(19)
(11) EP 0 976 457 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
02.02.2000  Patentblatt  2000/05

(21) Anmeldenummer: 99113591.4

(22) Anmeldetag:  08.07.1999
(51) Internationale Patentklassifikation (IPC)7B02C 19/18
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 30.07.1998 DE 19834447

(71) Anmelder: Wacker-Chemie GmbH
81737 München (DE)

(72) Erfinder:
  • Schantz, Matthäus
    84367 Reut (DE)
  • Flottmann, Dirk, Dr.
    84503 Altötting (DE)

(74) Vertreter: Potten, Holger et al
Wacker-Chemie GmbH Zentralabteilung Patente, Marken und Lizenzen Hanns-Seidel-Platz 4
81737 München
81737 München (DE)

   


(54) Verfahren zum Behandeln von Halbleitermaterial


(57) Verfahren zum Behandeln von Halbleitermaterial bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterial.

[0002] Für die Herstellung von Solarzellen oder elektronischen Bauelementen, wie beispielsweise Speicherelementen oder Mikroprozessoren, wird hochreines Halbleitermaterial benötigt. Silizium ist das in der Elektronikindustrie mit Abstand am meisten verwendete Halbleitermaterial. Reines Silizium wird durch thermische Spaltung von Siliziumverbindungen, wie beispielsweise Trichlorsilan, gewonnen und fällt dabei häufig in Form von polykristallinen Kristallstäben an. Die Kristallstäbe werden als Ausgangsmaterial beispielsweise zur Herstellung von Einkristallen benötigt. Zur Herstellung von Einkristallen nach dem Czochralski-Verfahren müssen die Kristallstäbe zunächst in Bruchstücke zerkleinert werden. Diese Bruchstücke werden in einem Tiegel geschmolzen und anschließend wird der Einkristall aus der entstandenen Schmelze gezogen. Im günstigsten Fall sollten dabei die gezielt in das Halbleitermaterial eingebrachten Dotierstoffe die einzige Verunreinigung sein, die im Halbleitermaterial vorliegt. Es sind bereits verschiedene Verfahren zur Zerkleinerung von Kristallstäben vorgeschlagen worden, deren Ziel es ist, die Verunreinigung des Halbleitermaterials zu minimieren.

[0003] EP-573 855 A1 (entspricht US 5,464,159) beschreibt ausführlich die mit dem Zerkleinern von Halbleitermaterialien in Zusammenhang stehenden Probleme sowie verschieden bereits vorgeschlagene Lösungen. EP-573 855 A1 offenbart ein Verfahren, bei dem ein Kristallstab mit Hilfe von fokussierten Stoßwellen zertrümmert wird. Dabei ist durch wiederholtes Einwirken von Stoßwellen auf das Halbleitermaterial dieses so lange zu zerkleinern, bis die Bruchstücke des Halbleitermaterials kleiner sind, als eine jeweils erwünschte Grenzgröße der Bruchstücke.

[0004] Alle bekannten Zerkleinerungsverfahren haben den Nachteil, daß Größe und Gewichtsverteilungen der Bruchstücke durch Verfahrensparameter nicht gezielt eingestellt werden können.

[0005] Zudem hat sich gezeigt, daß, anders als in EP-573 855 A1 beschrieben, ein allmähliches Zerkleinern durch wiederholtes Aufbringen niederenergetischer Schockwellen nicht zum Zerkleinern des Halbleitermaterials geeignet ist, da es in der Praxis unmöglich ist, jedes einzelne Bruchstück erneut zu fokussieren und nochmals nachzuzerkleinern. Bei dieser Art der Nachzerkleinerung würde zudem ein unerwünscht großer Anteil kleiner Bruchstücke erreicht. Darüber hinaus wird die Variabilität der Einstellung von Bruchgrößenklassen einschränkt.

