[0001] The present invention relates to a cryogenic process for the removal of nitrogen
from feed gas comprising nitrogen and hydrocarbons.
[0002] The increasing use of natural gas as a fuel has resulted in a need to remove nitrogen
from some natural gas sources, in order to meet Wobbe Index and calorific value specifications,
particularly where the gas is delivered into a country's gas transmission system.
The nitrogen may either be naturally occurring or resulting from nitrogen injection
into oil fields for enhanced recovery.
[0003] A particular problem is to design a process for efficient removal of nitrogen from
natural gas feed at high pressure (75 to 130 bar absolute; 7.5 to 13 MPa), with relatively
small concentrations of nitrogen (5 to 15 mol%), and to produce sales gas at a pressure
similar to the feed gas pressure.
[0004] A further problem is that, as gas reservoir pressure decays to below the required
sales gas pressure (e.g., about 75 bar absolute; 7.5 MPa in the case of the United
Kingdom's National Transmission System), feed gas compression needs to be added. This
is a relatively expensive investment because it is not utilized fully throughout the
life of the nitrogen removal unit (NRU).
[0005] Therefore, an object of the present invention is to provide an improved process to
remove nitrogen from natural gas feed with low nitrogen content (about 5 to 15 mol%)
and at high pressure (75 to 130 bar absolute; 7.5 to 13 MPa). It is a further object
of this invention to provide a process for removal of nitrogen from natural gas feed,
which is sufficiently flexible to operate at lower feed pressure (25 to 75 bar absolute;
2.5 to 7.5 MPa) while still producing sales gas at higher pressure (about 75 bar absolute;
7.5 MPa), without the need for feed gas compression.
[0006] Nitrogen removal from natural gas is usually most economically effected by cryogenic
distillation. Numerous cycles have been developed, many based on the concept of double
distillation columns as used in air separation. One problem associated with double
column cycles is that, at feed nitrogen concentrations less than 25 mol%, the quantity
of reflux liquid that can be generated is insufficient to achieve an economic recovery
of methane. Another problem is that relatively low concentrations of carbon dioxide
and hydrocarbons, such as benzene, hexane and heavier components, would freeze at
the cryogenic temperatures associated with the lower pressure column.
[0007] GB-B-2208699 describes an improved process that is less energy intensive at low levels
of feed nitrogen concentration, in which the separation is effected in two columns
with integrated condensation of overhead first column vapour and second column reboil.
While this process overcomes the problems mentioned above, it is relatively complicated
and expensive.
[0008] US-A-4415345 (also EP-A-0090469) describes a process employing a nitrogen heat pump
cycle to generate liquid reflux, which is compatible with both single column and double
column arrangements. However, this cycle produces methane product at a lower pressure
than the natural gas feed and will generally require product gas compression in addition
to the nitrogen heat pump compressor. It also limits the column to a low operating
pressure of from 15 to 125 psia; (100 to 865 kPa), with heat pump nitrogen at a pressure
of 50 to 470 psia (345 to 3,250 kPa), i.e. below the critical pressure. The column
pressure is, therefore, dictated by the nitrogen pressure to allow sufficient temperature
difference to condense the nitrogen against boiling methane in the column reboiler.
This low column operating pressure increases power consumption for product compression.
[0009] US-A-4501600 (also EP-A-0132984) discloses a cryogenic rectification process for
the separation of nitrogen from natural gas in which a natural gas feed is introduced
into a rectification column operating at a pressure of 200 to 450 psia (1.4 to 3.1
MPa) where it is separated into a nitrogen-rich overhead vapour and a methane-rich
bottoms liquid. The overhead vapour is partially condensed by indirect heat exchange
with vaporizing heat pump fluid and the condensed portion of the overhead vapour is
returned to the column as reflux. The heat pump fluid is specified to comprise 0.5
to 60 mole percent nitrogen and 99.5 to 40 mole percent methane and flows in an external
closed loop heat pump system. In the exemplified process, an intermediate vapour stream
also is condensed against the heat pump fluid and returned to the rectification column
as additional reflux.
[0010] US-A-4662919 (also EP-A-0233609) discloses a process for separating nitrogen from
a pressurized feed containing natural gas and nitrogen in a single distillation column
with two side intermediate condensers to form pressurized product streams of nitrogen
and natural gas. In the process, the pressurized feed is cooled and separated into
separate multiple feeds to the column where the cooled feeds are distilled to form
a pressurized nitrogen-rich overhead vapour and a pressurized hydrocarbon-rich bottoms
liquid. The overhead vapour is condensed by heat exchange with a first closed loop
refrigerant to provide upper reflux to the column; an upper intermediate vapour from
the column is condensed in an upper side condenser by heat exchange with the unexpanded
overhead vapour to provide an upper intermediate reflux to the column; and a lower
intermediate vapour from the column is condensed in a lower side condenser by heat
exchange with a second closed loop refrigerant and by heat exchange with the unexpanded
overhead vapour to provide a lower intermediate reflux to the column. The upper intermediate
vapour is withdrawn from the column between the overhead vapour condenser and the
lower side condenser and the lower intermediate vapour is withdrawn from the column
between the upper side condenser and the highest feed point to the column. In the
exemplified processes, the first and second closed loop refrigerants are respective
portions of an external closed loop methane heat pump system and the distillation
column operates at a pressure of 300 to 400 psia (2 to 2.8 MPa). It is stated that
since the fractionation above 400 psia (2.8 MPa) approaches the critical pressure
of nitrogen, higher pressures are impractical.
[0011] US-A-4504295 (also EP-A-0131128) discloses a process for the recovery of methane
and nitrogen from a natural gas stream in which a nitrogen rejection stage including
a heat pump driven distillation column is integrated with a natural gas liquid stage.
In the process, the feed stream is separated into an ethane-rich fraction and nitrogen-rich
fraction. After reduction in pressure, the nitrogen-rich fraction, is introduced into
a distillation column driven with a closed loop heat pump refrigerant which condenses
an overhead reflux stream, condenses an intermediate reflux stream and vaporizes a
reboil stream to the distillation column. The ethane-rich fraction is distilled in
a second column to provide a methane-rich overhead. In the exemplified process, the
distillation column operates at 300 to 400 psia (2 to 2.8 MPa) and the heat pump refrigerant
is methane.
[0012] The present invention provides a cryogenic process for the removal of nitrogen from
a natural gas feed stream comprising nitrogen and hydrocarbons primarily having a
carbon content between 1 and 8 carbon atoms comprising:
(i) feeding the feed stream to a distillation column providing a methane-rich bottoms
liquid, a nitrogen-rich overhead vapour, and at least one intermediate vapour stream;
(ii) recovering the methane-rich bottoms as a methane-rich product, preferably after
pumping to increase its pressure;
(iii) warming the nitrogen-rich overhead vapour in heat exchange with the at least
one intermediate vapour stream to at least partially condense said at least one intermediate
vapour stream;
(iv) returning the at least partially condensed intermediate vapour stream to the
distillation column, preferably at an intermediate location, to provide reflux;
(v) utilizing a portion of the warmed nitrogen-rich overhead vapour as a recycle nitrogen-rich
heat pump stream above the critical pressure of nitrogen to provide at least part
of the reboil to the distillation column and to produce a mixed vapour-liquid stream;
and
(vi) returning the mixed vapour-liquid stream to the distillation column, preferably
at the top thereof, to provide reflux.
