(19)
(11) EP 0 835 410 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
15.12.1999 Bulletin 1999/50

(21) Application number: 96921913.8

(22) Date of filing: 26.06.1996
(51) International Patent Classification (IPC)6F23G 5/04
(86) International application number:
PCT/DK9600/286
(87) International publication number:
WO 9701/731 (16.01.1997 Gazette 1997/04)

(54)

A METHOD AND AN APPARATUS FOR DRYING AND COMBUSTING WATER-CONTAINING MATTER

VERFAHREN UND VORRICHTUNG ZUM TROCKNEN UND VERBRENNEN VON WASSERHALTIGENSTOFFEN

PROCEDE ET APPAREIL POUR SECHER ET BRULER DES MATIERES CONTENANT DE L'EAU


(84) Designated Contracting States:
DE DK FR

(30) Priority: 26.06.1995 DK 73895

(43) Date of publication of application:
15.04.1998 Bulletin 1998/16

(73) Proprietor: KRÜGER A/S
DK-2860 Soborg (DK)

(72) Inventors:
  • BISGAARD, Christian
    DK-2860 Soeborg (DK)
  • SIMONSEN, Niels
    DK-2860 Soeborg (DK)

(74) Representative: Wittrup, Flemming et al
c/o Hofman-Bang & Boutard, Lehmann & Ree A/S, Hans Bekkevolds Allé 7
2900 Hellerup
2900 Hellerup (DK)


(56) References cited: : 
WO-A-94/28993
GB-A- 2 190 178
DE-A- 4 111 849
US-A- 5 536 430
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a method for the drying and combustion of water-containing material containing combustible components, such as dehydrated waste water sludge, according to the preamble of claim 1 wherein the following steps are carried out:

    (1) introduction of water-containing material into a direct dryer,

    (2) drying of the material introduced into the dryer by the introduction of atmospheric air as drying air into the dryer,

    (3) introduction of the dried material into a furnace and combustion of the material therein,

    (4) introduction into the furnace of at least a portion of the drying air after the dryer as combustion air,

    (5) preheating of the drying air intended for the drying of the material, by utilization of the heat contained in the hot flue gas discharged from the furnace.



    [0002] For instance in the biological purification of waste water, a residual product consisting of water and organic matter is produced. The organic matter possesses a sufficiently high heating value which makes it attractive to use it as a fuel with a view to exploiting the energy bound therein. Prior to using the organic matter as fuel, however, it should be dried to a degree of dryness that allows it to burn. This may be done by mechanical dehydration of the sludge, for instance by means of centrifuges, strain belt presses or chamber filter presses, in order to subsequently introduce this dehydrated sludge into a dryer, e.g. a direct dryer, where the dehydrated sludge is dried by the introduction of drying air into the dryer. The drying air is usually heated either in a heat exchanger which utilizes hot flue gas as a heating medium, or by means of direct heating.

    [0003] The introduction of the drying air into the furnace as combustion air following drying means that smelling inconveniences are avoided since the foul-smelling substances released from the sludge to the drying air are burnt off. If the drying air is not burnt off in the furnace, it is to be purified in a separate purification plant. In order to avoid these odour inconveniences associated with the flue gas, the furnace temperature should be maintained at about 800-900°C.

    [0004] It is difficult with mechanical dehydration of sludge from state-of-the-art purification plants with nitrogen and phosphorus removal to obtain a high dry matter content.

    [0005] With centrifuges and strain belt presses it is typically possible to obtain 17-18% of dry matter by dehydration of biological/chemical sludge.

    [0006] With chamber filter presses it is typically possible to obtain 22-25%, of dry matter by sludge dehydration.

    [0007] It is impossible to dehydrate the sludge at very high pressures to increase the dry matter contents since the sludge forms a filter skin under high pressures which is impervious to water.

    [0008] Moreover, in case of high pressures there is a risk of blowing the cells in the sludge thereby releasing substances whose recycling to the purification plant is undesirable.
    GB 2190178 teaches a system for drying sludge. In this system the sludge is fed through a preheater and led into a dryer where it is heated by means of superheated steam.

