(19)
(11) EP 0 725 871 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
28.06.2000 Bulletin 2000/26

(21) Application number: 95915725.6

(22) Date of filing: 21.04.1995
(51) International Patent Classification (IPC)7E04C 5/01
(86) International application number:
PCT/CA9500/225
(87) International publication number:
WO 9606/995 (07.03.1996 Gazette 1996/11)

(54)

METAL FIBER WITH OPTIMIZED GEOMETRY FOR REINFORCING CEMENT-BASED MATERIALS

METALLFASER MIT OPTIMIERTER GEOMETRIE ZUR VERSTÄRKUNG VON ZEMENTMATERIALIEN

FIBRE METALLIQUE A GEOMETRIE OPTIMISEE POUR RENFORCEMENT DES MATERIAUX A BASE DE CIMENT


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 31.08.1994 CA 2131212

(43) Date of publication of application:
14.08.1996 Bulletin 1996/33

(73) Proprietor: UNIVERSITE LAVAL
Quebec, Quebec G1K 7P4 (CA)

(72) Inventors:
  • BANTHIA, Nemkumar
    Burnaby, British Columbia V5A 2T9 (CA)
  • KRISHNADEV, Madhavaro
    Sainte-Foy, Quebec G1W 1S7 (CA)

(74) Representative: Casalonga, Axel 
BUREAU D.A. CASALONGA - JOSSE Morassistrasse 8
80469 München
80469 München (DE)


(56) References cited: : 
BE-A- 892 468
US-A- 4 585 487
US-A- 2 677 955
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention pertains to improvements in the field of fiber reinforced cement-based materials. More particularly, the invention relates to a metal fiber having an optimized geometry for reinforcing cement-based materials and the cement-based materials reinforced with these fibers.

    BACKGROUND ART



    [0002] All cement-based materials are weak in tension. In addition, these materials have a very low strain capacity which places them in a brittle category with other brittle materials such as glass and ceramics. It is well known that concrete and other portland cement-based materials may be reinforced with short, randomly distributed fibers of steel to improve upon their mechanical properties. It is also known that for any improvement in the tensile strength, fiber volume fraction has to exceed a certain critical value.

    [0003] Beyond matrix cracking, fibers form stress transfer bridges and hold matrix cracks together such that a further crack opening or propagation causes the fibers to undergo pull-out from the matrix. Pull-out processes being energy intensive, steel fiber reinforced concrete exhibits a stable load-deflection behavior in the region beyond matrix-cracking which places these materials in a category of pseudo-plastic or tough materials such as steel and polymers. Thus, while a plain unreinforced matrix fails in a brittle manner at the occurrence of cracking stresses, the ductile fibers in fiber reinforced concrete continue to carry stresses beyond matrix cracking which helps maintaining structural integrity and cohesiveness in the material. Further, if properly designed, fibers undergo pull-out processes and the frictional work needed for pull-out leads to a significantly improved energy absorption capability. Therefore, fiber reinforced concrete exhibits better performance not only under static and quasi-statically applied loads but also under fatigue, impact and impulsive loadings. This energy absorption attribute of fiber reinforced concrete is often termed "toughness".

    [0004] Concrete is a strain-softening, micro-cracking material. In steel fiber reinforced cement-based composites, fiber bridging action sets in even prior to the occurrence of the perceived matrix macro-cracking. The critical fiber volume fraction or the magnitude of strength improvement at a certain fiber volume fraction, therefore, depends upon the geometry of the fiber. Also dependent upon the geometry is the pull-out resistance of an individual fiber from the cementitious matrix around it, which in turn, governs the shape of the load-deflection plot beyond matrix cracking and the achievable improvement in composite toughness.

    [0005] An improvement in the strength of the composite at a certain fiber volume fraction or, in other words, a reduction in the required critical fiber volume fraction, is possible by excessively deforming the fiber. However, this may lead to too good a fiber anchorage with the matrix and causes a brittle mode of fracture in the post-matrix cracking region. Toughness reductions in the case of excessively deformed fibers, therefore, can be significant. The other possible way is to increase the number of fibers in the composite by reducing the size of the fibers. This solution is known to cause extreme difficulties in terms of concrete mixing and workability, and uniform fiber dispersion often becomes impossible as the fibers tend to clump together giving a highly non-uniform distribution.

    [0006] In US Patent N° 4,585,487 which proposes a concrete-reinforcing fiber having uniform wave shaped corrugations distributed over its entire length, the sole fiber performance characteristics considered for optimization is the fiber pull-out performance. The same also applies in respect of Canadian Patent Nos. 926,146 and 1,023,395 which disclose concrete-reinforcing fibers having a straight central portion with shaped ends. Some fibers have ends which are formed thicker; others have ends which are hooked. All these characteristics are intended to improve anchoring of the fiber in the concrete.