[0013] The invention also provides an apparatus for the cryogenic removal of nitrogen from
a natural gas feed stream by the process of the invention, the apparatus comprising:
a distillation column for providing a methane-rich bottoms liquid, a nitrogen-rich
overhead vapour, and at least one intermediate vapour stream;
means for feeding the feed stream to the distillation column;
means for recovering the methane-rich bottoms as a methane-rich product;
heat exchange means for warming the nitrogen-rich overhead vapour in heat exchange
with the at least one intermediate vapour stream to at least partially condense said
at least one intermediate vapour stream;
means for returning the at least partially condensed intermediate vapour stream to
the distillation column to provide reflux;
means for utilizing a portion of the warmed nitrogen-rich overhead vapour as a recycle
nitrogen-rich heat pump stream above the critical pressure of nitrogen to provide
at least part of the reboil to the distillation column and to produce a mixed vapour-liquid
stream; and
means for returning the mixed vapour-liquid stream to the distillation column to provide
reflux.
[0014] One or more intermediate vapour streams can be partially condensed in step (iii)
of the process of the invention but it is preferred that a lower intermediate vapour
stream is withdrawn at or above the location of the feed point of the natural gas
feed stream and returned as reflux above said withdrawal point, and an upper intermediate
vapour stream is withdrawn at or above said lower reflux feed point and returned as
reflux above the withdrawal point of the upper intermediate vapour stream.
[0015] Suitably, the methane-rich bottoms liquid is pumped and then vaporized to increase
its pressure before recovery as the methane-rich product.
[0016] Usually, the distillation column is reboiled by heat exchange with both the natural
gas feed stream and the recycle nitrogen-rich heat pump stream.
[0017] In a presently preferred embodiment, the present invention relates to a cryogenic
process for the removal of nitrogen from a natural gas feed stream comprising nitrogen
and hydrocarbons primarily having a carbon content between 1 and 8 carbon atoms comprising:
(a) cooling and at least partially condensing the natural gas feed stream;
(b) further cooling and reducing the pressure of at least part of the natural gas
feed stream and feeding it to an intermediate location of a single distillation column;
(c) removing a methane-rich bottoms liquid from the distillation column, pumping the
removed, methane-rich bottoms liquid to increase its pressure, vaporizing the pumped,
removed, methane-rich bottoms liquid, and recovering the vaporized, increased pressure,
methane-rich liquid as a sales gas product;
(d) removing a nitrogen-rich overhead stream from the distillation column, warming
the removed, nitrogen-rich overhead stream to recover refrigeration, and dividing
the warmed, removed, nitrogen-rich overhead stream into first and second substreams;
(e) expanding and warming said first substream to recover refrigeration;
(f) warming said second substream, compressing the warmed, second substream, cooling
the compressed, second substream, and expanding the cooled, compressed, second substream
thereby producing a mixed vapour-liquid stream;
(g) feeding the mixed vapour-liquid stream to the top of the distillation column;
and
(h) using at least a part of the refrigeration recovered from warming the nitrogen-rich
overhead stream of step (d) to condense at least one intermediate vapour stream from
the distillation column to provide intermediate reflux to the distillation column.
[0018] Preferably, the natural gas feed stream is divided into first and second portions;
said first portion is reduced in pressure and fed to an intermediate location of the
distillation column; and said second portion is reduced in pressure, partially vaporized
and then fed to the distillation column at a location below the feed for said first
portion.
[0019] A portion of the warmed nitrogen-rich overhead vapour suitably is expanded and then
further warmed to recover refrigeration.
[0020] The methane-rich bottoms liquid usually will be subcooled prior to pumping and suitably
this subcooling is by heat exchange with a reduced pressure portion of the feed stream.
[0021] The recycle nitrogen-rich heat pump stream conveniently is both compressed and, after
cooling, subsequently expanded in a compander.
[0022] Preferably, the pressure of at least part of the natural gas feed stream is reduced,
prior to feeding to the distillation column, with a dense fluid expander.
[0023] The distillation column can have an intermediate reboiler/condenser located below
the feed point of the natural gas feed stream.
[0024] The following is a description by way of example only and with reference to the accompanying
drawing of a presently preferred embodiment of the invention.
[0025] Figure 1 is a schematic diagram of the process of the present invention.
[0026] Referring to the process flow diagram shown in Figure 1, a natural gas feed in line
101, which has been treated to reduce to acceptable concentrations freezing components,
such as water and carbon dioxide, is cooled and at least partially condensed in main
heat exchanger 1. The natural gas feed will generally contain 5 to 15 mol% nitrogen
with the balance being natural gas and impurities and will be at a pressure of 25
to 130 bar absolute (2.5 to 13 MPa), preferably 60 to 80 bar absolute (6 to 8 MPa).
The cooled and at least partially condensed natural gas feed is then further cooled
and condensed (if not totally condensed in main heat exchanger 1) in reboiler 2, and
split into two portions in lines 201 and 202. The major portion in line 202 is subcooled
in subcooler 3 before being introduced via line 102 to distillation column 11 through
valve 41. The smaller portion in line 201 is reduced in pressure across valve 42 and
partially vaporized in subcooler 5 before also being introduced to distillation column
11.
[0027] Distillation column 11 operates at a pressure from 10 to 30 bar absolute (1 to 3
MPa), preferably between 15 and 22 bar absolute (1.5 and 2.2 MPa), and separates the
natural gas feeds into a methane-rich bottoms liquid stream 103 and a nitrogen-rich
overhead vapour stream 105. The nitrogen-rich overhead stream 105 typically contains
2 mol% methane, and the methane-rich bottoms stream 103 has a typical nitrogen concentration
of 0.5 mol%, which is generally lower than the required nitrogen content of natural
gas that is delivered, for example, to the United Kingdom's National Transmission
System (NTS), where concentrations of 4 to 5 mol% are acceptable in gas with parts
per million concentrations of carbon dioxide. By reducing the nitrogen content to
this low level, which is perfectly feasible in a cryogenic NRU, the quantity of natural
gas feed that must be processed is reduced, the final sales gas product being blended
from feed gas bypass and NRU product. The UK's NTS specification allows up to 2 mol%
CO
2, and with increasing CO
2 content, nitrogen would need to be removed to a lower concentration in the sales
gas by processing more gas in the NRU.