    [0009] In the thus known methods for the treatment of sludge, it is difficult to obtain a sufficiently high degree of sludge dryness to allow it to burn without auxiliary fuelling, e.g. fossile fuels. The exercise of the known sludge treatment methods thus involves considerable costs for auxiliary fuelling.

    [0010] It is thus the object of the present invention to provide a method wherein it is possible to incinerate sludge without auxiliary fuelling, said sludge being introduced into the dryer with an increased water content compared to the known methods.

    [0011] This is obtained with a method of the type described in the introductory part for the treatment of water-containing material which contains combustible components, such as dehydrated waste water sludge, and wherein the following steps are carried out:

    (6) addition of water to the atmospheric air in the preheater, whereby the water evaporates, and is superheated,
    and

    (7) reduction of the water content in the drying air following the dryer in a condenser prior to its introduction as combustion air into the furnace.



    [0012] The addition of water to the drying air provides a more effective heat transfer in the heat exchanger, and the enthalpy of the drying air is increased. The enthalpy increase is obtained simultaneously with a reduced temperature increase in the drying air. The increased enthalpy of the drying air enables a more effective drying of the sludge introduced into the dryer, and the reduced temperature ensures that the drying may be effected at a reduced risk of pyrolysis of the sludge in connection with the drying. Following discharge of the drying air from the dryer and prior to utilization of this air as combustion air, the water content of the drying air is reduced since this water content would otherwise presuppose a large amount of energy to obtain the required high furnace temperature. Thus, since the method according to the invention eliminates the need for auxiliary fuelling to the same extent by the burning of the sludge, an overall improved operational economy is obtained.

    [0013] Advantageously at least a portion, preferably all of the drying air/combustion air is preheated in a heat exchanger following discharge from the dryer and prior to its introduction into the furnace. This enables the introduction of material having a higher water content than usual, since the combustion air has a higher heat content which serves to evaporate the water.

    [0014] The means for preheating the drying air may be divided into several heat exchanges. Examples of such means include a first heat exchanger, wherein the air is evaporated to a certain extent, and wherein the water added is evaporated following which the air is conveyed to a second heat exchanger, where the air is preheated to the temperature required for the drying. Hereby the flue gas may be used as heating medium in both heat exchangers since the discharge side for the heating medium in the one heat exchanger is in communication with the supply side in the second heat exchanger. Moreover, it is an option that only the one heat exchanger is in contact with the flue gas, since the drying air still contains much heat following discharge from the dryer, and therefore it may be used as heating medium in the first heat exchanger.

    [0015] Moreover it is possible to preheat the dehydrated material prior to its introduction into the dryer. Preheating of the material reduces the amount of thermal energy required from the drying air to evaporate the requisite amount of water.

    [0016] The supply of water to the atmospheric air is advantageously controlled in accordance with a desired temperature of the drying air supplied to the dryer. This control is utilized for regulating the drying process whereby the dried material becomes exactly auto-combustible.

    [0017] The addition of water to the drying air may be effected in the form of a separate addition of water, in the form of a condensate from the flue gas in instances where the latter is conveyed through a condensing heat exchanger, or in the form of a condensate of the drying air discharged after the dryer. Moreover it is possible to utilize vapour- or water-containing drying air after the dryer as water supply to the drying air. Thus, the drying air is recycled.

    [0018] Moreover the invention relates to a plant for carrying out the method described above and comprising means for preheating the drying air, a direct dryer for drying material, a combustion furnace for the combustion of dried material, a conduit for connecting the preheating means to the dryer, and a conduit for conveying dried material from the dryer to the furnace. The plant is characterised in comprising a device for the introduction of water into the drying air, said device being so arranged that the preheating of the drying air in the preheating means causes the formation of hot vapour-containing air for introduction into the dryer, and in having a condenser in connection with a conduit that connects the dryer to the furnace.

    [0019] Advantageously such plant may comprise means for preheating the drying air after the latter has left the dryer and prior to its introduction into the furnace.