[0006] Ein Tiegel zum Ziehen von Einkristallen, der mit zu großen polykristallinen Silizium Bruchstücken gefüllt wird, besitzt einen vergleichsweise geringen Füllungsgrad und enthält somit nicht genügend Material um einen Einkristall der notwendigen oder erwünschten Größe zu ziehen. Die zu großen Bruchstücke führen auch zu einer Verlängerung der Aufschmelzzeit im Tiegel, was wiederum zu unerwünschten Kontaminationen führen kann. Zu große Bruchstücke müssen daher nachzerkleinert werden um diese Nachteile zu vermeiden.

[0007] Zu kleine Bruchstücke sind wegen ihrer großen Oberfläche eher verunreinigt und müßten daher aufwendig von Verunreinigungen befreit werden. Aus diesem Grund werden kleine Bruchstücke und Feinstaub, der beim Zerkleinern der Polysiliziumstäbe entsteht, nicht zur Herstellung von Einkristallen verwendet, sondern werden z.B. zur Herstellung von Solarsilizium verwendet.

[0008] Zur Herstellung von einkristallinem Halbleitermaterial mittels Tiegelziehen sollten die Bruchstücke des polykristallinen Halbleitermaterials daher vorzugsweise eine maximale Länge von 2 bis 25 cm haben, wobei der überwiegende Teil eine maximale Länge von 4 bis 12 cm besitzen sollte.

[0009] Es ist wünschenswert, ein Verfahren zur Behandlung von Halbleitermaterial zur Verfügung zu haben, welches es erlaubt, das Halbleitermaterial derart zu zerkleinern, daß der Gewichtsanteil bestimmter Bruchgrößen durch Verfahrensparameter derart einzustellen ist, daß eine für die weitere Verarbeitung bevorzugte Bruchgrößenverteilung erhalten wird.

[0010] Ferner sollten die bei der Behandlung entstehenden Kontaminationen geringer sein als beim herkömmlichen Brechen mit Handmeißel in Räumen mit Reinklassen größer 1000.

[0011] Beim herkömmlichen Brechen entstehen in der Regel mittlere Kontaminationen von 4 ppb Metall auf der Oberfläche der Polysilizium Bruchstücke.

[0012] Zudem ist es wünschenswert, ein Verfahren zur Verfügung zu haben, welches beim Zerkleinern eine Reinigung der Oberfläche des Halbleitermaterials ermöglicht und keine weitere Verunreinigung in das Material einbringt.

[0013] Die Erfindung betrifft ein Verfahren zum Behandeln von Halbleitermaterialien, bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.

[0014] Der Energiewandler hat zu keinem Zeitpunkt einen direkten Kontakt mit dem Halbleitermaterial. Die Schockwellen werden von ihrem Entstehungsort vorzugsweise durch ein flüssiges Medium beispielsweise Wasser, vorzugsweise entgastes Wasser höchster Reinheit, übertragen.

[0015] Vorzugsweise hat der Energiewandler einen Abstand von 1 bis 12 cm, besonders bevorzugt von 1,5 bis 3 cm von der Oberfläche des Halbleitermaterials.

[0016] Schockwellen sind beispielsweise durch Sprengladungen, elektrische Entladungen, auf elektromagnetischem oder piezoelektrischem Weg erzeugbar.

[0017] Vorzugsweise hat eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ.

[0018] Vorzugsweise hat die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs.

[0019] Vorzugsweise wird im Verfahren nur eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleiterstabes eingesetzt, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.

[0020] Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zum Zerkleinern von Halbleitermaterial.

[0021] Für das erfindungsgemäße Verfahren ist es günstig, aber nicht zwingend, Schockwellen durch die elektrische Entladung zwischen zwei Elektroden im Brennpunkt eines Halbellipsoidreflektors zu erzeugen. Das sich bei der Entladung zwischen den Elektroden ausbildende Plasma führt zu einer sich mit Schallgeschwindigkeit im Übertragungsmedium ausbreitenden, kugelförmigen Schockwellenfront, die von den Wänden des Reflektors reflektiert und im Brennpunkt eines gedachten, zum Reflektor spiegelsymmetrisch angeordneten Halbellipsoids gebündelt wird. Um diesen Brennpunkt liegt der Fokussierungsbereich des Halbellipsoidreflektors.

[0022] Vorzugsweise wird als Energiewandler ein Halbellipsoidreflektor eingesetzt.