[0028] Part of the reboil duty for column 11 is provided by heat exchange with the natural
gas feed cooling in reboiler 2. The remainder is provided by heat exchange with a
recycle, nitrogen-rich heat pump stream also cooling in reboiler 2. The recycle, nitrogen-rich
heat pump stream in line 110 is cooled in main heat exchanger 1 and reboiler 2 at
a pressure of 35 to 130 bar absolute (3.5 to 13 MPa), preferably between 60 and 80
bar absolute (6 and 8 MPa). The cooled, recycle, nitrogen-rich heat pump stream in
line 111 is then expanded in the expansion wheel of compander 32 and introduced into
the top of distillation column 11. The expander outlet stream contains 4 to 5% by
mass of liquid, and this is used to provide reflux for the top section of distillation
column 11.
[0029] The nitrogen-rich overhead vapour in line 105 from the top of column 11, containing
about 2 mol% methane, is warmed in condenser 4 and subcooler 3. Condenser 4 provides
the bulk of the reflux liquid for distillation column 11 by condensing vapour side
streams withdrawn from the column. The lower side stream in line 112 is withdrawn
at or above the feed entry location (line 102) and returned as reflux liquid in line
113 which is several equilibrium stages above the withdrawal point (line 112). The
upper side stream in line 114 is withdrawn at or above the lower reflux feed point
(line 113) and returned in line 115 several equilibrium stages above this withdrawal
point. This reflux philosophy is more efficient than a process that provides all of
the column reflux liquid at the top of the column, because the majority of the refrigeration
required to condense the reflux is provided at the warmer condensing temperatures
of the side streams.
[0030] After warming in subcooler 3, a portion of the nitrogen-rich overhead vapour in line
106 is expanded in expander 33, providing additional refrigeration to condenser 4
and subcooler 3. This expanded portion is then warmed in main heat exchanger 1 and
vented via line 107 to atmosphere. Environmental constraints will generally limit
the methane content in vented nitrogen to 2 mol% maximum. The process is capable of
achieving much lower methane content, if required, by increasing the recycle nitrogen
flow in line 110. Some of the nitrogen-rich vent stream may be used as utility nitrogen
for purposes such as cold box purge and adsorber regeneration. The remaining nitrogen-rich
overhead vapour is warmed in main heat exchanger 1, compressed in compressor 31, passed
via line 109 to the compressor wheel of compander 32 and cooled in cooler 6 to form
the recycle, nitrogen-rich stream to main heat exchanger 1 in line 110.
[0031] Methane-rich bottoms liquid from column 11 is subcooled in subcooler 5 before being
increased in pressure by pump 21. Subcooler 5 minimizes the elevation which distillation
column 11 is required to be above pump 21 in order to provide the necessary net positive
suction head (NPSH) at the pump suction, particularly, if there is a large turndown
requirement where heat leak into the pump suction piping could cause cavitation at
turndown. The pumped liquid is then vaporized in main heat exchanger 1 to be delivered
as sales gas product at a pressure of 25 to 130 bar absolute (2.5 to 13 MPa), preferably
60 to 80 bar absolute (6 to 8 MPa).
[0032] The process achieves a very high methane recovery, typically about 99.8 mol%, because
the methane content in the vent nitrogen can be reduced to less than 2 mol%.
[0033] Table 1 summarizes a mass balance for a typical application of this invention.

[0034] Several modifications of the above-described process are possible within the scope
of the invention, including:
[0035] The number of side streams that are condensed in condenser 4 could be increased to
three or more if the resulting reduction in power consumption warranted the additional
complexity. Alternatively, the system could be simplified by condensing only one side
stream.
[0036] All or part of the vent nitrogen can be produced at a higher pressure and used as
a by-product by increasing expander 33 outlet pressure or by the removal of a nitrogen
containing stream prior to the inlet to compressor 31, prior to the inlet to the compressor
wheel of compander 32, or from downstream of cooler 6. This may result in the elimination
of expander 33 from the process. It is possible to eliminate expander 33 in any event
by increasing the refrigeration produced by compander 32, although this is less efficient.
[0037] Expander 33 could be moved to provide refrigeration at a warmer part of the process,
e.g., around exchanger 1. This could be beneficial where the feed pressure was much
lower than the required sales gas product pressure.
[0038] In addition to the vent nitrogen, all or some of the recycle heat pump nitrogen could
be expanded in expander 33. This would reduce the flowrate of the recycle heat pump
nitrogen, but would also reduce the inlet pressure to compressor 31 and, thus, possibly
require two (2) differing pressure feeds to the compressor.
[0039] It is possible to improve the process efficiency by expanding the feed to the column
in a dense fluid expander, rather than valve 41. The expansion work could be recovered
in a suitable device, such as an electricity generator, and the refrigeration produced
would reduce the refrigeration required from compander 32.
[0040] Subcooler 5 could be eliminated and the required pump NPSH developed by increasing
the elevation difference between the column sump and the pump suction.
[0041] Part of the feed could be subcooled to a lower temperature in subcooler 3, rather
than subcooling all of the feed, that is expanded across valve 41, to a warmer temperature.
This colder feed could then be introduced to column 11 a few stages higher than the
remaining feed from upstream of subcooler 3.
[0042] The column system could be modified to include an intermediate reboiler between the
bottom of the column and the main feed stage. This may be appropriate for higher feed
nitrogen concentrations.
[0043] The position of compander 32 could be changed so that recycle nitrogen was compressed
in the compressor wheel of the compander before being compressed in compressor 31.
This would be determined by the optimum machinery configuration.
[0044] Liquid methane from the bottom of column 11 could be further processed to recover
a natural gas liquids product.
[0045] The process could be modified to recover a helium-rich stream from the overhead vapour
from column 11, where there was sufficient helium in the natural gas feed to make
this economically attractive.
[0046] The process could be operated with a much higher methane content in the vent nitrogen
for possible use as a fuel stream with a consequent reduction in power consumption.
[0047] The exemplified embodiment of the invention provides a process cycle with only slightly
higher power consumption than the efficient cycle described in GB-B-2,208,699, but
which is much simpler and has a significantly lower capital cost.
[0048] The refrigeration provided by the expansion wheel of compander 32 and expander 33
is sufficient to compensate for pump work, heat leak and temperature difference at
the warm end of main heat exchanger 1 and enables the sales gas product to be delivered
at a similar pressure to the feed with no need for any product compression. The expansion
work of the recycle nitrogen is efficiently recovered in the compressor wheel of compander
32.
[0049] If the feed pressure reduces over a period of time, for example, due to decay of
gas reservoir pressure, the sales gas can still be produced at the required pressure
simply by increasing the refrigeration provided by the expansion wheel of compander
32 beyond what is required for the column reflux liquid. This compensates for the
reduced Joule-Thomson refrigeration that is available from the lower pressure feed.