    [0020] Since a condenser is used for the condensing of the water content in the drying air/the combustion air, such condenser may conveniently be coupled to a district heating plant whereby the energy released in the condensing may be utilized for heating purposes.

    [0021] The invention will now be described in further detail with reference to the drawings, wherein

    Figure 1 shows a first plant for exercising the method according to the invention,

    Figure 2 shows a second plant for exercising the method according to the invention, and

    Figure 3 shows a third plant for exercising the method according to the invention.



    [0022] Figure 1 is a schematical view of a plant wherein drying air/combustion air is introduced into a heat exchanger 1 where the air is heated and the water evaporated prior to the air being introduced into a direct dryer 2, and into which the dehydrated waste water sludge is also introduced.

    [0023] Following drying of the dehydrated waste water sludge, the air which now contains water is conveyed to a condenser 3 where a part of the water contained in the air is condensed by the introduction of water to cool the air. After the condenser, the air is introduced into a heat exchanger 4 where it is heated prior to its introduction into a furnace 5. Moreover, the dehydrated and dried waste water sludge from the dryer 2 is introduced into the furnace. The waste water sludge is incinerated off in the furnace 5 and hereby residual products in the form of ashes are produced which are discharged from the furnace, and flue gas which is also discharged from the furnace and conveyed in part to the second heat exchanger 4 and then to the first heat exchanger 1. The flue gas is subsequently discharged. In the first heat exchanger means for the supply of water to the drying air are provided. Condensing operation of the flue gas side of the heat exchanger allows the use of a portion of the condensate as water supply to the drying air side. It is possible to recycle a portion of the air after the dryer 2 to the first heat exchanger since the air still contains a substantial amount of water after the dryer.

    [0024] Figure 2 illustrates a plant which differs from the plant shown in figure 1 in that no heat exchanger is provided after the condenser, and wherein the heat exchanger before the dryer is divided into two heat exchangers 1,4. This division into two heat exchangers is particularly advantageous in case of condensing operation of the latter heat exchanger since condensing operation makes substantial demands to the material. The second heat exchanger 4 may thus be less resistant to corrosion that the first 1.

    [0025] Figure 3 illustrates a plant where air is introduced into a first heat exchanger 1 with water supply for subsequent transfer to a second heat exchanger 4. From the second heat exchanger the air is conveyed to the dryer 2, and from the dryer the air which now contains water is recycled through the first heat exchanger 1 where a portion thereof may optionally be condensed, and from here to a condenser where further vapour in the air is condensed prior to introduction of the air into the furnace 5. The dehydrated waste water sludge is first introduced through a third heat exchanger 6 prior to being introduced into the dryer 2 and then into the furnace 5. The flue gas from the furnace is first used as a heating medium in the second heat exchanger 4 and then as a heating medium in the third heat exchanger 6. Like in connection with the plants shown in Figures 1 and 2, the option is available of utilizing the condensate from the condensed operation as water supply to the drying air in connection with the first heat exchanger 1.

    [0026] In connection with the three plants shown in Figures 1 through 3, the option is also available of introducing auxiliary fuel into the furnace. This is necessary in connection with the starting up of such plant but not necessary provided the degree of dryness of the waste water sludge introduced into the furnace is sufficient for it to be burnt without auxiliary fuelling which will be the normal situation.

    [0027] In the following, examples of treatment of the waste water sludge in the three plants are shown schematically in Figures 1 through 3. Comparative data are shown for drying and combustion without and drying and combustion with water supply to the drying air, respectively.

    CONDITIONS



    [0028] Waste water sludge of the following composition of the combustible portion of the waste water sludge (water- and ash-free sample) is treated:
    C % 56.6
    H % 7.4
    N % 4.6
    S % 1.4
    O % 30.0


    [0029] The combustible portion of the dry matter is 65%. The remaining portion 35% is ashes. This yields the following thermal values for the water- and ash-free sample:
    Upper heating value 24,400 kJ/kg
    Lower heating value 22,800 kJ/kg


    [0030] The following operating conditions remain unchanged in all examples:
    T flue gas, furnace 850°C
    Lambda (excess air count) 1.4
    x represents the water contents of the respective gas (kg water/kg dry gas).