    [0007] For fibers that are used as a reinforcement distributed randomly in a moldable concrete matrix, the property of interest is the overall composite toughness. The composite toughness, although dependent on the pull-out resistance of fibers, cannot quantitatively be derived from the results of an ideal fiber pull-out test where the fiber is aligned with respect to the load direction, since in a real composite, once the brittle cementitious matrix cracks, the fibers are not only embedded to various depths on both sides of the matrix but also inclined at various angles with respect to the loading direction. Further, fibers pulling out as a bundle have a very different performance as compared to a single fiber owing primarily to fiber-fiber interaction. Also, in a real composite, the contribution from the matrix is not entirely absent while fibers are pulling out (as assumed in an ideal pull-out test) due to aggregate interlocking, discontinuous cracking and crack bands. Thus, the idealistic single fiber pull-out test with the fiber aligned with respect to the loading direction is not a realistic representation of what is happening in a real composite. So far, no attempt has been made to rationally optimize the fiber geometry with respect to the properties of the matrix material, i.e. concrete, and the fiber material, i.e. steel or other metal.

    DISCLOSURE OF INVENTION



    [0008] It is therefore an object of the present invention to relate the fiber geometry to the properties of both the matrix and fiber materials, with a view to optimizing the overall composite toughness.

    [0009] It is another object of the invention to provide a metal fiber with an optimized geometry for reinforcing cement-based materials such that the fiber fully utilizes matrix anchoring without fracturing in the pre-matrix macro-cracking region and pulls out at the maximum pull-out resistance in the post-matrix macro-cracking region giving the highest possible toughness.

    [0010] In accordance with the present invention, there is thus provided a metal fiber for reinforcing cement-based materials, which comprises an elongated, substantially straight central portion and sinusoid shaped end portions. The sinusoid at each end portion has an optimum amplitude Ao,opt defined by:

    where
    k1
    = 2.025 x 10-2,
    σc
    = compressive strength of the cement-based material in MPa,
    k2
    = 3.19 x 10-1,
    σu
    = ultimate tensile strength of the metal in MPa,
    α
    = 6.60 x 10-1,
    εf
    = ductility of the metal in percent, and
    β
    = 3.20 x 10-1,
    Af
    = cross-sectional area of the fiber in mm2, and
    Pf
    = perimeter of the fiber in mm.
    The sinusoid further has a wavelength Ls defined by:

    where
    Lf
    = length of the fiber,
    Lm
    = length of the fiber central portion,
    and wherein 0.5 Lf < Lm < 0.75 Lf.

    [0011] As it is apparent from equation (1), both the ultimate tensile strength and the ductility of the fiber material as well as the compressive strength of the cement-based material are important factors in defining the optimum amplitude. The equation also takes into account the cross-sectional area and perimeter of the fiber. It is therefore possible to tailor the fiber geometry according to the properties of the fiber and matrix materials chosen, and ultimately to the composite toughness desired in an actual structure.

    [0012] Where use is made of a cement-based material having a compressive strength σc ranging from about 30 to about 60 MPa, the value of k1c)k2 in equation (1) then ranges from about 6 x 10-2 to about 7.5 x 10-2. A preferred value of k1c)k2 which provides an optimum amplitude Ao,opt in the concrete compressive strength range of 30-60 MPa is about 7 x 10-2.

    [0013] The fiber according to the invention preferably has an end angle θ less than 20°, the angle θ being defined by

    The angle θ preferably ranges from about 12° to about 15°. Such a small end angle θ prevents the fibers from undergoing balling so that there is no problem with mixing.

    [0014] The fibers of the invention which have sinusoids only at the end portions as opposed to those that have sinusoids along their entire length, such as in the case of US Patent N° 4,585,487, provide better reinforcing. At a crack where fibers form stress-transfer bridges and are subjected to pull-out forces, those with deformations over the entire length transmit the entire pull-out force immediately back to the matrix through anchorage. In the case of fibers deformed only at the extremities, the stresses are slowly transferred from the crack face to the interior of the matrix with the major transfer of forces taking place only at the extremities. Such a gradual transfer of stresses averts a possible crushing and splitting of the matrix at the crack face which is commonly observed in fibers deformed all along the length. It is due to the matrix crushing and splitting that fibers unfavorably affect each others ability to reinforce when in a group and the overall toughness of the composite is severely reduced. Since the optimum amplitude of the sinusoid shaped end portions of the fibers according to the invention is defined as a function of the ultimate tensile strength and ductility of the fiber material as well as of the compressive strength of the matrix material, such amplitude is generally less than 5% of the fiber length. The low fiber amplitude leads to a more gradual transfer of stresses back to the matrix and hence less crushing and splitting of the matrix around the fibers.