By this method, sales gas can be produced at, for example, 79 bar absolute (7.9 MPa)
with the feed gas pressure as low as 25 bar absolute (2.5 MPa). Operation of the NRU
is less efficient at feed gas pressures much below the required sales gas pressure,
and capacity will be reduced because all of the feed gas will need to be processed
in the NRU because there can be no bypass. Also, the size of compander 32 will limit
production. However, this gives the plant operator the choice of whether or not to
invest in feed gas compression and certainly postpones the date at which it becomes
economically viable to purchase or lease this compression system.
[0050] The problem of freezing carbon dioxide and heavy hydrocarbons is mitigated by the
single column process, operating at high pressure, because the freezing components
are recovered in the bottom section of the column where the temperature is higher.
The closest approach to freezing generally occurs at the feed inlet to the column,
downstream of valve 41. The process is tolerant to significantly higher concentrations
of carbon dioxide and heavy hydrocarbons than a double column process.
[0051] The exemplified embodiment of the present invention differs from prior art by, inter
alia,:
(i) Separating nitrogen from methane in a single column where refrigeration for column
reflux is provided by a nitrogen-rich heat pump system operating above the critical
pressure of nitrogen, i.e. at a pressure of 35 to 130 bar absolute (3.5 to 13 MPa)
preferably between 60 and 80 bar absolute (6 and 8 MPa), thereby permitting a higher
column operating pressure of 10 to 30 bar absolute (1 to 3 MPa), preferably between
15 and 22 bar absolute (1 and 2.2 MPa). The column is reboiled by indirect heat exchange
with both the nitrogen-rich heat pump stream and the feed stream.
(ii) Expanding the nitrogen-rich heat pump stream in a compander to provide an outlet
stream with up to 10% liquid, preferably 4 to 5% liquid, thereby directly providing
reflux for the top section of the column and efficiently recovering the expansion
work.
(iii) Condensing side streams of column vapour to provide the majority of the reflux
liquid at warmer temperatures by indirect heat exchange with the overhead vapour from
the column, which comprises the nitrogen-rich heat pump stream and the nitrogen-rich
vent stream.
(iv) Providing sufficient refrigeration with the compander 32 and, where included,
the vent nitrogen expander 33 to produce, by pumping, all of the sales gas product
at a pressure similar to, or higher than, the natural gas feed pressure and avoiding
the need for a product compressor.
(v) Subcooling the feed against recycle heat pump nitrogen in subcooler 3 prior to
introduction to the distillation column.
(vi) Subcooling the column bottoms liquid prior to pumping in order to provide sufficient
NPSH without elevating the column relative to the pump suction. This is particularly
beneficial where height limitations are imposed for environmental reasons.
[0052] It will be appreciated that the invention is not restricted to the specific details
of the embodiment described above and that numerous modifications and variations can
be made without departing from the scope of the invention as defined in the following
claims.
1. A cryogenic process for the removal of nitrogen from a natural gas feed stream (101)
comprising nitrogen and hydrocarbons primarily having a carbon content between 1 and
8 carbon atoms comprising:
(i) feeding the feed stream (101) to a distillation column (11) providing a methane-rich
bottoms liquid (103), a nitrogen-rich overhead vapour (105), and at least one intermediate
vapour stream (112,114);
(ii) recovering the methane-rich bottoms as a methane-rich product (104);
(iii) warming (4) the nitrogen-rich overhead vapour (105) in heat exchange with the
at least one intermediate vapour stream (112,114) to at least partially condense said
at least one intermediate vapour stream (112,114);
(iv) returning the at least partially condensed intermediate vapour stream (113,115)
to the distillation column (11) to provide reflux;
(v) utilizing a portion (108) of the warmed nitrogen-rich overhead vapour (105) as
a recycle nitrogen-rich heat pump stream (109,110,111) above the critical pressure
of nitrogen to provide at least part of the reboil (2) to the distillation column
(11) and to produce a mixed vapour-liquid stream; and
(vi) returning the mixed vapour-liquid stream to the distillation column to provide
reflux.
2. A process as claimed in Claim 1, wherein, in steps (iii) and (iv), a lower intermediate
vapour stream (112) is withdrawn at or above the location of the feed point of the
natural gas feed stream and, after at least partial condensation (4), returned (113)
above said withdrawal point to provide reflux, and an upper intermediate vapour stream
is withdrawn at or above said lower reflux feed point and, after at least partial
condensation (4), returned (115) above the withdrawal point of the upper intermediate
vapour stream to provide reflux.
3. A process as claimed in Claim 1 or Claim 2, wherein the distillation column (11) is
reboiled by heat exchange (2) with both the natural gas feed stream (101) and the
recycle nitrogen-rich heat pump stream (110).
4. A cryogenic process for the removal of nitrogen from a natural gas feed stream comprising:
(a) cooling and at least partially condensing (1) the natural gas feed stream (101);
(b) further cooling (2 & 3) and reducing the pressure (41) of at least part (202)
of the natural gas feed stream (101) and feeding it to an intermediate location of
a single distillation column (11);
(c) removing a methane-rich bottoms liquid (103) from the distillation column (11),
pumping (21) the removed, methane-rich bottoms liquid to increase its pressure, vaporizing
(1) the pumped, removed, methane-rich bottoms liquid, and recovering the vaporized,
increased pressure, methane-rich liquid as a sales gas product (104);
(d) removing a nitrogen-rich overhead stream (105) from the distillation column (11),
warming (4) the removed, nitrogen-rich overhead stream (105) to recover refrigeration,
and dividing the warmed, removed, nitrogen-rich overhead stream (105) into first and
second substreams (106,108);
(e) expanding (33) and warming (4) said first substream (106) to recover refrigeration;
(f) warming (1) said second substream (108), compressing (31,32) the warmed, second
substream (108), cooling (2) the compressed, second substream (110), and expanding
(32) the cooled, compressed, second substream (111) thereby producing a mixed vapour-liquid
stream;
(g) feeding the mixed vapour-liquid stream to the top of the distillation column (11);
and
(h) using at least a part of the refrigeration recovered from warming (4) the nitrogen-rich
overhead stream (105) of step (d) to condense (4) at least one intermediate vapour
stream (112,114) from the distillation column (11) to provide intermediate reflux
to the distillation column (11).
5. A process as claimed in any one of the preceding claims, wherein the natural gas feed
stream (101) is divided into first and second portions (202,201); said first portion
(202) is reduced in pressure (41) and fed to an intermediate location of the distillation
column (11); and said second portion (201) is reduced in pressure (42), partially
vaporized (5) and then fed to the distillation column (11) at a location below the
feed for the said first portion (202).
6. A process as claimed in any one of the preceding claims, wherein a portion (106) of
the warmed nitrogen-rich overhead vapour (105) is expanded (33) and then further warmed
(4).