[0023] Die Größe des Energieeintrages bestimmt, in welchem Bereich und wieviele Mikrorisse sich bilden und damit die Bruchgröße.

[0024] So besitzt sehr sprödes, brüchiges Material schon zahlreiche Mikrorisse und bedarf nur noch eines Auseinanderbrechens dieser Teile, was durch eine unfokussierte Schockwelle erreicht werden kann.

[0025] Eine Fokussierung der Schockwelle auf den Halbleiterstab ist in der Regel bei Stäben aus derzeit üblichen Materialien nicht erforderlich.

[0026] Je nach zukünftiger Materialentwicklung kann es jedoch erforderlich werden, die Schockwelle auf den Halbleiterstab zu fokussieren.

[0027] Durch das erfindungsgemäße Verfahren wird nicht ein kleiner Teil des Stabes zerkleinert, sondern der ganze mit der Schockwelle beaufschlagte Stabbereich wird homogen zerkleinert.

[0028] Zweckmäßigerweise wird eine mit Wasser gefüllte Zerkleinerungskammer bereitgestellt, die im einfachsten Fall ein Wasserbecken sein kann, in welche das zu zerkleinernde Halbleitermaterial eingebracht wird. Die Schockwellen werden in die Zerkleinerungskammer eingekoppelt. Zu diesem Zweck kann sich der Halbellipsoidreflektor in der Zerkleinerungskammer befinden oder an eine ihrer Begrenzungsflächen montiert sein. Gegebenenfalls wird der Ort der Schockwellenerzeugung durch eine für Fremdstoffe undurchlässige, Schockwellen übertragende Membran räumlich vom Halbleitermaterial abgetrennt, um es vor Verunreinigungen zu schützen.

[0029] Vorzugsweise werden 1 bis 20 Energiewandler eingesetzt. Besonders bevorzugt werden 2, 4, 6, 8, 10, 12, 14, 16, 18 oder 20 Energiewandler eingesetzt. Insbesondere bevorzugt werden 2 Energiewandler eingesetzt.

[0030] Beim Einsatz einer größeren Anzahl von Energiewandlern (z. B. mehr als zwei Energiewandler) werden diese vorzugsweise entlang des Halbleiterstabes derart angeordnet, daß ein größerer Abschnitt des Stabes oder der ganze Halbleiterstab auf einmal mit einem Puls behandelt wird.

[0031] Beim Einsatz von 1 oder zwei Energiewandlern wird der Stab vorzugsweise Stück für Stück mit jeweils einem Puls behandelt.

[0032] Bevorzugt werden beim Einsatz mehrerer Energiewandler jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet.

[0033] Vorzugsweise erfolgt die Zerkleinerung des Halbleitermaterials bei niedrigen Temperaturen, beispielsweise Raumtemperatur, so daß eine durch hohe Temperaturen induzierte und/oder beschleunigte Diffusion oberflächlich adsorbierter Fremdstoffe, insbesondere Fremdmetalle, weitgehend vermieden wird.

[0034] Die Arbeitsflächen der Werkzeuge für den Transport und die Positionierung des Halbleitermaterials sind, um Verunreinigungen auszuschließen, vorzugsweise aus Kunststoff, wie beispielsweise Polyethylen (PE), Polytetrafluorethylen (PTFE) oder Polyvinylidendifluorid (PVDF), oder aus dem Werkstoff, wie das zerkleinerungsgut selbst, gefertigt. Ebenso hat es sich als günstig erwiesen, die Innenflächen der Zerkleinerungskammer mit Kunststoff auszukleiden.

[0035] Das erfindungsgemäße Verfahren ermöglicht erstmals den Einsatz der Schockwellenzerkleinerung zur Zerkleinerung von Halbleitermaterial derart, daß eine gezielt einstellbare Bruchgrößenverteilung des Halbleitermaterials erhalten wird.