    EXAMPLE 1 (a plant corresponding to Figure 1)



    [0031] In order to burn without auxiliary fuelling the waste water sludge introduced into the furnace must have a dry matter content of 26.1%.
        Water added No water added
    Dehydrated waste      
    water sludge: kg/h 1327 1327
    Combustible dry matter kg/h 169 197
    Ashes kg/h 91 106
    Water kg/h 1067 1024
     
    Furnace:      
    Airin:      
       Amount, dry kg/h 1846 2148
       x-air kg/kg 0.028 0.028
       Temperature °C 600 600
     
    Gasout:      
       Amount, dry kg/h 1904 2215
       x-gas kg/kg 0.473 0.473
     
    Heat Exchanger 1:      
    Airin:      
       x-air kg/kg 0.004 0.004
       Temperature °C 20 20
     
    Airout:      
       x-air kg/h 0.412 0.004
       Temperature °C 450 450
       Evaporated water kg/h 754 0
     
    Gasin:      
       x-gas kg/kg 0.473 0.473
       Temperature °C 575 575
     
    Gasout:      
       x-gas kg/kg 0.155 0.473
       Temperature °C 60 366
    Condensed water: kg/h 606 0
     
    Heat Exchanger 2:      
    Airin:      
       x-air kg/kg 0.028 0.028
       Temperature °C 30 30
    Airout:      
       Temperature °C 600 600
    Gasin:      
       Temperature °C 850 850
    Gasout:      
       Temperature °C 575 575
     
    Dryer:      
    Waste water      
    sludgein:      
       Dry matter kg/h 260 303
       DM % 19.6 22.8
       Temperature °C 10 10
     
    Waste water      
    sludgeout:      
       DM % 26.1 26.1
       Temperature °C 95 95
     
     
    Airin:      
       x-air kg/kg 0.412 0.004
       Temperature °C 450 450
     
    Airout:      
       x-air kg/kg 0.591 0.085
       Temperature °C 95 95
     
    Condenser:      
    Necessary cooling: kw 773 128


    [0032] Comparison of the data relating to the example without addition of water to the drying air with the example with addition of water will show that in order to obtain the dry matter content of 26.1% necessary for combustion without addition of water, the initial waste water sludge material must have a dry matter content of 22.8%. With addition of water, a waste water sludge material with a dry matter content of 19.6% may be introduced into the dryer to obtain the requisite 26.1% of dry matter. Thus, in the given operational conditions for the method according to the invention, a dry matter content is allowed which, relative to the total amount of waste water sludge, is 3.2 percent points less that in the method known today. This corresponds to a reduction of the requirement to the dry matter content in the waste water sludge of 14.0% compared to the known method.

    EXAMPLE 2 (a plant corresponding to Figure 2)



    [0033] In order to burn without auxiliary fuelling the waste water sludge introduced into the furnace must have a dry matter content of 37.4%.
        Water added No water added
    Dehydrated waste      
    water sludge: kg/h 1327 1327
    Combustible dry matter kg/h 172 208
    Ashes kg/h 93 112
    Water kg/h 1062 1007
     
    Furnace:      
    Airin: Amount, dry kg/h 1884 2270
       x-air kg/kg 0.028 0.028
       Temperature °C 30 30
     
    Gasout:      
       Amount, dry kg/h 1943 2341
       x-gas kg/kg 0.315 0.315
     
    Heat Exchanger 1 + 2:      
    Airin:      
       x-air kg/kg 0.004 0.004
       Temperature °C 20 20
     
    Airout:      
       x-air kg/h 0.278 0.004
       Temperature °C 700 700
       Evaporated water kg/h 515 0
     
    Gasin:      
       x-gas kg/kg 0.315 0.315
       Temperature °C 850 850
     
    Gasout:      
       x-gas kg/kg 0.155 0.315
       Temperature °C 60 463
    Condensed water: kg/h 311 0
     
    Waste water sludge dryer:      
    Waste water      
    sludgein:      
       Dry matter kg/h 265 320
       DM % 20.0 24.1
       Temperature °C 10 10
     