7. An apparatus for the cryogenic removal of nitrogen from a natural gas feed stream
(101) by a process as claimed in Claim 1, the apparatus comprising:
a distillation column (11) for providing a methane-rich bottoms liquid (103), a nitrogen-rich
overhead vapour (105), and at least one intermediate vapour stream (112,114);
means(101,201,202) for feeding the feed stream to the distillation column (11);
means (103,104) for recovering the methane-rich bottoms as a methane-rich product;
heat exchange means (4) for warming the nitrogen-rich overhead vapour (105) in heat
exchange with the at least one intermediate vapour stream (112,114) to at least partially
condense said at least one intermediate vapour stream (112,114);
means (113,115) for returning the at least partially condensed intermediate vapour
stream to the distillation column (11) to provide reflux;
means (2) for utilizing a portion (108) of the warmed nitrogen-rich overhead vapour
as a recycle nitrogen-rich heat pump stream above the critical pressure of nitrogen
to provide at least part of the reboil to the distillation column (11) and to produce
a mixed vapour-liquid stream; and means (111) for returning the mixed vapour-liquid
stream to the distillation column (11) to provide reflux.
8. An apparatus as claimed in Claim 7, wherein the heat exchange means (4) at least partially
condenses a lower intermediate vapour stream (112) withdrawn from the distillation
column (11) at or above the location of the feed point of the natural gas feed stream
(101) and an upper intermediate vapour stream (114) withdrawn at or above the feed
point at which at least partially condensed lower intermediate vapour stream (113)
is returned to the distillation column (11) and the means (113,115) for returning
at least partially condensed intermediate vapour to the distillation column (11) to
provide reflux returns both said at least partially condensed intermediate streams
to the distillation column (11) at locations above their respective withdrawal points.
9. An apparatus as claimed in Claim 7 or Claim 8, comprising means (2) for reboiling
the distillation column (11) by heat exchange with both the natural gas feed stream
(101) and the recycle nitrogen-rich heat pump stream (110).
10. An apparatus as claimed in Claim 7 comprising:
(a) means (1) for cooling and at least partially condensing the natural gas feed stream
(101);
(b) means (2) for further cooling and reducing the pressure of at least part (201)
of the natural gas feed stream (101) and feeding it to an intermediate location of
a single distillation column (11);
(c) means (103) for removing a methane-rich bottoms liquid from the distillation column
(11);
(d) means (21,1) for pumping the removed, methane-rich bottoms liquid to increase
its pressure, vaporizing the pumped, removed, methane-rich bottoms liquid, and recovering
the vaporized, increased pressure, methane-rich liquid as a sales gas product (104);
(e) means (105,4,3,106,108) for removing a nitrogen-rich overhead stream from the
distillation column (11), warming the removed, nitrogen-rich overhead stream to recover
refrigeration, and dividing the warmed, removed, nitrogen-rich overhead stream into
first and second substreams (106,108);
(f) means (33,4) for expanding and warming said first substream (106) to recover refrigeration;
(g) means (1,31,32) for warming said second substream (108), compressing the warmed,
second substream, cooling the compressed, second substream, and expanding the cooled,
compressed, second substream thereby producing a mixed vapour-liquid stream;
(h) means (111) for feeding the mixed vapour-liquid stream to the top of the distillation
column (11); and
(j) means (4) for using at least a part of the refrigeration recovered from warming
the nitrogen-rich overhead stream (105) in means (e) to condense at least one intermediate
vapour stream (112,114) to provide intermediate reflux to the distillation column
(11).
11. An apparatus as claimed in any one of Claims 7 to 10, comprising means (201,202) for
dividing the natural gas feed stream into first and second portions; means (41) for
reducing the pressure of said first portion; means (102) for feeding said reduced
pressure first portion to an intermediate location of the distillation column (11);
means (42) for reducing the pressure of said second portion; means (5) for partially
vaporizing said reduced pressure second portion; and means (201) for feeding said
partially vaporized second portion to the distillation column (11) at a location below
the location of the feed for the said first portion.
12. An apparatus as claimed in any one of Claims 7 to 11, comprising means (33) for expanding
a portion of the warmed nitrogen-rich overhead vapour (105) and means (4) for further
warming said expanded portion.
1. Kryogenes Verfahren zur Entfernung von Stickstoff aus einem Erdgas-Einspeisungsstrom
(101), der Stickstoff und Kohlenwasserstoffe aufweist, die primär einen Kohlenstoffgehalt
zwischen 1 und 8 Kohlenstoffatomen aufweisen, mit den folgenden Schritten:
(i) Einspeisen des Einspeisungsstroms (101) in eine Destillationskolonne (11), die
eine methanreiche Bodenflüssigkeit (103), einen stickstoffreichen Kopfdampf (105)
und mindestens einen Zwischen-Dampfstrom (112, 114) bereitstellt;
(ii) Zurückgewinnen des methanreichen Bodenproduktes als methanreiches Produkt (104);
(iii) Erwärmen (4) des stickstoffreichen Kopfdampfes (105) im Wärmetausch mit dem
mindestens einen Zwischen-Dampfstrom (112, 114), um den mindestens einen Zwischen-Dampfstrom
(112, 114) zumindest teilweise zu kondensieren;
(iv) Rückführen des zumindest teilweise kondensierten Zwischen-Dampfstromes (113,
115) zur Destillationskolonne, um Rückfluß bereitzustellen;
(v) Verwenden eines Anteils (108) des erwärmten stickstoffreichen Kopfdampfes (105)
als stickstoffreichen Rückführungs-Wärmepumpenstrom (109, 110, 111) oberhalb des kritischen
Druckes von Stickstoff, um zumindest einen Teil der Aufkochung (2) für die Destillationskolonne
(11) bereitzustellen und einen Dampf-Flüssigkeit-Mischstrom zu erzeugen; und
(vi) Rückführen des Dampf-Flüssigkeit-Mischstromes zur Destillationskolonne, um Rückfluß
bereitzustellen.
2. Verfahren nach Anspruch 1, bei dem in den Schritten (iii) und (iv) ein unterer Zwischendampfstrom
(112) bei oder oberhalb der Stelle des Einspeisungspunktes des Erdgas-Einspeisungsstromes
abgezogen wird, und, nach zumindest teilweiser Kondensierung (4), oberhalb des Entnahmenpunktes
zurückgeführt wird (113), um Rückfluß bereitzustellen, und ein oberer Zwischendampfstrom
bei oder oberhalb des unteren Rückfluß-Einspeisungspunktes entnommen wird und, nach
zumindest teilweiser Kondensierung (4), oberhalb des Entnahmepunktes des oberen Zwischendampfstromes
zurückgeführt wird (115), um Rückfluß bereitzustellen.
3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem die Destillationskolonne (11) durch
Wärmetausch (2) mit sowohl dem Erdgas-Einspeisungsstrom (101) als auch dem stickstoffreichen
Rückführungs-Wärmepumpenstrom (110) aufgekocht wird.