    [0015] A particularly preferred metal fiber according to the invention has a uniform rectangular cross-section with a thickness of about 0.4 mm and a width of about 0.8 mm, a length Lf of about 50 mm and a length Lm of about 25 mm. The wavelenth Ls of the sinusoid at each end portion of the fiber is about 12.5 mm.

    [0016] Fiber reinforced concrete incorporating the fibers of the invention can be used in slabs on grade, shotcrete, architectural concrete, precast products, offshore structures, structures in seismic regions, thin and thick repairs, crash barriers, footings, hydraulic structures and many other applications.

    BRIEF DESCRIPTION OF DRAWINGS



    [0017] Further features and advantages of the invention will become more readily apparent from the following description of preferred embodiments, reference being made to the accompanying drawings in which:

    Figure 1 is a side elevational view of a steel fiber according to the intention;

    Figure 2 is a load deflection plot in which the toughness of concrete reinforced with the fiber illustrated in Fig. 1 is compared with that of concrete reinforced with conventional fibers; and

    Figure 3 is a graph showing the relationship between post-crack strength and beam mid-span deflection expressed as a fraction of the span for the same fibers.


    MODES FOR CARRYING OUT THE INVENTION



    [0018] As shown in Fig. 1, the steel fiber illustrated which is generally designated by reference numeral 10 comprises an elongated, substantially straight central portion 12 with sinusoid shaped end portions 14 and 14'. The sinusoid at each end portion is defined by

    where the coordinate system is as illustrated in Fig. 1 and Ao is the amplitude of the sinusoid. Also illustrated in Fig. 1 are the length Lf of the fiber 10, the length Lm of the central portion 12 and the length Ls of the end portions 14,14', as well as the end angle θ. The length Lf of the fiber 10 may vary from about 25 to about 60 mm. As explained herein, the fiber geometry is optimized by giving to the sinusoid an optimum amplitude Ao,opt as defined in equation (1).

    [0019] For example, the optimum amplitudes for the following three steels with different mechanical properties are given in Table 1, where σc = 40 MPa and Af/Pf = 1.33 x 10-1 mm:
    TABLE 1
    Steel Type and Properties (bulk) Optimum Amplitude, Ao,opt
    Steel A: type C1018 (σu = 1030 MPa; εf = 0.60%) ≈ 0.7 mm
    Steel B: Martensite Steel (σu = 1550 MPa; εf = 1%) ≈ 1.2 mm
    Steel C: HSLA* Steel (σu = 1350 MPa; εf = 3.5%) ≈ 1.5 mm
    * High Strength Low Aluminum


    [0020] In the embodiment illustrated in Fig. 1, the fiber 10 has a uniform rectangular cross-section. Such a fiber may also have a circular cross-section.

    [0021] Fibers with optimized geometry at a dosage rate of 40 kg/m3 were used in reinforcing concrete matrices having an unreinforced compressive strength of 40 MPa. Beams made from the fiber-reinforced concrete were tested in third point flexure, along with their unreinforced companions. The beam displacements were measured using a yoke around the specimen such that the spurious component of the load point displacement due to the settlement of supports was automatically eliminated. The resulting load deflections plots are set forth in Fig. 2, where the toughness of concrete reinforced with the fibers of the invention (F1) is compared with that of concrete reinforced with conventional fibers (F2 to F5). The conventional fibers investigated for comparative purpose were the following:
    TABLE 2
    Fiber Designation Geometry Cross-Section Shape Length (mm) Size (mm) Tensile Strength (MPA) Weight (g.) Number per kg
    F2 Hooked-end Circular 60 0.8 diam. 1115 0.263 3800
    F3 Twin-cone Circular 62 1.0 diam. 1198 0.403 2480
    F4 Crimped Circular 60 1.0 diam. 1037 0.420 2380
    F5 Crimped Crescent 52 2.3 x 0.55 1050 0.393 2540


