederdrucksäule 17 erzeugten Sauerstoffprodukts wird flüssig abgezogen (Leitung 27) und mittels einer Pumpe 28 auf Druck gebracht, beispielsweise auf 5 bis 110 bar, je nach benötigtem Produktdruck. Alternativ oder zusätzlich kann die Druckerhöhung durch statische Höhe oder durch Druckaufbauverdampfung in einem Flüssigtank bewirkt werden. Die Hochdruckflüssigkeit wird im Hauptwärmetauscher 14 verdampft und über Leitung 29 als gasförmiges Druckprodukt abgeführt. Alternativ ist die Produktverdampfung in einem vom Hauptwärmetauscher getrennten Kondensator-Verdampfter möglich (siehe beispielweise EP-A-0 584 419).

[0019] Im Beispiel der Figur 1 wird speziell ein Teil 30 der gereinigten Einsatzluft als Prozeßstrom eingesetzt, der die für die Verdampfung des innenverdichteten Flüssigprodukts benötigte Wärme liefert. Er wird in einem ersten Nachverdichter 31 und einem zweiten Nachverdichter 33 auf einen Druck von 12 bis 120 bar, vorzugsweise 15 bis 60 bar gebracht. Die Kompressionswärme wird jeweils in einem Nachkühler 32, 34 entfernt. Im Hauptwärmetauscher 14 kondensiert die nachverdichtete Luft mindestens teilweise, vorzugsweise vollständig gegen den verdampfenden Flüssigsauerstoff und wird über Leitung 35 in die Drucksäule 17 eingedrosselt. Die Einspeisestelle liegt vorzugsweise einige theoretische Böden oberhalb der Einführung der Hauptluft (Leitung 15).

[0020] Ein Teil 36 der nachverdichteten Luft wird zwischen den beiden Nachverdichtern 31, 33 abgezweigt, bei einer zwischen den Temperaturen am warmen und kalten Ende des Hauptwärmetauschers liegenden Temperatur einer Turbine 37 zugeführt und dort arbeitsleistend von 10 bis 60 bar, vorzugsweise 12 bis 50 bar auf etwa Drucksäulendruck entspannt. Die dabei erzeugte mechanische Energie wird zur Nachverdichtung 33 eingesetzt. Die entspannte Luft 38 wird gemeinsam mit der Hauptluft 15 zur Drucksäule 17 geführt.

[0021] Falls die in Turbine 37 gewonnene Kälte nicht benötigt wird, können der durch Turbine 37 führende Ast, der zweite Nachverdichter 33 und der Nachkühler 34 weggelassen werden. Der für die Verdampfung des Flüssigprodukts benötigte Druck muß dann bereits im ersten (und einzigen) Nachverdichter 31 erreicht werden.

[0022] Das in Figur 2 dargestellte Ausführungsbeispiel unterscheidet sich von Figur 1 durch die Verwendung von Stickstoff 230 aus der Drucksäule 17 anstelle von Luft für die Verdampfung des flüssigen Drucksauerstoffs. Das Stickstoffgas 230 wird zunächst im Hauptwärmetauscher 14 auf etwa Umgebungstemperatur angewärmt und anschließend im ersten Nachverdichter 231 und im zweiten Nachverdichter 233 auf einen Druck von von 12 bis 120 bar, vorzugsweise 15 bis 60 bar gebracht. Ein Teil des nachverdichteten Stickstoffs wird im Hauptwärmetauscher 14 gegen den verdampfenden Flüssigsauerstoff mindestens teilweise, vorzugsweise vollständig kondensiert und über Leitung 235 in die Drucksäule 17 eingedrosselt; ein anderer Teil 236 wird in der Turbine 237, die den zweiten Nachverdichter 233 antreibt, auf etwa Drucksäulendruck entspannt und über Leitung 238 in den Kreislauf zurückgeführt. Ebenso wie beim ersten Ausführungsbeispiel ist es bei niedrigem oder anderweitig gedecktem Kältebedarf möglich, auf die Turbinen-Nachverdichter-Kombination 237/233 zu verzichten.

[0023] Bei beiden Ausführungsbeispielen sitzen Gasturbine 9, Luftverdichter 3 und erster Nachverdichter 31/231 vorzugsweise auf einer gemeinsamen Welle. Je nachdem, ob die in der Gasturbine erzeugte mechanische Energie (unter Berücksichtigung des Wirkungsgrads der Maschinen) geringer oder größer als die von den angetriebenen Verdichtern 3, 31/231 benötigte Leistung ist, kann zusätzlich ein Motor oder Generator auf der gemeinsamen Welle sitzen.

[0024] Die Stoffaustauschelemente in Drucksäule 17 und Niederdrucksäule 18 können aus konventionellen Destillierböden, Füllkörpern (ungeordneter Packung) und/oder geordneter Packung bestehen. Auch Kombinationen verschiedenartiger Elemente in einer Säule sind möglich. Wegen des geringen Druckverlusts werden geordnete Packungen in allen Säulen, insbesondere in der Niederdrucksäule, bevorzugt.


