(19)
(11) EP 0 964 052 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
15.12.1999  Patentblatt  1999/50

(21) Anmeldenummer: 99106980.8

(22) Anmeldetag:  09.04.1999
(51) Internationale Patentklassifikation (IPC)6C10L 1/22
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 16.04.1998 DE 19816797

(71) Anmelder: Clariant GmbH
65929 Frankfurt am Main (DE)

(72) Erfinder:
  • Krull, Matthias, Dr.
    46147 Oberhausen (DE)

   


(54) Verwendung von stickstoffhaltigen Ethylencopolymeren zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung


(57) Gegenstand der Erfindung sind Verfahren zur Verbesserung der Schmierwirkung von Brennstoffölen, gekennzeichnet durch die Verwendung eines die Schmierwirkung verbessernden Additivs, welches wenigstens ein Copolymer enthält, das neben Struktureinheiten, die sich vom Ethylen ableiten auch solche Struktureinheiten aufweist, die sich von einer ethylenisch ungesättigten Verbindung ableiten, die mindestens ein aromatisch oder aliphatisch gebundenes Stickstoffatom aufweisen.


Beschreibung


[0001] Die vorliegende Erfindung betrifft die Verwendung von stickstoffhaltigen Ethylencopolymeren zur Verbesserung der Schmierwirkung von Brennstoffölen.

[0002] Mineralöle und Mineralöldestillate, die als Brennstofföle verwendet werden, enthalten im allgemeinen 0,5 Gew.-% und mehr Schwefel, der bei der Verbrennung die Bildung von Schwefeldioxid verursacht. Um die daraus resultierenden Umweltbelastungen zu vermindern, wird der Schwefelgehalt von Brennstoffölen immer weiter abgesenkt. Die Dieseltreibstoffe betreffende Norm EN 590 schreibt in Deutschland zur Zeit einen maximalen Schwefelgehalt von 500 ppm vor. In Skandinavien kommen bereits Brennstofföle mit weniger als 200 ppm und in Ausnahmefällen mit weniger als 50 ppm Schwefel zur Anwendung. Diese Brennstofföle werden in der Regel dadurch hergestellt, daß man die aus dem Erdöl durch Destillation erhaltenen Fraktionen hydrierend raffiniert. Bei der Entschwefelung werden aber auch andere Substanzen entfernt, die den Brennstoffölen eine natürliche Schmierwirkung verleihen. Zu diesen Substanzen zählen unter anderem polyaromatische und polare Verbindungen.

[0003] Es hat sich nun aber gezeigt, daß die reibungs- und verschleißmindernden Eigenschaften von Brennstoffölen mit zunehmendem Entschwefelungsgrad schlechter werden. Oftmals sind diese Eigenschaften so mangelhaft, daß an den vom Kraftstoff geschmierten Materialien wie z.B. den Verteiler-Einspritzpumpen von Dieselmotoren schon nach kurzer Zeit mit Fraßerscheinungen gerechnet werden muß. Die mittlerweile in Skandinavien vorgenommene weitere Absenkung des 95 %-Destillationspunkts auf unter 370°C, teilweise auf unter 350°C oder unter 330°C verschärft diese Problematik weiter.

[0004] Im Stand der Technik sind daher Ansätze beschrieben, die eine Lösung dieses Problems darstellen sollen (sogenannte Lubricity-Additive).

[0005] EP-A-0 680 506 offenbart Ester aus Carbonsäuren mit 2 bis 50 Kohlenstoffatomen als Additive zur Verbesserung der Schmierwirkung von schwefelarmen Mitteldestillaten mit unter 0,5 Gew.-% S.

[0006] DD-126 090 offenbart schmierverbessernde Additive aus Copolymerisaten von Ethylen und ungesättigten Carbonsäureestern, vorzugsweise Vinylacetat, die den Kraftstoffen in Mengen von 0,01 bis 0,5 Gew.-% zugesetzt werden.

[0007] DE-A-15 94 417 offenbart Zusätze zur Verbesserung der Schmierwirkung oleophiler Flüssigkeiten, die Ester aus Glykolen und Dicarbonsäuren mit mindestens 11 Kohlenstoffatomen enthalten.