4. Kryogenes Verfahren zur Entfernung von Stickstoff aus einem Erdgas-Einspeisungsstrom
mit den folgenden Schritten:
(a) Kühlen und zumindest teilweises Kondensieren (1) des Erdgas-Einspeisungsstromes
(101);
(b) weiteres Kühlen (2 & 3) und Reduzieren des Druckes (41) mindestens eines Teils
(202) des Erdgas-Speisestroms (101) und dessen Einspeisung an einer Zwischenstelle
einer Einzeldestillationskolonne (11);
(c) Entfernen einer methanreichen Bodenflüssigkeit (103) aus der Destillationskolonne
(11), Pumpen (21) der entfernten, methanreichen Bodenflüssigkeit, um ihren Druck zu
erhöhen, Verdampfen (1) der gepumpten, entfernten, methanreichen Bodenflüssigkeit
und Zurückgewinnen der verdampften, im Druck erhöhten, methanreichen Flüssigkeit als
Verkaufsgasprodukt (104);
(d) Entfernen eines stickstoffreichen Kopfstromes (105) aus der Destillationskolonne
(11), Erwärmen (4) des entfernten, stickstoffreichen Kopfstromes (105), um Kühlung
zurückzugewinnen, und Aufteilen des erwärmten, entfernten, stickstoffreichen Kopfstromes
(105) in erste und zweite Unterströme (106, 108);
(e) Expandieren (33) und Erwärmen (4) des ersten Unterstromes (106), um Kühlung zurückzugewinnen;
(f) Erwärmen (1) des zweiten Unterstromes (108), Komprimieren (31, 32) des erwärmten
zweiten Unterstromes (108), Kühlen (2) des komprimierten zweiten Unterstromes (108)
und Expandieren (32) des gekühlten, komprimierten zweiten Unterstromes (111), wodurch
ein Dampf-Flüssigkeit-Mischstrom erzeugt wird;
(g) Einspeisen des Dampf-Flüssigkeit-Mischstromes in das Oberteil der Destillationskolonne
(11); und
(h) Verwenden mindestens eines Anteils der Kühlung, die durch das Erwärmen (4) des
stickstoffreichen Kopfstromes (105) im Schritt (d) zurückerhalten wurde, um zumindest
einen Zwischendampfstrom (112, 114) aus der Destillationskolonne (11) zu kondensieren
(4), um einen Zwischenrückfluß zur Destillationskolonne (11) bereitzustellen.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Erdgas-Speisestrom
(111) in erste und zweite Anteile (202, 201) aufgeteilt wird; wobei der erste Abschnitt
(202) im Druck reduziert wird (41) und an einer Zwischenstelle der Destillationskolonne
(11) eingespeist wird; und wobei der zweite Anteil (201) im Druck reduziert (42),
teilweise verdampft wird (5) und dann in die Destillationskolonne (11) an einer Stelle
eingespeist wird, die unterhalb der Einspeisung des ersten Anteils (202) liegt.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem ein Anteil (106) des erwärmten
stickstoffreichen Kopfdampfes (105) expandiert (33) und dann weiter erwärmt wird (4).
7. Einrichtung zur kryogenen Entfernung von Stickstoff aus einem Erdgas-Speise strom
(101) mittels eines im Anspruch 1 beanspruchten Verfahrens, wobei die Einrichtung
aufweist:
eine Destillationskolonne (11) zur Bereitstellung einer methanreichen Bodenflüssigkeit
(103), eines stickstoffreichen Kopfdampfes (105) und mindestens eines Zwischen-Dampfstromes
(112, 114);
Einrichtungen (101, 201, 202) zum Einspeisen des Speisestromes in die Destillationskolonne
(11);
Einrichtungen (103, 104) zum Zurückgewinnen des methanreichen Bodenproduktes als methanreiches
Produkt;
Wärmetauschereinrichtungen (4) zum Erwärmen des stickstoffreichen Kopfdampfes (105)
im Wärmetausch mit mindestens einem Zwischen-Dampfstrom (112, 114), um den mindestens
einen Zwischen-Dampfstrom (112, 114) zumindest teilweise zu kondensieren;
Einrichtungen (113, 115) zum Zurückführen des zumindest teilweise kondensierten Zwischen-Dampfstromes
zur Destillationskolonne (11), um Rückfluß bereitzustellen;
Einrichtungen (2), um einen Anteil (108) des erwärmten, stickstoffreichen Kopfdampfes
als stickstoffreichen Rückführungs-Wärmepumpenstrom oberhalb des kritischen Drucks
von Stickstoff zu verwenden, um mindestens einen Teil der Aufkochung für die Destillationskolonne
(11) bereitzustellen und um einen Dampf-Flüssigkeits-Mischstrom zu erzeugen; und
Einrichtungen (111) zum Zurückführen des Dampf-Flüssigkeits-Mischstromes in die Destillationskolonne
(11), um Rückfluß bereitzustellen.
8. Einrichtung nach Anspruch 7, bei der die Wärmetauschereinrichtung (4) einen Zwischen-Dampfstrom
(112) mindestens teilweise kondensiert, der von der Destillationskolonne (11) bei
oder oberhalb der Stelle des Einspeisungspunktes für den Erdgas-Speisestrom (101)
abgezogen wurde, und einen oberen Zwischen-Dampfstrom (114), der bei oder oberhalb
des Einspeisungspunktes abgezogen wurde, an welchem der zumindest teilweise kondensierte
untere Zwischen-Dampfstrom (113) zur Destillationskolonne (11) zurückgeführt wird,
und wobei die Einrichtung (113, 115) zum Zurückführen von zumindest teilweise kondensiertem
Zwischen-Dampf zur Destillationskolonne (11) zur Bereitstellung von Rückfluß beide
zumindest teilweise kondensierten Zwischenströme zur Destillationskolonne (11) an
Stellen oberhalb ihrer jeweiligen Entnahmepunkten zurückführt.
9. Einrichtung nach Anspruch 7 oder Anspruch 8, mit Einrichtungen (2) zum Aufkochen der
Destillationskolonne (11) durch Wärmetausch mit sowohl dem Erdgas-Speisestrom (101)
als auch dem stickstoffreichen Rückführungs-Wärmepumpenstrom (110).