Ansprüche

1. Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation in einem Rektifiziersäulensystem (16), das mindestens eine Rektifiziersäule (17,18) aufweist, mit folgenden Schritten:

(a) Verdichtung (3) eines Luftstroms (1) auf mindestens den höchsten Druck, der innerhalb des Rektifiziersäulensystems (16) herrscht,

(b) Aufteilung des verdichteten Luftstroms in einen ersten Teilstrom (4), der als Einsatzluftstrom für das Rektifiziersäulensystem dient, und in einen zweiten Teilstrom (5), der einer chemischen Reaktion (6) als Oxidationsmittel zugeführt wird,

(c) arbeitsleistende Entspannung (9) mindestens eines Teils des Abgases (8) der chemischen Reaktion (7),

(d) Abkühlung (14) des ersten Teilstroms (4) auf etwa Taupunktstemperatur und Einführung (15) in die beziehungsweise eine der Rektifiziersäulen (17),

(e) Entnahme eines Flüssigproduktstroms (27) aus der beziehungsweise einer der Rektifiziersäulen (18),

(f) Erhöhung (28) des Drucks im Flüssigproduktstrom (27),

(g) Nachverdichtung (31, 33; 231, 233) eines Prozeßstroms (30; 230) der Tieftemperaturrektifikation auf einen Druck, der wesentlich über dem höchsten im Rektifiziersäulensystem (16) vorkommenden Druck liegt, und

(h) Verdampfung des Flüssigproduktstroms durch indirekten Wärmeaustausch (14) mit mindestens einem Teil (35, 235) des nachverdichteten Prozeßstroms,

dadurch gekennzeichnet, daß

(i) mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (9) des Abgases (8) der chemischen Reaktion (7) in Schritt (c) erzeugt wird, zur Nachverdichtung (31) des Prozeßstroms (30; 230) in Schritt (g) verwendet wird.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (9) des Abgases (8) der chemischen Reaktion (7) in Schritt (c) erzeugt wird, zur Verdichtung (9) des Luftstroms (1) in Schritt (a) verwendet wird.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Prozeßstrom durch einen Teil (30) des ersten Teilstroms (4) der verdichteten Luft gebildet wird.
 
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Prozeßstrom durch einen Stickstoff-Produktstrom (230) aus der oder einer der Rektifiziersäulen (17) gebildet wird.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Teil (36; 236) des nachverdichteten Prozeßstroms, der nicht in indirekten Wärmeaustausch mit dem verdampfenden Flüssigproduktstrom (27) gebracht wird, arbeitsleistend entspannt (37; 237) wird.
 
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (37; 237) des Teils (36; 236) des Prozeßstroms erzeugt wird, zur Nachverdichtung (33) des Prozeßstroms verwendet wird.
 
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Rektifiziersäulensystem eine Drucksäule (17) und eine Niederdrucksäule (18) aufweist, wobei der Flüssigproduktstrom (27) aus dem unteren Bereich der Niederdrucksäule (18) entnommen wird.
 
8. Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation mit einem Rektifiziersäulensystem (16), das mindestens eine Rektifiziersäule (17,18) aufweist, sowie

(a) einen Luftverdichter (3),

(b) eine erste Luftleitung (4), die vom Austritt des Luftverdichters (3) durch einen Hauptwärmetauscher (14) zum Rektifiziersäulensystem (16) führt,

(c) eine zweite Luftleitung (5), die vom Austritt des Luftverdichters (3) zu einer chemischen Reaktionsvorrichtung (6) führt,

(d) eine Gasturbine (9), deren Eintritt mit dem Austritt der chemischen Reaktionsvorrichtung (6) verbunden ist,

(e) eine Flüssigproduktleitung (27) zur Entnahme eines Flüssigproduktstroms aus der beziehungsweise einer der Rektifiziersäulen (18),

(f) ein Mittel (28) zur Erhöhung des Drucks im Flüssigproduktstrom,

(g) Mittel (33, 31; 231; 233) zur Nachverdichtung eines Prozeßstroms (30; 230) der Tieftemperaturrektifikation auf einen Druck, der wesentlich über dem höchsten im Rektifiziersäulensystem (16) vorkommenden Druck liegt, und

(h) Mittel (14) zur Verdampfung des Flüssigproduktstroms durch indirekten Wärmeaustausch mit mindestens einem Teil des nachverdichteten Prozeßstroms,

gekennzeichnet durch

(i) Mittel zur Übertragung mindestens eines Teils der in der Gasturbine (9) erzeugten mechanischen Energie auf die Mittel (31; 231) zur Nachverdichtung des Prozeßstroms.


 




Zeichnung