[0008] EP-A-0 635 558 offenbart Dieselöle mit Schwefelgehalten unter 0,2 Gew.-% und Aromatengehalten unter 30 Gew.-%, die mit 100 bis 10.000 ppm C1-C5-Alkylestern von ungesättigten geradkettigen C12-C22-Fettsäuren, die von Ölsaaten abstammen, additiviert werden, wodurch ihre Schmierwirkung verbessert wird.

[0009] EP-A-0 764 198 offenbart Additive, die die Schmierwirkung von Brennstoffölen verbessern, und die polare Stickstoffverbindungen auf Basis von Alkylaminen oder Alkylammoniumsalzen mit Alkylresten von 8 bis 40 Kohlenstoffatomen enthalten.

[0010] Aufgabe der vorliegenden Erfindung war es, ein Verfahren zu finden, das weitgehend von Schwefel und aromatischen Verbindungen befreiten Mitteldestillaten zu einer Verbesserung der Schmierwirkung verhilft. Gleichzeitig sollen mit diesem Verfahren auch die Kaltfließeigenschaften dieser Mitteldestillate günstig beeinflußt werden.

[0011] Überraschenderweise wurde gefunden, daß Copolymere aus Ethylen und stickstoffhaltigen ethylenisch ungesättigten Verbindungen den mit ihnen additivierten Brennstoffölen die geforderten Eigenschaften verleihen.

[0012] Gegenstand der Erfindung ist die Verwendung von 0,001 bis 2 Gew.-% (bezogen auf das Brennstofföl) eines Additivs, welches wenigstens ein Copolymer enthält, das neben Struktureinheiten, die sich vom Ethylen ableiten auch solche Struktureinheiten aufweist, die sich von mindestens einer ethylenisch ungesättigten Verbindung ableiten, die mindestens ein aromatisch oder aliphatisch gebundenes Stickstoffatom, mit Ausnahme von Stickstoffatomen in Imidbindung, aufweist, zur Verbesserung der Schmierwirkung von Brennstoffölen.

[0013] Das erfindungsgemäße Verfahren wird vorzugsweise für solche Brennstofföle angewandt, die maximal 0,2 Gew.-% Schwefel aufweisen, und die zur Gruppe der Mitteldestillate gehören. Besonders gut geeignet ist das Verfahren zur Additivierung von Ölen, die weniger als 0,05, insbesondere weniger als 0,035 Gew.-% Schwefel enthalten.

[0014] Bei den ethylenisch ungesättigten Comonomeren, die neben Ethylen Bestandteil des im erfindungsgemäßen Verfahren verwendeten Copolymeren sind, handelt es sich vorzugsweise um stickstoffhaltige Verbindungen, die eine zur radikalischen Polymerisation befähigte ethylenische Doppelbindung enthalten. Als geeignete Comonomere seien genannt:

a) Alkylaminoacrylate bzw. -methacrylate, wie z.B. Aminoethylacrylat, Aminopropylacrylat, Amino-n-butylacrylat, N-Methylaminoethylacrylat, N,N-Dimethylaminoethylacrylat, N,N-Diethylaminoethylacrylat, N,N-Dimethylaminopropylacrylat, N,N-Diethylaminopropylacrylat sowie die entsprechenden Methacrylate,

b) Alkylacrylamide und -methacrylamide, wie z.B. Ethylacrylamid, Butylacrylamid, N-Octylacrylamid, N-Propyl-N-methoxyethylacrylamid, N-Acryloylphthalimid, N-Acryloylsuccinimid, N-Methylolacrylamid, sowie die entsprechenden Methacrylamide,

c) Vinylamide, wie z.B. N-Vinyl-N-methylacetamid, N-Vinylsuccinimid,

d) Aminoalkylvinylether, wie z.B. Aminopropylvinylether, Diethylaminoethylvinylether, Dimethylaminopropylvinylether,

e) Allylamin, N-Allyl-N-methylamin, N-Allyl-N-ethylamin,

f) eine Vinylgruppe tragende Heterozyklen, wie z.B. N-Vinylpyrrolidon, Methylvinylimidazol, 2-Vinylpyridin, 4-Vinylpyridin, 2-Methyl-5-vinylpyridin, Vinylcarbazol, Vinylimidazol, N-Vinyl-2-piperidon, N-Vinylcaprolactam.