[0036] Das erfindungsgemäße Verfahren hat den Vorteil, daß durch die Stärke und ggf. auch Richtung der Impulse, die auf die Kristalloberfläche wirken, eine Kraft ausgeübt wird, durch deren Wirkung, die Anzahl und Richtung von Mikrorissen beeinflußt wird. Die Anzahl und Ausrichtung der Risse entlang der Korngrenzen des Materials bestimmt die Form und Größe der neu entstehenden Bruchstücke.

[0037] Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß noch im Wirkkreis des Impulsgebers liegende Bruchstücke durch weitere Impulse nicht weiter nachzerkleinert werden, so daß die Nachzerkleinerung bei diesem Verfahren keinen wesentlichen Einfluß besitzt. Der durch die Schlagwirkung entstehende, Kontamination verursachende, Abrieb von der Stabunterlage kann durch die geometrische Anordnung der Energiewandler stark minimiert werden.

[0038] Besonders bevorzugt ist hierbei die Anordnung, bei der je zwei Energiewandler im Winkel von 180° gegeneinander stehen, wobei sich das Halbleitermaterial vorzugsweise in der Mitte zwischen den Energiewandlern befindet.

[0039] Überraschenderweise zeigte sich, daß das erfindungsgemäße Verfahren auch eine Reinigung der Oberfläche des Halbleitermaterials bewirkt, wenn diese mit mehr als 2 ppb an Metall verunreinigt ist.

[0040] Die Erfindung betrifft somit auch die Verwendung des erfindungsgemäßen Verfahrens zur Reinigung von Halbleitermaterial.

[0041] Bei der Durchführung des erfindungsgemäßen Verfahrens entstehen in Folge der Schockwellen Kavitationsblasen, welche einen Reinigungseffekt auf der Oberfläche des Halbleitermaterials bewirken. Zudem bilden sich in den Kavitationsblasen oxidierende Verbindungen, die üblicherweise zur Reinigung von Halbleitermaterialien eingesetzt werden. So finden sich in der Flüssigkeit in der das Verfahren durchgeführt wird nach der Durchführung des Verfahrens z. B. Nitrat, Nitrit, OH-Radikale und H2O2. Die Gesamtkonzentration dieser Verbindungen liegt im Bereich von µmol/l bis mmol/l. In den Kavitationsblasen treten die oxidierenden Verbindungen jedoch in sehr hohen lokalen Konzentrationen, die im mol/l Bereich liegen, auf, da die Verbindungen zunächst auf die Kavitationsblasen beschränkt sind, d. h. dort entstehen und z. T. auch wieder zerstört werden. So tritt im erfindungsgemäßen Verfahren ein Reinigungseffekt auf nicht nur durch die Implosion der Kavitationsblasen an der Oberfläche des Halbleitermaterials auf, sondern auch durch die Reinigungswirkung der oxidierenden Verbindungen die in hohen lokalen Konzentrationen auf die Oberfläche einwirken, wenn die Gasblasen an der Oberfläche des Halbleitermaterials aufbrechen.

[0042] Das erfindungsgemäße Verfahren ist zur Behandlung massiver, großvolumiger Körper aus Halbleitermaterial, bevorzugt aus mono- oder polykristallinem Silicium, geeignet.

[0043] Vorzugsweise handelt es sich bei dem Halbleitermaterial um polykristallines Silizium.

[0044] Mit dem erfindungsgemäßen Verfahren gelingt es, Halbleitermaterial, insbesondere Silicium, bei niedrigen Temperaturen und ohne die Berührung eines Brechwerkzeugs zu Bruchstücken mit einer maximalen Länge von 110 mm bis 250 mm zu zerkleinern und gleichzeitig zu reinigen. Bei fehlender oder nur geringer oberflächlicher Verunreinigung des zu zerkleinernden Halbleitermaterials kann die bisher übliche Oberflächenreinigung der Bruchstücke z. B. durch Ätzen reduziert oder eingespart werden.