    Waste water      
    sludgeout:      
       DM % 37.4 37.4
       Temperature °C 95 95
     
    Airin:      
       x-air kg/kg 0.278 0.004
       Temperature °C 700 700
     
    Airout:      
       x-air kg/kg 0.608 0.212
       Temperature °C 95 95
     
    Condenser:      
     
    Necessary cooling: kw 811 340


    [0034] Comparison of the data relating to the example without addition of water to the drying air with the example with addition of water will show that in order to obtain the dry matter content of 37.4% necessary for combustion without addition of water, the initial waste water sludge material must have a dry matter content of 24.1%. With addition of water, a waste water sludge material with a dry matter content of 20.0% may be introduced into the dryer to obtain the requisite 37.4% of dry matter. Thus, in the given operational conditions for the method according to the invention, a dry matter content is allowed which, relative to the total amount of waste water sludge, is 4.1 percent points less that in the method known today. This corresponds to a reduction of the requirement to the dry matter content in the waste water sludge of 17.0% compared to the known method.

    EXAMPLE 3 (a plant corresponding to Figure 3)



    [0035] In order to burn without auxiliary fuelling, the waste water sludge introduced into the furnace must have a dry matter content of 37.4%.
        Water added No water added
    Dehydrated waste      
    water sludge: kg/h 1327 1327
    Combustible dry matter kg/h 138 198
    Ashes kg/h 74 107
    Water kg/h 1115 1022
     
    Furnace:      
     
    Airin: Amount, dry kg/h 1507 2167
       x-air kg/kg 0.028 0.028
       Temperature °C 30 30
     
    Gasout:      
       Amount, dry kg/h 1554 2234
       x-gas kg/kg 0.315 0.315
     
    Heat Exchanger 1:      
    Fresh air      
    Airin:      
       x-air kg/kg 0.004 0.004
       Temperature °C 20 20
     
    Airout:      
       x-air kg/h 0.609 0.004
       Temperature °C 85 85
       Evaporated water kg/h 912 0
     
    Drying air      
    Airin:      
       x-air kg/kg 1.129 0.253
       Temperature °C 95 95
     
    Airout:      
       x-air kg/kg 0.480 0.253
       Temperature °C 78 68
    Condensed water: kg/h 978 0
     
    Heat Exchanger 2:      
    Airin:      
       x-air kg/kg 0.609 0.004
       Temperature °C 85 85
    Airout:      
       Temperature °C 650 650
    Gasin:      
       Temperature °C 850 850
    Gasout:      
       Temperature °C 127 530
     
    Heat Exchanger 3:      
    Waste water      
    sludgein:      
       Temperature °C 10 10
     
    Waste water      
    sludgeout:      
       Temperature °C 85 85
     
    Gasin:      
       x-gas kg/kg 0.315 0.315
       Temperature °C 127 530
     
    Gasout:      
       x-gas kg/kg 0.250 0.315
       Temperature °C 68 362
     
    Condensed water: kg/h 101 0
     
    Dryer:      
    Waste water      
    sludgein:      
       Dry matter kg/h 212 305
       DM % 16.0 23.0
       Temperature °C 85 85
     
    Waste water      
    sludgeout:      
       DM % 37.4 37.4
       Temperature °C 95 95
     
    Airin:      
       x-air kg/kg 0.609 0.004
       Temperature °C 650 650
     
    Airout:      
       x-air kg/kg 1.129 0.253
       Temperature °C 95 95
     
    Condenser:      
     
    Necessary cooling: kW 1205 387


    [0036] Comparison of the data relating to the example without addition of water to the drying air with the example with addition of water will show that in order to obtain the dry matter content of 37.4% necessary for combustion without addition of water, the initial waste water sludge material must have a dry matter content of 23.0%. With addition of water, a waste water sludge material with a dry matter content of 16.0% may be introduced into the dryer to obtain the requisite 37.4% of dry matter. Thus, in the given operational conditions for the method according to the invention, a dry matter content is allowed which, relative to the total amount of waste water sludge, is 7.0 percent points less that in the method known today. This corresponds to a reduction of the requirement to the dry matter content in the waste water sludge of 30.4% compared to the known method.