[0015] Die Monomeren sind kommerziell verfügbar oder nach bekannten Methoden herstellbar. So sind die verschiedenen Aminoalkylen(meth)acrylate z.B. gemäß EP-A-0188639 durch Umesterung von (Meth)acrylsäureestern mit Aminoalkoholen in Gegenwart eines Titankatalysators zugänglich. Die Herstellung von Aminoalkylvinylethern ist z.B. in Liebigs Ann. Chem. 601 (1956), 81 beschrieben.

[0016] Für die Verwendung im erfindungsgemäßen Verfahren sind vorzugsweise solche Copolymere geeignet, die 0,1 bis 15, insbesondere 1 bis 10 mol-% eines oder mehrerer der stickstoffhaltigen Comonomere enthalten. Weiterhin sind im erfindungsgemäßen Verfahren auch Mischungen solcher Copolymere verwendbar. Die Schmelzviskositäten der verwendbaren Copolymere liegen bei 140°C vorzugsweise unterhalb von 10 000 mPas, insbesondere zwischen 10 und 1000 mPas und speziell zwischen 20 und 500 mPas.

[0017] Die im erfindungsgemäßen Verfahren verwendbaren Copolymere enthalten neben Ethylen mindestens ein Comonomeres mit Stickstoffatomen. Sie können noch weitere, beispielsweise ein, zwei oder drei weitere olefinisch ungesättigte Comonomere enthalten. Solche olefinisch ungesättigten Comonomere sind beispielsweise Vinylester, Acrylsäure, Methacrylsäure, Acrylester, Methacrylester, Vinylether oder Olefine. Besonders bevorzugte Vinylester sind Vinylacetat, Vinylpropionat und Vinylester von Neocarbonsäuren mit 8, 9, 10, 11 oder 12 Kohlenstoffatomen. Besonders bevorzugte Acryl- und Methacrylester sind solche mit Alkoholen mit 1 bis 20 Kohlenstoffatomen, insbesondere von Methanol, Ethanol, Propanol, n-Butanol, iso-Butanol und tert.-Butanol. Besonders bevorzugte Olefine sind solche mit 3 bis 10 Kohlenstoffatomen, speziell Propen, Isobutylen, Diisobutylen, 4-Methylpenten-1 und Hexen. Enthalten die Copolymeren ein weiteres Comonomer, so beträgt dessen molarer Anteil vorzugsweise bis zu 15 mol-%, insbesondere bis zu 12 mol-%.

[0018] Die Copolymerisation der Comonomeren erfolgt nach bekannten Verfahren (vgl. hierzu z.B. Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage, Bd. 19, Seiten 169 bis 178). Geeignet sind die Polymerisation in Lösung, in Suspension, in der Gasphase und die Hochdruckmassepolymerisation. Vorzugsweise wendet man die Hochdruckmassepolymerisation an, die bei Drücken von 50 bis 400 MPa, vorzugsweise 100 bis 300 MPa und Temperaturen von 50 bis 350°C, vorzugsweise 100 bis 300°C, durchgeführt wird. Die Reaktion der Comonomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)-peroxidicarbonat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Comonomerengemisch, eingesetzt.

[0019] Die gewünschte Schmelzviskosität der Copolymerisate wird bei gegebener Zusammensetzung des Comonomerengemisches durch Variation der Reaktionsparameter Druck und Temperatur und gegebenenfalls durch Zusatz von Moderatoren eingestellt. Als Moderatoren haben sich Wasserstoff, gesättigte oder ungesättigte Kohlenwasserstoffe, z.B. Propan, Aldehyde, z.B. Propionaldehyd, n-Butyraldehyd oder Isobutyraldehyd, Ketone, z.B. Aceton, Methytethylketon, Methylisobutylketon, Cyclohexanon oder Alkohole, z.B. Butanol, bewährt. In Abhängigkeit von der angestrebten Viskosität werden die Moderatoren in Mengen bis zu 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Comonomerengemisch, angewandt.

[0020] Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein, wenngleich sich die lösungsmittelfreie Arbeitsweise besonders bewährt hat. Nach einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Comonomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Hierbei können die Comonomerenströme unterschiedlich zusammengesetzt sein (EP-B-0 271 738).