[0045] Durch das Brechen von Halbleitermaterial mittels des erfindungsgemäßen Verfahrens kommt es zu einer Kontamination kleiner 2 ppb Metall. Bruchstücke, die nur durch Metallstaub der Umgebung auf 4 ppb Metall verunreinigt wurden, werden durch das erfindungsgemäße Verfahren auf kleiner 2 ppb Metall gereinigt. Selbst in herkömmlicher Weise handgebrochenes Halbleitermaterial, bei dem die Verunreinigung fester in der Oxidschicht des Polysilizium Bruchstückes sitzt, werden durch das erfindungsgemäße Verfahren im Mittel auf 3 ppb Metall gereinigt. Zu einer weiteren Zerkleinerung unter die jeweils erwünschte Teilchengröße kommt es dabei nicht soweit die Teile bereits per Hand in diesen Größenbereich zerkleinert wurden.

[0046] Fig. 1 zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens wie sie in Beispiel 1 verwendet wird.

[0047] Das folgendene Beispiel dient der weiteren Erläuterung der Erfindung.

Beispiel:



[0048] Ein Stück eines aus einer Abscheideanlage stammenden, polykristallinen Siliziumstabes (1) wurde auf einer Unterlage aus Polysiliziumstangen (2) vollständig in ein wassergefülltes Becken (3) eingetaucht. Im Abstand von 2 cm von der Staboberfläche sind zwei Halbellipsoidreflektoren (4) derart angeordnet, daß sie zueinander einen Winkel von 180° bilden, wobei sich in der Mitte zwischen den Halbellipsoidreflektoren der Siliciumstab (1) befindet. Die Halbellipsoidreflektoren (4) werden über Versorgungsleitungen (5) mit den dazugehörigen Energieversorgungseinrichtungen (6) verbunden.

[0049] Ein Schockwellenpuls mit einer Pulsenergie von 12kJ und einer Pulsdauer von 3 µs wurde durch Zünden eines Lichtbogens zwischen den Elektroden (8) des Halbellipsoidreflektors erzeugt. Die Schockwelle läuft über eine elastische Membran (7) zur Oberfläche des Siliciumstabes (1). Die Position des Stabs im Becken war so gewählt, daß er zumindest annähernd mit dem Fokussierungsbereich eines Halbellipsoidreflektors übereinstimmte. Das der Schockwelle ausgesetzten Stabstück hatte einen Durchmesser von 190 mm und eine Länge von 1,20 m. Die Behandlung führte zu Bruchstücken folgender Bruchgröße:
Bruchgröße (längste Ausdehnung/cm) Anteil (Gew.%)
0 bis 1 2
> 1 bis 4.5 3
> 4.5 bis 7 15
> 7 bis 12 75
> 12 5


[0050] Diese Größenverteilung ist für einer Weiterverarbeitung im Tiegelziehprozeß sehr gut geeignet.


Ansprüche

1. Verfahren zum Behandeln von Halbleitermaterial bei dem eine oder mehrere mittels eines Energiewandlers erzeugte Schockwellen, in einem flüssigen Medium auf ein stabförmiges Halbleitermaterial übertragen werden, dadurch gekennzeichnet, daß der Energiewandler vom Halbleitermaterial einen Abstand von 1 cm bis 100 cm hat und eine Schockwelle eine Pulsenergie von 1 bis 20 kJ und eine Pulsanstiegszeit bis zum Energiemaximum von 1 bis 5 µs hat.
 
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Energiewandler einen Abstand von 1 bis 12 cm von der Oberfläche des Halbleitermaterials hat.
 
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet eine Schockwelle eine Pulsenergie von 10 bis 15 kJ, besonders bevorzugt 11 bis 13 kJ hat.
 
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schockwelle eine Pulsanstiegszeit bis zum Energiemaximum von 2 bis 4 µs hat.
 
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Schockwelle pro jeweils beaufschlagtem Abschnitt des Halbleitermaterials eingesetzt wird, die einen Zerfall des bestrahlten Halbleitermaterials bewirkt.
 
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß 1 bis 20 Energiewandler eingesetzt werden.
 
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Energiewandler ein Halbellipsoidreflektor eingesetzt wird.
 
8. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß jeweils zwei Energiewandler im Winkel von 180° gegeneinander angeordnet sind.
 
9. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zum Zerkleinern von Halbleitermaterial.
 
10. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 8 zur Reinigung von Halbleitermaterial.
 




Zeichnung







Recherchenbericht