    Reference numerals:



    [0037] 
    1
    Heat exchanger 1
    2
    Dryer
    3
    Condenser
    4
    Heat exchanger 2
    5
    Furnace
    6
    Heat exchanger 3



    Claims

    1. A method for the drying and combustion of water-containing material containing combustible components, such as dehydrated waste water sludge, and wherein the following steps are carried out:

    (1) introduction of water-containing material into a direct dryer (2),

    (2) drying of the material introduced into the dryer (2) by the introduction of atmospheric air as drying air into the dryer (2),

    (3) introduction of the dried material into a furnace (5) and combustion of the material therein,

    (4) introduction into the furnace (5) of at least a portion of the drying air after the dryer (2) as combustion air,

    (5) preheating of the drying air intended for the drying of the material, by utilization of the heat contained in the hot flue gas discharged from the furnace (5),

       characterized in the

    (6) addition of water to the atmospheric air in the preheater (2), whereby the water evaporates, and is superheated,
    and

    (7) reduction of the water content in the drying air following the dryer (2) in a condenser (3) prior to the introduction as combustion air into the furnace (5).


     
    2. A method according to claim 1, characterized in that at least a portion of the drying air is preheated in a heat exchanger (4) after the dryer (2) and condenser (3) and prior to its introduction into the furnace (5).
     
    3. A method according to claim 1 or 2, characterized in that at least a portion of the drying air is further preheated in a heat exchanger (4) where the heating medium is flue gas from the furnace, after the evaporation of the water and prior to its introduction into the dryer (2).
     
    4. A method according to claims 1-3, characterized in that, after removal from the dryer (2), at least a portion of the drying air is utilized as heating medium in a heat exchanger (4) for preheating the drying air and evaporating the water added.
     
    5. A method according to claims 1-4, characterized in that at least a portion of the water-containing material is preheated in a heat exchanger (4) prior to its introduction into the dryer.
     
    6. A method according to claims 1-5, characterized in that the water added to the drying air is a condensate of the flue gas or a condensate of the drying air discharged after the dryer (2).
     
    7. A method according to claims 1-6, characterized in that the water added to the drying air is vapour or water-containing drying air discharged after the dryer (2).
     
    8. A method according to claims 1-7, characterized in that water is added to the drying air in an amount determined by the fact that the temperature and volume flow of drying air through the dryer (2) relative to the temperature, water content and volume flow of the water-containing material will produce a dried material which is exactly auto-combustible.
     
    9. A plant for exercising the method according to claims 1-8 and comprising means (1) for preheating drying air, a dryer (2) for drying material to be burnt, a furnace (5) for burning dried material, a conduit for connecting the preheating means to the dryer and a conduit for conveying dried material from the dryer to the furnace, characterized in comprising a device for the introduction of water into the drying air, where said device is so arranged that the preheating of the drying air in the preheating means causes the formation of air containing superheated steam for introduction into the dryer, and in that a condenser (3) is provided in connection with a conduit connecting the dryer to the furnace.
     
    10. A plant according to claim 9, wherein at least a portion of the drying air is used as combustion air, characterized in comprising means (4) for preheating the drying air after it has left the dryer (2) and the condenser (3) and prior to introduction of this air into the furnace.
     


    Ansprüche

    1. Verfahren zum Trocknen und Verbrennen von wasserhaltigem Material mit brennbaren Komponenten, wie entwässertem Klärschlamm, wobei die folgenden Schritte ausgeführt werden:

    (1) Einleiten von wasserhaltigem Material in einen direkten Trockner (2),

    (2) Trocknen des in den Trockner (2) eingeleiteten Materials durch das Einleiten von Umgebungsluft als Trocknungsluft in den Trockner (2),

    (3) Einleiten des getrockneten Materials in einen Verbrennungsofen (5) und Verbrennung des Materials daselbst,

    (4) Einleiten von mindestens einem Teil der Trocknungsluft aus dem Trockner (2) als Verbrennungsluft in den Verbrennungsofen (5),