    [0022] The plots were analyzed according to conventional techniques (ASTM - C1018; JSCE SF-4) as well as to the PCS technique described by J.-F. Trottier, "Toughness of Steel Reinforced Cement-Based Composites", Ph.D. Thesis, Laval University, 1993, with a view to determining the toughness parameters. The results are given in Table 3 and plotted in Figure 3:
    TABLE 3
    Post Crack Strength at beam displacement of span/m, PCSm Plain Concrete (σc = 40 MPa; Ec = 39 GPa) Concrete with F1 Fibers (σc = 43 MPa; Ec = 39 GPa)
    PCS3000 0 6.3-6.5 MPa
    PCS1500 0 6.0-6.5 MPa
    PCS600 0 5.8-6.0 MPa
    PCS400 0 5.5-5.8 MPa
    PCS300 0 5.0-5.3 MPa
    PCS200 0 4.0-4.8 MPa
    Modulus of Rupture (MOR) 5.19 MPa 5.5-5.9 MPa
    Toughness Indices (ASTM-C1018)    
    I5 1.0 4.7-5.0
    I10 1.0 9.0-9.5
    I20 1.0 17.2-20.0
    I30 1.0 22.0-23.0
    I60 1.0 45.0-50.0
    JSCE (SF-4) Factor - 5.2-5.8 MPa


    [0023] In Table 3, Ec is the elastic modulus of concrete as per ASTM C-469. The JSCE SF-4 technique takes the total area (elastic and plastic) under the curve up to a deflection of span/150 and converts into an equivalent post-crack strength.

    [0024] The fibers of the inventions even at a low dosage of 40 kg/m3 lead to strengthening in the system as evident from the increase in the load carrying capacity over the plain, unreinforced matrix. Also, after the matrix cracking, the composite is capable of carrying approximately the same level of stresses as when at matrix cracking and as such very high toughness is derived. The composite behaves almost in an elasto-plastic manner.

    [0025] A minor increase (about 7%) in the compressive strength of concrete due to fiber addition indicates that an adequate fiber dispersion and mix compaction were achieved.

    [0026] As it is also apparent from Figs 2 and 3, the fiber with optimized geometry according to the invention behaves superior to existing commercial fibers and provides higher flexural toughness. It is believed that the fiber geometry fully utilizes the potential of steel and that of the cement matrix to produce an optimized composite.


    Claims

    1. A metal fiber (10) for reinforcing cement-based materials, which comprises an elongated, substantially straight central portion (12) and sinusoid shaped end portions (14,14'), the sinusoid of each end portion (14,14') having an optimum amplitude Ao,opt defined by:.

    where

    k1   = 2.025 x 10-2,

    σc   = compressive strength of the cement-based material in MPa,

    k2   = 3.19 x 10-1,

    σu   = ultimate tensile strength of the metal in MPa,

    α   = 6.60 x 10-1,

    εf   = ductility of the metal in percent, and

    β   = 3.20 x 10-1,

    Af   = cross-sectional area of the fiber in mm2, and

    Pf   = perimeter of the fiber in mm,

    said sinusoid further having a wavelength Ls defined by:

    where

    Lf   = length of the fiber,

    Lm   = length of the central portion,

    and wherein 0.5 Lf < Lm < 0.75 Lf.
     
    2. A fiber according to claim 1, wherein the length Lf of the fiber ranges from about 25 to about 60 mm.
     
    3. A fiber according to claim 1, wherein said central portion (12) and said end portions (14,14') have a uniform rectangular cross-section.
     
    4. A fiber according to claim 3, wherein said central portion (12) and said end portions (14,14') have a thickness of about 0.4 mm and a width of about 0.8 mm, and wherein the length Lf of the fiber is about 50 mm and the length Lm of the central portion (12) is about 25 mm.
     
    5. A fiber according to claim 1, wherein said central portion (12) and said end portions (14,14') have a uniform circular cross-section.
     
    6. A fiber according to claim 1, wherein the cement-based material has a compressive strength σc ranging from about 30 to about 60 MPa and wherein k1c)k2 ranges from about 6 x 10-2 to about 7.5 x 10-2.
     
    7. A fiber according to claim 6, wherein k1c)k2 is about 7 x 10-2.
     
    8. A fiber according to claim 7, wherein the cross-sectional area Af and the perimeter Pf of the fiber are such that Af/Pf = 1.33 x 10-1 mm.
     
    9. A fiber according to claim 8, wherein said metal is steel.
     
    10. A fiber according to claim 9, wherein said steel is of type C1018 having an ultimate tensile strength σu of about 1030 MPa and a ductility εf of about 0.60%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 0.7 mm.
     
    11. A fiber according to claim 9, wherein said steel is a martensite steel having an ultimate tensile strength σu of about 1550 MPa and a ductility εf of about 1%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 1.2 mm.
     
    12. A fiber according to claim 9, wherein said steel is a high strength low aluminum steel having an ultimate tensile strength σu of about 1350 MPa and a ductility εf of about 3.5%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 1.5 mm.
     