[0021] Weiterhin läßt sich die Schmierwirkung von Ölen in erfindungsgemäßer Weise dadurch verbessern, daß man ihnen Ethylencopolymere zusetzt, die mit Aminogruppen tragenden Verbindungen umgesetzte Säuregruppen enthalten. Dazu geeignete Ethylencopolymere und Ethylenterpolymere sind beispielsweise solche, die Acrylsäure, Methacrylsäure, Itaconsäure, Fumarsäure, Maleinsäure oder Maleinsäureanhydrid enthalten. Zur Herstellung eines die Schmierwirkung von Ölen verbessernden Additivs werden diese säuregruppenhaltigen Copolymere an den Säuregruppen mit Ammoniak, C1- bis C10-Alkylresten tragenden primären oder sekundären Aminen wie Methylamin, Dimethylamin, Ethylamin, Propylamin, Butylamin, oder Alkanolaminen wie Ethanolamin, Propanolamin, Diethanolamin, N-Ethylethanolamin, Diglykolamin, 2-Amino-2-methylpropanolamin sowie deren Mischungen umgesetzt. Es werden 0,1 bis 1,2 mol, vorzugsweise äquimolare Mengen, Amin pro mol Säure verwendet. Die Umsetzung mit Hydroxyaminen kann sowohl über die OH-Gruppe zu Estern als auch über eine NH2-Gruppe zu Amiden erfolgen.

[0022] Zur erfindungsgemäßen Verbesserung der Schmierwirkung werden die Copolymerisate Mineralölen oder Mineralöldestillaten in Form von Lösungen oder Dispersionen die 10 bis 90 Gew.-%, bevorzugt 20 - 80 Gew.-%, der Polymerisate enthalten, zugesetzt. Geeignete Lösungs- oder Dispersionsmittel sind aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, z.B. Benzinfraktionen, Kerosin, Decan, Pentadecan, Toluol, Xylol, Ethylbenzol oder kommerzielle Lösungsmittelgemische wie Solvent Naphtha, ®Shellsol AB, ®Solvesso 150, ®Solvesso 200, ®Exxsol-, ®ISOPAR- und Shellsol D-Typen. Durch die Copolymerisate in ihren Schmiereigenschaften verbesserte Mineralöle oder Mineralöldestillate enthalten 0,001 bis 2, vorzugsweise 0,005 bis 0,5 Gew.-% Copolymerisat, bezogen auf das Destillat.

[0023] Im erfindungsgemäßen Verfahren können weiterhin Mischungen verwendet werden, die aus Copolymeren der beanspruchten Art, jedoch unterschiedlicher qualitativer und/oder quantitativer Zusammensetzung und/oder unterschiedlicher (bei 140°C gemessener) Viskosität bestehen. Das Mischungsverhältnis (in Gewichtsteilen) der Copolymeren kann über einen weiten Bereich variiert werden und z.B. 20:1 bis 1:20, vorzugsweise 10:1 bis 1:10 betragen. Auf diesem Wege lassen sich die Additive gezielt individuellen Anforderungen anpassen.

[0024] Zur Herstellung von Additivpaketen für spezielle Problemlösungen können im erfindungsgemäßen Verfahren die Copolymere auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften und/oder Schmierwirkung von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind Vinylacetat enthaltende Copolymerisate oder Terpolymerisate des Ethylens, polare Verbindungen, die eine Paraffindispergierung bewirken (Paraffindispergatoren), Kammpolymere sowie öllösliche Amphiphile.

[0025] So hat sich die Verwendung stickstoffhaltiger Copolymere mit Copolymerisaten hervorragend bewährt, die 10 bis 40 Gew.-% Vinylacetat und 60 bis 90 Gew.-% Ethylen enthalten.

[0026] Zur Verbesserung der Schmierwirkung können im erfindungsgemäßen Verfahren auch Mischungen mit Paraffindispergatoren eingesetzt werden. Diese Additive reduzieren die Größe der Paraffinkristalle und bewirken, daß die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Weiterhin verstärken sie die Schmierwirkung der stickstoffhaltigen Copolymere. Als Paraffindispergatoren haben sich öllösliche polare Verbindungen mit ionischen oder polaren Gruppen, z.B. Aminsalze und/oder Amide bewährt, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534). Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigter Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP 0 154 177), die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP 0 413 279 B1) und nach EP 0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole. Auch Alkylphenol-Aldehydharze sind als Paraffindispergatoren geeignet.