10. Einrichtung nach Anspruch 7, mit:
(a) Einrichtungen (1) zum Kühlen und zumindest teilweisen Kondensieren des Erdgas-Speisestroms
(101);
(b) Einrichtungen (2) zum weiteren Kühlen und Reduzieren des Drucks zumindest eines
Teils (201) des Erdgas-Speisestroms (101) und zu dessen Einspeisung an einer Zwischenstelle
einer Einzeldestillationskolonne (11);
(c) Einrichtungen (103) zum Entfernen einer methanreichen Bodenflüssigkeit aus der
Destillationskolonne (11);
(d) Einrichtungen (21, 1) zum Pumpen der entfernten methanreichen Bodenflüssigkeit,
um ihren Druck zu erhöhen, Verdampfen der gepumpten, entfernten, methanreichen Bodenflüssigkeit,
und Zurückgewinnen der verdampften, im Druck erhöhten methanreichen Flüssigkeit als
Verkaufsgasprodukt (104);
(e) Einrichtungen (105, 4, 3, 106, 108) zum Entfernen eines stickstoffreichen Kopfstromes
aus der Destillationskolonne (11), Erwärmen des entfernten stickstoffreichen Kopfdampfes,
um Kühlung zurückzugewinnen, und Aufteilen des erwärmten, entfernten, stickstoffreichen
Kopfstromes in einen ersten und einen zweiten Unterstrom (106, 108);
(f) Einrichtungen (33, 4) zum Expandieren und Erwärmen des ersten Unterstromes (106),
um Kühlung zurückzugewinnen;
(g) Einrichtungen (1, 31, 32) zum Erwärmen des zweiten Unterstromes (108), Komprimieren
des erwärmten, zweiten Unterstromes, Kühlen des komprimierten, zweiten Unterstromes
und Expandieren des gekühlten, komprimierten zweiten Unterstromes, wodurch ein Dampf-Flüssigkeit-Mischstrom
erzeugt wird;
(h) Einrichtungen (111) zum Einspeisen des Dampf-Flüssigkeit-Mischstromes in das Oberteil
der Destillationskolonne (11); und
(j) Einrichtungen (4) zum Verwenden mindestens eines Teils der Kühlung, die durch
das Erwärmen des stickstoffreichen Kopfstromes (105) in den Einrichtungen (e) zurückerhalten
wurde, um zumindest einen Zwischen-Dampfstrom (112, 114) zu kondensieren, um Zwischenrückfluß
zur Destillationskolonne (11) bereitzustellen.
11. Einrichtung nach einem der Ansprüche 7 bis 10, mit Einrichtungen (201, 202) zum Aufspalten
des Erdgas-Speisestroms in einen ersten und einen zweiten Anteil; Einrichtungen (41)
zum Reduzieren des Drucks des ersten Anteils; Einrichtungen (102) zum Einspeisen des
ersten Anteils mit reduziertem Druck an einer Zwischenstelle der Destillationskolonne
(11); Einrichtung (42) zum Reduzieren des Drucks des zweiten Anteils; Einrichtungen
(5) zum teilweisen Verdampfen des im Druck reduzierten zweiten Anteils; und Einrichtungen
(201) zum Einspeisen des teilweise verdampften zweiten Anteils in die Destillationskolonne
(11) an einer Stelle unterhalb der Stelle der Einspeisung des ersten Anteils.
12. Einrichtung nach einem der Ansprüche 7 bis 11, mit Einrichtungen (33) zum Expandieren
eines Anteils des erwärmten stickstoffreichen Kopfdampfes (105) und Einrichtungen
(4) zum weiteren Erwärmen des expandierten Anteils.
1. Procédé cryogénique destiné au retrait de l'azote d'un courant d'alimentation en gaz
naturel (101) comprenant de l'azote et des hydrocarbures ayant principalement un contenu
en carbone entre 1 et 8 atomes de carbone, comprenant :
(i) l'amenée du courant d'alimentation (101) à une colonne de distillation (11) fournissant
un liquide riche en méthane aux parties inférieures (103), une vapeur riche en azote
en haut (105) et au moins un courant intermédiaire de vapeur (112), 114) ;
(ii) la récupération des parties inférieures riches en méthane en tant que produit
riche en méthane (104) ;
(iii) l'échauffement (4) de la vapeur riche en azote en haut (105) dans un échangeur
de chaleur avec le au moins un courant de vapeur intermédiaire (112), 114) pour condenser
au moins partiellement ledit au moins un courant intermédiaire de vapeur (112), 114)
;
(iv) le retour du au moins un courant de vapeur intermédiaire partiellement condensé
(113, 115) à la colonne de distillation (11) pour créer un reflux ;
(v) l'utilisation d'une partie (108) de la vapeur riche en azote en haut réchauffée
(105) en tant que courant de recyclage riche en azote de pompe à chaleur (109, 110,
111) au-dessus de la pression critique de l'azote pour créer au moins une partie de
la remise en ébullition (2) au niveau de la colonne de distillation (11) et pour produire
un courant mélangé de vapeur et de liquide ; et
(vi) le retour du courant mélangé de vapeur et de liquide à la colonne de distillation
pour créer un reflux.
2. Procédé selon la revendication 1, dans lequel, durant les étapes (iii) et (iv), un
courant intermédiaire de vapeur plus bas (112) est retiré au niveau ou au-dessus de
l'emplacement du point d'alimentation du courant d'alimentation en gaz naturel et,
après au moins une condensation partielle (4), est retourné (113) au-dessus dudit
point de retrait pour créer un reflux, et dans lequel un courant de vapeur intermédiaire
plus élevé est retiré au niveau ou au-dessus dudit point d'alimentation de reflux
plus bas et, après au moins une condensation partielle (4), est retourné (115) au-dessus
du point de retrait du courant de vapeur intermédiaire plus élevé, pour créer un reflux.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la colonne de
distillation (11) est remise en ébullition au moyen de l'échangeur de chaleur (2)
au moyen à la fois du courant d'alimentation en gaz naturel (101) et du courant de
recyclage de pompe de chaleur riche en azote (110).
4. procédé cryogénique destiné au retrait de l'azote d'un courant d'alimentation en gaz
naturel comprenant :
(a) le refroidissement et la condensation au moins partiellement (1), du courant d'alimentation
en gaz naturel (101) ;
(b) un autre refroidissement (2 & 3) et la réduction de la pression (41) d'une partie
(202) du courant d'alimentation en gaz naturel (101) et l'amenée de celui-ci à un
emplacement intermédiaire d'une colonne de distillation unique (11) ;
(c) le retrait d'un liquide riche en méthane (103) des parties inférieures de la colonne
de distillation (11), le pompage (21) du liquide des parties inférieures riche en
méthane retiré pour augmenter sa pression, la vaporisation (1) du liquide riche en
méthane retiré et pompé des parties inférieures, et la récupération du liquide vaporisé
riche en méthane, ayant une pression augmentée, en tant que produit gazeux commercial
(104) ;
(d) le retrait d'un courant en haut de la colonne de distillation (11) riche en azote
(105), le réchauffement du courant en haut riche en azote retiré (105) pour retrouver
la réfrigération, et la division du courant riche en azote (105) en haut réchauffé
et retiré en un premier et en un second courants secondaires (106, 108) ;
(e) l'expansion (33) et le réchauffement (4) dudit premier courant secondaire (106)
pour retrouver la réfrigération ;
(f) le réchauffement (1) dudit second courant secondaire (108), la compression (31,
32) du second courant secondaire réchauffé (108), le refroidissement (2) du second
courant secondaire comprimé (110), et l'expansion (32) du second courant secondaire
refroidi et comprimé (111) produisant par ce moyen un courant mélangé de vapeur et
de liquide ;
(g) l'amenée du courant mélangé de vapeur et de liquide jusqu'au sommet de la colonne
de distillation (11) ; et
(h) l'utilisation d'au moins une partie de la réfrigération retrouvée par le réchauffement
(4) du courant en haut riche en azote (105) de l'étape (d) pour condenser (4) au moins
un courant de vapeur intermédiaire (112, 114) provenant de la colonne de distillation
(11) pour créer un reflux intermédiaire vers la colonne de distillation (11).