    13. A fiber according to claim 1, wherein said end portions (14,14') each have an end angle θ below 20°, the angle θ being defined by:


     
    14. A fiber according to claim 13, wherein said angle θ ranges from about 12° to about 15°.
     
    15. A metal fiber reinforced cement-based material, which comprises a cement-based material in admixture with metal fibers (10), said metal fibers (10) each having an elongated, substantially straight central portion (12) and sinusoid shaped end portions (14,14') the sinusoid of each end portion (14,14') having an optimum amplitude Ao,opt defined by:

    where

    k1   = 2.025 x 10-2,

    σc   = compressive strength of the cement-based material in MPa,

    k2   = 3.19 x 10-1,

    σu   = ultimate tensile strength of the metal in MPa,

    α   = 6.60 x 10-1,

    εf   = ductility of the metal in percent, and

    β   = 3.20 x 10-1,

    Af   = cross-sectional area of the fiber in mm2, and

    Pf   = perimeter of the fiber in mm,

    said sinusoid further having a wavelength Ls defined by:

    where

    Lf   = length of the fiber,

    Lm   = length of the central portion,

    and wherein 0.5 Lf < Lm < 0.75 Lf.
     
    16. A metal fiber reinforced cement-based material according to claim 15, wherein the length Lf of the fibers (10) range from about 25 to about 60 mm.
     
    17. A metal fiber reinforced cement-based material according to claim 15, wherein said central portion (12) and said end portions (14,14') have a uniform rectangular cross-section.
     
    18. A metal fiber reinforced cement-based material according to claim 17, wherein said central portion (12) and said end portions (14,14') have a thickness of about 0.4 mm and a width of about 0.8 mm, and wherein the length Lf of the fibers (10) is about 50 mm and the length Lm of the central portion (12) is about 25 mm.
     
    19. A metal fiber reinforced cement-based material according to claim 15, wherein said central portion (12) and said end portions (14,14') have a uniform circular cross-section.
     
    20. A metal fiber reinforced cement-based material according to claim 15, wherein the cement-based material has a compressive strength σc ranging from about 30 to about 60 MPa and wherein k1c)k2 ranges from about 6 x 10-2 to about 7.5 x 10-2.
     
    21. A metal fiber reinforced cement-based material according to claim 20, wherein k1c)k2 is about 7 x 10-2.
     
    22. A metal fiber reinforced cement-based material according to claim 21, wherein the cross-sectional area Af and the perimeter Pf of the fibers (10) are such that Af/Pf = 1.33 x 10-1 mm.
     
    23. A metal fiber reinforced cement-based material according to claim 22, wherein said metal is steel.
     
    24. A metal fiber reinforced cement-based material according to claim 23, wherein said steel is of type C1018 having an ultimate tensile strength σu of about 1030 MPa and a ductility εf of about 0.60%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 0.7 mm.
     
    25. A metal fiber reinforced cement-based material according to claim 23, wherein said steel is of martensite steel having an ultimate tensile strength σu of about 1550 MPa and a ductility εf of about 1%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 1.2 mm.
     
    26. A metal fiber reinforced cement-based material according to claim 23, wherein said steel is a high strength low aluminum steel having an ultimate tensile strength σu of about 1350 MPa and a ductility εf of about 3.5%, and wherein said sinusoid has an optimum amplitude Ao,opt of about 1.5 mm.
     
    27. A metal fiber reinforced cement-based material according to claim 15, wherein said end portions (14,14') each have an end angle θ below 20°, the angle θ being defined by:


     
    28. A metal fiber reinforced cement-based material according to claim 27, wherein said angle θ ranges from about 120 to about 15°.
     


    Ansprüche

    1. Metallfaser (10) zum Verstärken eines Materials auf Zementbasis, welche einen länglichen, im wesentlichen geraden Mittelabschnitt (12) und sinusförmige Endabschnitte (14, 14') umfaßt, wobei die Sinusform jedes Endabschnitts (14, 14') eine optimale Amplitude Ao,opt aufweist, welche definiert ist durch:

    wobei

    k1   = 2,025 × 10-2,

    σc   = Druckfestigkeit des Materials auf Zementbasis in MPa,

    k2   = 3,19 × 10-1,

    σu   = Zerreißfestigkeit des Metalls in MPa,

    α   = 6,60 × 10-1,

    εf   = Streckbarkeit des Metalls in Prozent, und

    β   = 3,20 × 10-1,

    Af   = Querschnittsfläche der Faser in mm2, und

    Pf   = Umfang der Faser in mm,

    wobei die Sinusform ferner eine Wellenlänge Ls aufweist, welche definiert ist durch:

    wobei

    Lf   = Länge der Faser,

    Lm   = Länge des Mittelabschnitts,

    und wobei 0,5 Lf < Lm < 0,75 Lf.
     