[0027] Schließlich werden in einer weiteren bewährten Variante des Verfahrens die stickstoffhaltigen Copolymerisate zusammen mit Kammpolymeren verwendet. Hierunter versteht man Polymere, bei denen Kohlenwasserstoffreste mit mindestens 8, insbesondere mindestens 10 Kohlenstoffatomen an einem Polymerrückgrat gebunden sind. Vorzugsweise handelt es sich um Homopolymere, deren Alkylseitenketten mindestens 8 und insbesondere mindestens 10 Kohlenstoffatome enthalten. Bei Copolymeren weisen mindestens 20 %, bevorzugt mindestens 30 % der Monomeren Seitenketten auf (vgl. Comb-like Polymers-Structure and Properties; N.A. Platé and V.P. Shibaev, J. Polym. Sci. Macromolecular Revs. 1974, 8, 117 ff). Beispiele für geeignete Kammpolymere sind z.B. Fumarat/Vinylacetat-Copolymere (vgl. EP 0 153 176 A1), Copolymere aus einem C6- bis C24-α-Olefin und einem N-C6- bis C22-Alkylmaleinsäureimid (vgl. EP 0 320 766), ferner veresterte Olefin/Maleinsäureanhydrid-Copolymere, Polymere und Copolymere von α-Olefinen und veresterte Copolymere von Styrol und Maleinsäureanhydrid.

[0028] Beispielsweise können Kammpolymere durch die Formel

beschrieben werden. Darin bedeuten
A  R

, COOR

, OCOR

, R



-COOR

oder OR

;
D  H, CH3, A oder R



;
E  H oder A;
G  H, R



, R



-COOR

, einen Arylrest oder einen heterocyclischen Rest;
M  H, COOR



, OCOR



, OR



oder COOH;
N  H, R



, COOR



, OCOR, COOH oder einen Arylrest;
R

  eine Kohlenwasserstoffkette mit 8-50 Kohlenstoffatomen;
R



  eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
m  eine Zahl zwischen 0,4 und 1,0; und
n  eine Zahl zwischen 0 und 0,6.

[0029] Das Mischungsverhältnis (in Gewichtsteilen) von stickstoffhaltigen Copolymeren mit Paraffindispergatoren bzw. Kammpolymeren beträgt jeweils 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1.

[0030] Zur Optimierung der Schmierwirkung können im erfindungsgemäßen Verfahren weitere Lubricity-Additive eingesetzt werden. Als Lubricity-Additive haben sich vorzugsweise Fettalkohole, Fettsäuren und Dimerfettsäuren sowie deren Ester und Partialester mit Glykolen (gemäß DE-A-15 94 417), Polyolen wie Glycerin (gemäß EP-A-0 680 506, EP-A-0 739 970) oder Hydroxyaminen (gemäß EP-A-0 802 961) bewährt.

[0031] Das erfindungsgemäße Verfahren ist geeignet, die Schmiereigenschaften von tierischen, pflanzlichen oder mineralischen Ölen zu verbessern. Es ist für die Anwendung bei Mitteldestillaten besonders gut geeignet. Als Mitteldestillate bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Vorzugsweise wird das erfindungsgemäße Verfahren bei solchen Mitteldestillaten angewendet, die 0,5 Gew.-% Schwefel und weniger, insbesondere weniger als 200 ppm Schwefel und in speziellen Fällen weniger als 50 ppm Schwefel enthalten. Es handelt sich dabei im allgemeinen um solche Mitteldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten, die ihnen eine natürliche Schmierwirkung verleihen. Das erfindungsgemäße Verfahren wird weiterhin vorzugsweise in solchen Mitteldestillaten angewendet, die 95 %-Destillationspunkte unter 370°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen.

[0032] Im erfindungsgemäßen Verfahren können auch andere Additive verwendet werden, z.B. Stockpunkterniedriger oder Entwachsungshilfsmittel, Korrosionsinhibitoren, Antioxidantien, Schlamminhibitoren, Dehazer und Zusätze zur Erniedrigung des Cloud-Points.

[0033] Ein weiterer Gegenstand der Erfindung ist ein Mittel zur Verbesserung der Schmierwirkung von Brennstoffölen, das die vorstehend beschriebenen stickstoffhaltigen Ethylencopolymeren enthält.

[0034] Ein weiterer Gegenstand der Erfindung ist ein Brennstofföl mit verbesserter Schmierwirkung, gekennzeichnet durch einen Gehalt von 0,001 bis 2, vorzugsweise 0,005 bis 0,5 Gew.-% der vorstehend beschriebenen stickstoffhaltigen Ethylencopolymeren.