    (5) Vorheizen der zum Trocknen des Materials vorgesehenen Trocknungsluft unter Verwendung der im heissen, vom Verbrennungsofen (5) abgegebenen Abgas enthaltenen Wärme,

    gekennzeichnet durch die

    (6) Zugabe von Wasser zur Umgebungsluft im Vorheizer (2), wobei das Wasser verdampft und überhitzt wird,
    und

    (7) die Reduktion des Wassergehalts in der Trocknungsluft in einem Kondensator (3) nach dem Durchlauf durch den Trockner (2) und vor dem Einleiten als Verbrennungsluft in den Verbrennungsofen (5).


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein Teil der Trocknungsluft in einem Wärmeaustauscher (4) nach dem Trockner (2) und dem Kondensator (3) und vor ihrem Einleiten in den Verbrennungsofen vorgeheizt wird
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens ein Teil der Trocknungsluft nach dem Verdampfen des Wassers und vor ihrem Einleiten in den Trockner (2) weiter in einem Wärmeaustauscher (4) vorgeheizt wird, wobei das Heizmedium ein Abgas aus dem Verbrennungsofen ist.
     
    4. Verfahren nach den Ansprüchen 1-3, dadurch gekennzeichnet, dass mindestens ein Teil der Trocknungsluft nach dem Entfernen aus dem Trockner (2) als Heizmedium in einem Wärmeaustauscher (4) zum Vorheizen der Trocknungsluft und zum Verdampfen des hinzugefügten Wassers verwendet wird.
     
    5. Verfahren nach den Ansprüchen 1-4, dadurch gekennzeichnet, dass mindestens ein Teil des wasserhaltigen Materials in einem Wärmeaustauscher (4) vorgeheizt wird, bevor es in den Trockner eingeführt wird.
     
    6. Verfahren nach den Ansprüchen 1-5, dadurch gekennzeichnet, dass das zur Trocknungsluft hinzugefügte Wasser ein Kondensat aus dem Abgas oder ein Kondensat aus der vom Trockner (2) abgegebenen Trocknungsluft ist.
     
    7. Verfahren nach den Ansprüchen 1-6, dadurch gekennzeichnet, dass das zur Trocknungsluft hinzugefügte Wasser Dampf oder wasserhaltige Trocknungsluft ist, der bzw. die vom Trockner (2) abgegeben worden ist.
     
    8. Verfahren nach den Ansprüchen 1-7, dadurch gekennzeichnet, dass Wasser in einer derart festgelegten Menge zur Trocknungsluft hinzugefügt wird, dass die Temperatur und der Volumendurchfluss der Trocknungsluft durch den Trockner (2) relativ zu Temperatur, Wassergehalt und Volumenfluss des wasserhaltigen Materials getrocknetes Material erzeugen, das gerade selbstbrennbar ist.
     
    9. Anlage zur Ausübung des Verfahrens nach den Ansprüchen 1-8, die Mittel (1), um die Trocknungsluft vorzuheizen, einen Trockner (2) zum Trocknen der zu verbrennenden Materials, einen Verbrennungsofen (5) zum Verbrennen von getrocknetem Material, eine Leitung zum Verbinden der Vorheizmittel mit dem Trockner und eine Leitung zum Fördern des getrockneten Materials vom Trockner zum Verbrennungsofen aufweist, dadurch gekennzeichnet, dass sie eine Vorrichtung zum Einleiten von Wasser in die Trocknungsluft enthält, wobei die genannte Vorrichtung so ausgebildet ist, dass das Vorheizen der Trocknungsluft in den Vorheizmitteln die Bildung von überhitzten Dampf enthaltender Luft zum Einleiten in den Trockner bewirkt, und dass ein Kondensator (3) vorhanden ist, der mit einer Leitung verbunden ist, die den Trockner mit dem Verbrennungsofen verbindet.
     
    10. Anlage nach Anspruch 9, wobei mindestens ein Teil der Trocknungsluft als Verbrennungsluft benutzt wird, gekennzeichnet durch Mittel (4), Trocknungsluft vorzuheizen, nachdem sie den Trockner (2) und den Kondensator (3) verlassen hat und bevor diese Luft in den Verbrennungsofen eingeführt wird.
     