    2. Faser nach Anspruch 1, wobei die Länge Lf der Faser in einem Bereich von etwa 25 bis etwa 60 mm liegt.
     
    3. Faser nach Anspruch 1, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') einen einheitlichen rechteckigen Querschnitt aufweisen.
     
    4. Faser nach Anspruch 3, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') eine Dicke von etwa 0,4 mm und eine Breite von etwa 0,8 mm aufweisen, und wobei die Länge Lf des Mittelabschnitts (12) etwa 25 mm beträgt.
     
    5. Faser nach Anspruch 1, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') einen einheitlichen kreisförmigen Querschnitt aufweisen.
     
    6. Faser nach Anspruch 1, wobei das Material auf Zementbasis eine Druckfestigkeit σc aufweist, welche in einem Bereich von etwa 30 bis etwa 60 MPa liegt, und wobei k1(σc)k2 in einem Bereich von etwa 6 × 10-2 bis etwa 7,5 × 10-2 liegt.
     
    7. Faser nach Anspruch 6, wobei k1(σc)k2 etwa 7 × 10-2 beträgt.
     
    8. Faser nach Anspruch 7, wobei die Querschnittsfläche Af und der Umfang Pf der Faser derart festgelegt sind, daß Af/Pf = 1,33 × 10-1 mm.
     
    9. Faser nach Anspruch 8, wobei das Metall Stahl ist.
     
    10. Faser nach Anspruch 9, wobei der Stahl vom Typ C1018 mit einer Zerreißfestigkeit σu von etwa 1030 MPa und einer Streckbarkeit εf von etwa 0,60% ist, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 0,7 mm aufweist.
     
    11. Faser nach Anspruch 9, wobei der Stahl ein Martensitstahl mit einer Zerreißfestigkeit σu von etwa 1550 MPa und einer Streckbarkeit εf von etwa 1% ist, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 1,2 mm aufweist.
     
    12. Faser nach Anspruch 9, wobei der Stahl ein hochfester Stahl mit niedrigem Aluminiumgehalt mit einer Zerreißfestigkeit σu von etwa 1350 MPa und einer Streckbarkeit εf von etwa 3,5% ist, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 1,5 mm aufweist.
     
    13. Faser nach Anspruch 1, wobei die Endabschnitte (14, 14') jeweils einen Endwinkel θ von unter 20° aufweisen, wobei der Winkel θ definiert ist durch:


     
    14. Faser nach Anspruch 13, wobei der Winkel θ in einem Bereich von etwa 12° bis etwa 15° liegt.
     
    15. Metalltaserverstärktes Material auf Zementbasis, welches ein Material auf Zementbasis mit einer Beimischung von Metallfasern (10) umfaßt, wobei die Metallfasern (10) jeweils einen länglichen, im wesentlichen geraden Mittelabschnitt (12) und sinusförmige Endabschnitte (14, 14') aufweisen, wobei die Sinusform jedes Endabschnitts (14, 14') eine optimale Amplitude Ao,opt aufweist, welche definiert ist durch:

    wobei

    k1   = 2,025 × 10-2,

    σc   = Druckfestigkeit des Materials auf Zementbasis in MPa,

    k2   = 3,19 × 10-1,

    σu   = Zerreißfestigkeit des Metalls in MPa,

    α   = 6,60 × 10-1,

    εf   = Streckbarkeit des Metalls in Prozent, und

    β   = 3,20 × 10-1,

    Af   = Querschnittsfläche der Faser in mm2, und

    Pf   = Umfang der Faser in mm,

    wobei die Sinusform ferner eine Wellenlänge Ls aufweist, welche definiert ist durch:

    wobei

    Lf   = Länge der Faser,

    Lm   = Länge des Mittelabschnitts,

    und wobei 0,5 Lf < Lm < 0,75 Lf.
     
    16. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 15, wobei die Länge Lf der Fasern (10) in einem Bereich von etwa 25 bis etwa 60 mm liegt.
     
    17. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 15, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') einen einheitlichen rechteckigen Querschnitt aufweisen.
     
    18. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 17, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') eine Dicke von etwa 0,4 mm und eine Breite von etwa 0,8 mm aufweisen, und wobei die Länge Lf der Fasern (10) etwa 50 mm beträgt und die Länge Lm des Mittelabschnitts (12) etwa 25 mm beträgt.
     
    19. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 15, wobei der Mittelabschnitt (12) und die Endabschnitte (14, 14') einen einheitlichen kreisförmigen Querschnitt aufweisen.
     