Beispiele


Additive



[0035] 
Additiv 1:
Terpolymer aus Ethylen, 15 Gew.-% Vinylacetat und 8 Gew.-% 1-Vinyl-2-pyrrolidon. Die bei 140 °C gemessene Schmelzviskosität beträgt 150 mPas.
Additiv 2:
Terpolymer aus 22 Gew.-% Vinylacetat und 2,5 Gew.-% 1-Vinyl-2-pyrrolidon und einer Viskosität von 240 mPas bei 140 °C.
Additiv 3:
Copolymer aus Ethylen und 15 Gew.-% 1-Vinyl-2-pyrrolidon und einer Viskosität von 205 mPas bei 140 °C.
Additiv 4:
Terpolymer aus Ethylen, 27 Gew.-% Vinylacetat und 20 Gew.-% N-Vinyl-N-Methyl-Acetamid und einer Schmelzviskosität von 143 mPas bei 140 °C.
Additiv 5:
Copolymer aus Ethylen, 18 Gew.-% N-Vinyl-N-Methyl-Acetamid und einer Schmelzviskosität von 143 mPas bei 140 °C.
Additiv 6:
Terpolymer aus Ethylen, 25 Gew.-% Vinylpropionat und 7 Gew.-% Vinylimidazol und einer Schmelzviskosität von 260 mPas bei 140 °C.
Additiv 7:
Terpolymer aus Ethylen, 13 Gew.-% Vinylpropionat und 10 Gew.-% Dimethylaminoethylmethacrylat und einer Schmelzviskosität von 105 mPas bei 140°C.
Additiv 8:
Terpolymer aus Ethylen, 24 Gew.-% Vinylacetat und 8 Gew.-% Dimethylaminoethylmethacrylat und einer Viskosität von 93 mPas bei 140 °C.


[0036] 
Tabelle 1
Charakterisierung der Testöle:
Die Bestimmung der Siedekenndaten erfolgt gemäß ASTM D-86, die Bestimmung des CFPP-Werts gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015.
  Testöl 1 Testöl 2
Siedebeginn [°C] 195 169
20 % [°C] 226 240
30 % [°C] 232 259
90 % [°C] 281 359
95 % [°C] 300 377
Cloud Point [°C] - 30,5 0
CFPP [°C] - 31 - 2
   
S-Gehalt[ppm] 14 171

Schmierwirkung in Mitteldestillaten



[0037] Die Schmierwirkung der Additive wurde mittels eines HFRR-Geräts der Firma PCS Instruments an additivierten Ölen bei 6 °C durchgeführt. Der High Frequency Reciprocating Rig Test (HFRR) ist beschrieben in D. Wei, H. Spikes, Wear, Vol. 111, No. 2, p. 217, 1986. Die Ergebnisse sind als Reibungskoeffizient und Wear Scar angegeben. Ein niedriger Reibungskoeffizient und ein niedriger Wear Scar zeigen eine gute Schmierwirkung. Alle Additive wurden als 50%ige Dispersion in Solvent Naphtha eingesetzt. Als Vergleich wird ein handelsüblicher Fließverbesserer auf Basis eines Copolymerisats aus Ethylen und 30 Gew.-% Vinylacetat und einer Schmelzviskosität V140 von 105 mPas eingesetzt.
Tabelle 2
Wear Scar in Testöl 1
Beispiel Additiv Reibung Av. Film [%] Wear Scar [µm]
1 - 0,62 19 620
2 250 ppm Additiv 1 0,19 53 470
3 400 ppm Additiv 2 0,17 88 305
4 500 ppm Additiv 2 0,19 57 430
5 300 ppm Additiv 3 0,17 92 265
6 500 ppm Additiv 4 0,20 68 441
7 500 ppm Additiv 5 0,16 85 293
8 250 ppm Additiv 5 0,18 61 375
9 250 ppm Additiv 6 0,17 95 265
10 125 ppm Additiv 6 0,19 58 443
11 300 ppm Additiv 7 0,21 55 441
12 200 ppm Additiv 8 0,19 65 380
13 500 ppm Ethylen-Vinylacetat-Copolymer (Vergleich) 0,31 9 619
Tabelle 3
CFPP-Wirksamkeit in Testöl 1
  100 ppm 200 ppm
Additiv 4 - 38 - 40
Additiv 8 - 37 - 39
Tabelle 4
Wear in Testöl 2
Beispiel Additiv Reibung Av. Film [%] Wear Scar [µm]
14 - 0,45 25 590
15 300 ppm Additiv 1 0,14 88 302
16 300 ppm Additiv 2 0,13 92 275
17 250 ppm Additiv 8 0,16 78 420
18 300 ppm Ethylen-Vinylacetat Copolymer(Vergleich) 0,42 23 585
Tabelle 5
CFPP-Wirksamkeit in Testöl 2
  50 ppm 100 ppm 200 ppm
Additiv 4 - 5 - 8 - 12
Additiv 6 - 6 - 9 - 11
Additiv 8 - 8 - 10 - 13
Liste der verwendeten Handelsbezeichnungen
Solvent Naphtha aromatische Lösemittelgemische mit Siedebereich 180 bis 210°C
®Shellsol AB
®Solvesso 150
®Solvesso 200 aromatisches Lösemittelgemisch mit Siedebereich 230 bis 287°C
®Exxsol Dearomatisierte Lösemittel in verschiedenen Siedebereichen, beispielsweise ®Exxsol D60: 187 bis 215°C
®ISOPAR (Exxon) isoparaffinische Lösemittelgemische in verschiedenen Siedebereichen, beispielsweise ®ISOPAR L: 190 bis 210°C
®Shellsol D hauptsächlich aliphatische Lösemittelgemische in verschiedenen Siedebereichen