    Revendications

    1. Procédé pour sécher et brûler une matière contenant de l'eau contenant des constituants combustibles, comme boues de curage déshydratées, les pas suivants étant exécutés :

    (1) introduction de matière contenant de l'eau dans un sécheur direct (2),

    (2) séchage de la matière introduite dans le sécheur (2) par l'introduction de l'air atmosphérique comme air séchant dans le sécheur(2),

    (3) introduction de la matière séchée dans un four (5) et combustion de la matière là-dedans,

    (4) introduction dans le four (5) de au moins une part de l'air séchant après le sécheur (2) comme air de combustion,

    (5) préchauffage de l'air séchant déstiné à sécher la matière en utilisant de la chaleur contenue dans les gaz de la combustion chauds émis du four (5),

    caractérisé par

    (6) l'addition de l'eau à l'air atmosphérique au préchauffeur (2), l'eau se vaporisant et étant surchauffée,
    et

    (7) la réduction de la teneur en eau dans l'air séchant après le sécheur (2) dans un condenseur (3) avant l'introduction comme air de combustion dans le four (5).


     
    2. Procédé selon la revendication 1, caractérisé en ce qu'au moins une part de l'air séchant est préchauffée dans un échangeur de chaleur (4) après le sécheur (2) et le condenseur (3) et avant son introduction dans le four (5).
     
    3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'au moins une part de l'air séchant est préchauffé encore dans un échangeur de chaleur (4) où le milieu chauffant sont des gaz de la combustion du four après la vaporisation de l'eau et avant son introduction dans le sécheur (2).
     
    4. Procédé selon les revendications 1-3, caractérisé en se qu'après son écartement du sécheur (2), au moins une part de l'air séchant et utilisé comme milieu chauffant dans un échangeur de chaleur (4) pour préchauffer l'air séchant et pour vaporiser l'eau ajouté.
     
    5. Procédé selon les revendications 1-4, caractérisé en ce qu' au moins une part de la matière contenant de l'eau est préchauffée dans un échangeur de chaleur (4) avant son introduction dans le sécheur.
     
    6. Procédé selon les revendications 1-5, caractérisé en ce que l'eau ajouté à l'air séchant est un condensé des gaz d'échappement ou un condensé de l'air séchant émis après le sécheur (2).
     
    7. Procédé selon les revendications 1-6, caractérisé en ce que l'eau ajouté à l'air sécheur est du vapeur ou de l'air sécheur émis après le sécheur (2) et contenant de l'eau.
     
    8. Procédé selon les revendications 1-7, caractérisé en ce que de l'eau est ajoutée à l'air séchant en une quantité déterminée de manière que la température et le flux de volume de l'air séchant à travers le sécheur (2) en relation à la température, la teneur en eau et le flux de volume de la matière contenant de l'eau produisent une matière séchée qui est exactement auto-combustible.
     
    9. Installation pour exercer le procédé selon les revendications 1-8 et comprenant des moyens (1) pour préchauffer de l'air séchant, un sécheur (2) pour sécher la matière à être brûlée, un four (5) pour brûler de la matière séchée, une conduit pour la connexion des moyens de préchauffage avec le sécheur et un conduit pour le transport de la matière séchée du sécheur au four, par un appareil pour l'introduction de l'eau dans l'air séchant, cet appareil étant tellement arrangé que le préchauffage de l'air séchant dans les moyens de préchauffage cause la formation de l'air contenant de la vapeur surchauffée pour l'introduction dans le sécheur, et en ce qu' un condenseur (3) est pourvu en connexion avec un conduit connectant le sécheur avec le four.
     
    10. Installation selon la revendication 9, au moins une part de l'air séchant étant utilisée comme air de combustion, caractérisé par des moyens (4) pour préchauffer l'air séchant après qu'il a quitté le sécheur (2) et le condenseur (3) et avant l'introduction de cet air dans le four.
     




    Drawing