    20. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 15, wobei das Material auf Zementbasis eine Druckfestigkeit σc aufweist, welche in einem Bereich von etwa 30 bis etwa 60 MPa liegt, und wobei k1(σc)k2 in einem Bereich von etwa 6 × 10-2 bis etwa 7,5 × 10-2 liegt.
     
    21. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 20, wobei k1c)k2 etwa 7 × 10-2 beträgt.
     
    22. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 21, wobei die Querschnittsfläche Af und der Umfang Pf der Fasern (10) derart festgelegt sind, daß Af/Pf = 1,33 x 10-1 mm.
     
    23. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 22, wobei das Metall Stahl ist.
     
    24. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 23, wobei der Stahl vom Typ C1018 mit einer Zerreißfestigkeit σu von etwa 1030 MPa und einer Streckbarkeit εf von etwa 0,60% ist, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 0,7 mm aufweist.
     
    25. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 23, wobei der Stahl aus Martensitstahl mit einer Zerreißfestigkeit σu von etwa 1550 MPa und einer Streckbarkeit εf von etwa 1% besteht, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 1,2 mm aufweist.
     
    26. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 23, wobei der Stahl ein hochfester Stahl mit niedrigem Aluminiumgehalt mit einer Zerreißfestigkeit σu von etwa 1350 MPa und einer Streckbarkeit εf von etwa 3,5% ist, und wobei die Sinusform eine optimale Amplitude Ao,opt von etwa 1,5 mm aufweist.
     
    27. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 15, wobei die Endabschnitte (14, 14') jeweils einen Endwinkel θ von unter 20° aufweisen, wobei der Winkel θ definiert ist durch:


     
    28. Metallfaserverstärktes Material auf Zementbasis nach Anspruch 27, wobei der Winkel θ in einem Bereich von etwa 12° bis etwa 15° liegt.
     


    Revendications

    1. Fibre métallique (10) pour renforcer les matériaux à base de ciment, qui comprend une partie centrale allongée sensiblement droite (12) et des parties d'extrémité (14, 14') en forme de sinusoïdes, la sinusoïde de chaque partie d'extrémité (14, 14') ayant une amplitude optimum Ao,opt définie par :

    k1   = 2,025 × 10-2,

    σc   = résistance à la compression du matériau à base de ciment en MPa,

    k2   = 3,19 × 10-1,

    σu   = charge limite de rupture du métal en MPa,

    α   = 6,60 × 10-1,

    εf   = ductilité du métal en pourcents, et

    β   = 3,20 × 10-1,

    Af   = aire de la section de la fibre en mm2, et

    Pf   = périmètre de la fibre en mm,

    ladite sinusoïde ayant en outre une longueur d'onde Ls définie par :

    Lf   = longueur de la fibre,

    Lm   = longueur de la partie centrale,

    et où 0,5 Lf < Lm < 0,75 Lf.
     
    2. Fibre selon la revendication 1, dans laquelle la longueur Lf de la fibre est comprise dans l'intervalle allant d'environ 25 mm à environ 60 mm.
     
    3. Fibre selon la revendication 1, dans laquelle ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') sont de section rectangulaire uniforme.
     
    4. Fibre selon la revendication 3, dans laquelle ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') ont une épaisseur d'environ 0,4 mm et une largeur d'environ 0,8 mm, et dans laquelle la longueur Lf de la fibre est d'environ 50 mm et la longueur Lm de la partie centrale (12) est d'environ 25 mm.
     
    5. Fibre selon la revendication 1, dans laquelle ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') sont de section circulaire uniforme.
     
    6. Fibre selon la revendication 1, dans laquelle le matériau à base de ciment présente une résistance à la compression σc comprise dans l'intervalle allant d'environ 30 à environ 60 MPa et dans laquelle k1c)k2 est compris dans l'intervalle allant d'environ 6 × 10-2 à environ 7,5 × 10-2.
     
    7. Fibre selon la revendication 6, dans laquelle k1c)k2 vaut environ 7 × 10-2.
     
    8. Fibre selon la revendication 7, dans laquelle l'aire Af et le périmètre Pf de la fibre sont tels que Af/Pf = 1,33 × 10-1 mm.
     
    9. Fibre selon la revendication 8, dans laquelle ledit métal est de l'acier.
     
    10. Fibre selon la revendication 9, dans laquelle ledit acier est de type C1018 présentant une charge limite de rupture σu d'environ 1030 MPa et une ductilité εf d'environ 0,60 %, et dans laquelle ladite sinusoïde a une amplitude optimum Ao,opt d'environ 0,7 mm.
     