Ansprüche

1. Verwendung von 0,001 bis 2 Gew.-% (bezogen auf das Brennstofföl) eines Additivs, welches wenigstens ein Copolymer enthält, das neben Struktureinheiten, die sich vom Ethylen ableiten auch solche Struktureinheiten aufweist, die sich von einer ethylenisch ungesättigten Verbindung ableiten, die mindestens ein aromatisch oder aliphatisch gebundenes Stickstoffatom mit Ausnahme von Stickstoffatomen in Imidbindung aufweist, zur Verbesserung der Schmierwirkung von Brennstoffölen.
 
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das stickstoffhaltige Comonomer ein Derivat der Acrylsäure oder eine stickstoffhaltige organische Verbindung, die einen Vinylrest trägt, ist.
 
3. Verwendung nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß es sich bei dem stickstoffhaltigen Comonomeren um

a) Aminoethylacrylat, Aminopropylacrylat, Amino-n-butylacrylat, N-Methylaminoethylacrylat, N,N-Dimethylaminoethylacrylat, N,N-Diethylaminoethylacrylat, N,N-Dimethylaminopropylacrylat, N,N-Diethylaminopropylacrylat sowie die entsprechenden Methacrylate,

b) Ethylacrylamid, Butylacrylamid, N-Octylacrylamid, N-Propyl-N-methoxyethylacrylamid, N-Methylolacrylamid sowie die entsprechenden Methacrylamide,

c) N-Vinyl-N-methylacetamid,

d) Aminopropylvinylether, Diethylaminoethylvinylether, Dimethylaminopropylvinylether,

e) Allylamin, N-Allyl-N-methylamin, N-Allyl-N-ethylamin,

f) N-Vinylpyrrolidon, Methylvinylimidazol, 2-Vinylpyridin, 4-Vinylpyridin, 2-Methyl-5-vinylpyridin, Vinylcarbazol, Vinylimidazol, N-Vinyl-2-piperidon oder N-Vinylcaprolactam handelt.


 
4. Verwendung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der molare Anteil des stickstoffhaltigen Comonomeren am Copolymeren 0,1 bis 15 %, insbesondere 1 bis 10% beträgt.
 
5. Verwendung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schmelzviskositäten der Copolymere unterhalb 10.000 mPas und vorzugsweise 10 bis 1.000 mPas betragen.
 
6. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Copolymere neben Ethylen und stickstoffhaltigen Comonomeren ein, zwei oder drei weitere Comonomere umfassen, die aus der Gruppe bestehend aus Vinylestern, Acrylsäure, Acrylester, Vinylether und/oder Alkenen ausgewählt sind.
 
7. Mittel zur Verbesserung der Schmierwirkung von Brennstoffölen, gekennzeichnet durch einen Gehalt an den in einem oder mehreren der Ansprüche 1 bis 6 beschriebenen stickstoffhaltigen Ethylencopolymeren.
 





Recherchenbericht