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le courant
d'alimentation en gaz naturel (101) est divisé en une première et en une seconde parties
(202, 201) ; dans lequel ladite première partie (202) est réduite en pression (41)
et amenée à un emplacement intermédiaire de la colonne de distillation (11) ; et dans
lequel ladite seconde partie (201) est réduite en pression (42), vaporisée partiellement
(5), et amenée ensuite à la colonne de distillation (11) à un emplacement en dessous
de l'amenée de ladite première partie (202).
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel une partie
(106) de la vapeur en haut, réchauffée, riche en azote (105) est dilatée (33) et ensuite
réchauffée à nouveau (4).
7. Dispositif destiné au retrait cryogénique de l'azote d'un courant d'alimentation en
gaz naturel (101) au moyen d'un procédé selon la revendication 1, le dispositif comprenant
:
une colonne de distillation (11) destinée à fournir un liquide riche en méthane dans
les parties inférieures (103), une vapeur riche en azote en haut (105), et au moins
un courant intermédiaire de vapeur (112, 114) ;
des moyens (101, 201, 202) destinés à amener le courant d'alimentation à la colonne
de distillation (11) ;
des moyens (103, 104) destinés à récupérer les parties inférieures riches en méthane
en tant que produit riche en méthane ;
un moyen d'échange de chaleur (4) destiné à réchauffer la vapeur en haut riche en
azote (105) dans un échangeur de chaleur au moyen du au moins un courant intermédiaire
de vapeur (112, 114) pour condenser au moins partiellement ledit au moins un courant
intermédiaire de vapeur (112, 114) ;
des moyens (113, 115) destinés à retourner le au moins un courant intermédiaire de
vapeur partiellement condensé à la colonne de distillation (11) pour créer un reflux
;
un moyen (2) destiné à utiliser une partie (108) de la vapeur en haut, réchauffée,
riche en azote en tant que courant de recyclage de pompe à chaleur riche en azote
au-dessus de la pression critique de l'azote pour créer au moins une partie de la
remise en ébullition à la colonne de distillation (11) et pour produire un courant
mélangé de vapeur et de liquide ; et un moyen (111) pour retourner le courant mélangé
de vapeur et de liquide à la colonne de distillation (11) pour créer un reflux.
8. Dispositif selon la revendication 7, dans lequel le moyen d'échange de chaleur (4)
condense au moins partiellement un courant de vapeur intermédiaire plus bas (112)
retiré de la colonne de distillation (11) au niveau ou au-dessus de l'emplacement
du point d'amenée du courant d'alimentation en gaz naturel (101) ainsi qu'un courant
de vapeur intermédiaire plus haut (114) retiré au niveau ou au-dessus du point d'amenée
auquel le courant de vapeur intermédiaire plus bas, partiellement condensé (113) est
retourné à la colonne de distillation (11) et dans lequel les moyens (113, 115) destinés
à retourner la vapeur intermédiaire condensée au moins partiellement à la colonne
de distillation (11) pour créer un reflux retourne à la fois lesdits courants intermédiaires
condensés au moins partiellement à la colonne de distillation (11) à des emplacements
au-dessus de leurs points de retrait respectifs.
9. Dispositif selon la revendication 7 ou le revendication 8, comprenant un moyen (2)
destiné à remettre en ébullition la colonne de distillation (11) au moyen de l'échangeur
de chaleur avec à la fois le courant d'alimentation en gaz naturel (101) et le courant
de recyclage de pompe à chaleur riche en azote (110).
10. Dispositif selon la revendication 7, comprenant :
(a) un moyen (1) destiné à refroidir et à condenser au moins partiellement le courant
d'alimentation en gaz naturel (101) ;
(b) un moyen (2) pour à nouveau refroidir et réduire la pression d'au moins une partie
(201) du courant d'alimentation en gaz naturel (101) et pour l'amener à un emplacement
intermédiaire d'une colonne de distillation unique (11) ;
(c) un moyen (103) pour retirer un liquide des parties inférieures de la colonne de
distillation riche en méthane (11) ;
(d) des moyens (21, 1) destinés à pomper le liquide des parties inférieures retiré
et riche en méthane pour augmenter sa pression, pour vaporiser le liquide des parties
inférieures riche en méthane, pomper et retirer, et pour récupérer le liquide riche
en méthane, vaporisé, ayant une pression augmentée en tant que produit gazeux commercial
(104) ;
(e) des moyens (105, 4, 3, 106, 108) destinés à retirer un courant riche en azote
en haut de la colonne de distillation (11), à réchauffer le courant riche en azote
en haut retiré pour retrouver la réfrigération, et pour diviser le courant riche en
azote en haut réchauffé et retiré en un premier et en un second courants secondaires
(106, 108) ;
(f) des moyens (33, 4) destinés à dilater et à réchauffer ledit premier courant secondaire
(106) pour retrouver la réfrigération ;
(g) des moyens (1, 31, 32) destinés à échauffer ledit second courant secondaire (108),
à compresser le second courant secondaire chauffé, à refroidir le second courant secondaire
comprimé, et à dilater le second courant secondaire refroidi et comprimé, produisant
par ce moyen un courant mélangé de vapeur et de liquide ;
(h) un moyen (111) destiné à amener le courant mélangé de vapeur et de liquide au
sommet de la colonne de distillation unique (11) ; et
(j) un moyen (4) destiné à utiliser au moins une partie de la réfrigération retrouvée
par l'échauffement du courant riche en azote en haut (105) dans le moyen (e) pour
condenser au moins un courant de vapeur intermédiaire (112, 114) pour créer un reflux
intermédiaire vers la colonne de distillations (11).
11. Dispositif selon l'une quelconque des revendications 7 à 10, comprenant des moyens
(201, 202) destinés à diviser le courant d'alimentation en gaz naturel en une première
et en une seconde parties ; un moyen (41) destiné à réduire la pression de ladite
première partie ; un moyen (102) destiné à amener ladite première partie ayant une
pression réduite à un emplacement Intermédiaire de la colonne de distillation (11)
; un moyen (42) destiné à réduire la pression de ladite seconde partie ; un moyen
(5) destiné à vaporiser partiellement ladite seconde partie ayant une pression réduite
; et un moyen (201) pour amener ladite seconde partie partiellement vaporisée à la
colonne de distillation (11) à un emplacement en dessous de l'emplacement de l'amenée
destinée à ladite première partie.
12. Dispositif selon l'une quelconque des revendications 7 à 11, comprenant un moyen (33)
destiné à dilater une partie de la vapeur riche en azote et chauffée en haut (105)
et un moyen (104) destiné à chauffer à nouveau ladite partie dilatée.