    11. Fibre selon la revendication 9, dans laquelle ledit acier est un acier martensitique présentant une charge limite de rupture σu d'environ 1550 MPa et une ductilité εf d'environ 1 %, et dans laquelle ladite sinusoïde a une amplitude optimum Ao,opt d'environ 1,2 mm.
     
    12. Fibre selon la revendication 9, dans laquelle ledit acier est un acier à haute résistance et à basse teneur en aluminium présentant une charge limite de rupture σu d'environ 1350 MPa et une ductilité εf d'environ 3,5 %, et dans laquelle ladite sinusoïde a une amplitude optimum Ao,opt d'environ 1,5 mm.
     
    13. Fibre selon la revendication 1, dans laquelle lesdites parties d'extrémité (14, 14') ont chacune un angle d'extrémité θ inférieur à 20°, l'angle θ étant défini par :


     
    14. Fibre selon la revendication 13, dans laquelle ledit angle θ est compris dans l'intervalle allant d'environ 12° à environ 15°.
     
    15. Matériau à base de ciment renforcé par des fibres métalliques, qui comprend un matériau à base de ciment mélangé avec des fibres métalliques (10), lesdites fibres métalliques (10) comprenant chacune une partie centrale allongée sensiblement droite (12) et des parties d'extrémité (14, 14') en forme de sinusoïdes, la sinusoïde de chaque partie d'extrémité (14, 14') ayant une amplitude optimum Ao,opt définie par :

    k1   = 2,025 × 10-2,

    σc   = résistance à la compression du matériau à base de ciment en MPa,

    k2   = 3,19 × 10-1,

    σu   = charge limite de rupture du métal en MPa,

    α   = 6,60 × 10-1,

    εf   = ductilité du métal en pourcents, et

    β   = 3,20 × 10-1,

    Af   = aire de la section de la fibre en mm2, et

    P   f = périmètre de la fibre en mm,

    ladite sinusoïde ayant en outre une longueur d'onde Ls définie par :

    Lf   = longueur de la fibre,

    Lm   = longueur de la partie centrale,

    et où 0,5 Lf < Lm < 0,75 Lf.
     
    16. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 15, dans lequel la longueur Lf des fibres (10) est comprise dans l'intervalle allant d'environ 25 à environ 60 mm.
     
    17. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 15, dans lequel ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') sont de section rectangulaire uniforme.
     
    18. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 17, dans lequel ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') ont une épaisseur d'environ 0,4 mm et une largeur d'environ 0,8 mm, et dans lequel la longueur Lf des fibres (10) est d'environ 50 mm et la longueur Lm de la partie centrale (12) est d'environ 25 mm.
     
    19. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 15, dans lequel ladite partie centrale (12) et lesdites parties d'extrémité (14, 14') sont de section circulaire uniforme.
     
    20. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 15, dans lequel le matériau à base de ciment présente une résistance à la compression σc comprise dans l'intervalle allant d'environ 30 à environ 60 MPa et dans lequel k1c)k2 est compris dans l'intervalle allant d'environ 6 × 10-2 à environ 7,5 × 10-2.
     
    21. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 20, dans lequel k1c)k2 vaut environ 7 × 10-2.
     
    22. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 21, dans lequel l'aire Af et le périmètre Pf des fibres sont tels que Af/Pf = 1,33 × 10-1 mm.
     
    23. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 21, dans lequel ledit métal est de l'acier.
     
    24. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 23, dans lequel ledit acier est de type C1018 présentant une charge limite de rupture σu d'environ 1030 MPa et une ductilité εf d'environ 0,60 %, et dans lequel ladite sinusoïde a une amplitude optimum Ao,opt d'environ 0,7 mm.
     
    25. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 23, dans lequel ledit acier est un acier martensitique présentant une charge limite de rupture σu d'environ 1550 MPa et une ductilité εf d'environ 1 %, et dans lequel ladite sinusoïde a une amplitude optimum Ao,opt d'environ 1,2 mm.
     
    26. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 23, dans lequel ledit acier est un acier à haute résistance et à basse teneur en aluminium présentant une charge limite de rupture σu d'environ 1350 MPa et une ductilité εf d'environ 3,5 %, et dans laquelle ladite sinusoïde a une amplitude optimum Ao,opt d'environ 1,5 mm.
     
    27. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 15, dans lequel lesdites parties d'extrémité (14, 14') ont chacune un angle d'extrémité θ inférieur à 20°, l'angle θ étant défini par :


     
    28. Matériau à base de ciment renforcé par des fibres métalliques selon la revendication 27, dans lequel ledit angle θ est compris dans l'intervalle allant d'environ 12° à environ 15°.
     




    Drawing