(19)
(11) EP 1 013 778 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
28.06.2000  Patentblatt  2000/26

(21) Anmeldenummer: 99102445.6

(22) Anmeldetag:  09.02.1999
(51) Internationale Patentklassifikation (IPC)7C21B 5/02
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 22.12.1998 DE 19859354

(71) Anmelder: Der Grüne Punkt-Duales System Deutschland Aktiengesellschaft
51145 Köln (DE)

(72) Erfinder:
  • Janz, Joachim, Dr.
    28876 Oyten (DE)
  • Voss, Manfred, Dipl.-Ing.
    28355 Bremen (DE)

(74) Vertreter: Eisenführ, Speiser & Partner 
Martinistrasse 24
28195 Bremen
28195 Bremen (DE)

   


(54) Verfahren und Vorrichtung zur Erzeugung von Metall aus Metallerzen


(57) Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung von Metall aus aus Metallerzen, insbesondere von Roheisen aus Eisenerz, bei dem das Metalloxide enthaltende Erz mit einem aus Kohlenstoff und/oder Wasserstoff (sowie ggf. deren Verbindungen) enthaltenden Reduktionsgas in Reaktionskontakt gebracht wird, welches zuvor aus festen kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen gewonnen wurde. Es ist bekannt, daß das zum größten Teil aus (selbst bei Eisen verschiedenen) Metalloxiden bestehende Erz einem Reduktionsprozeß unterworfen werden muß, ehe das Metall gewonnen werden kann. Diese Reduktion geschieht mit Hilfe von Kohlenstoff und ggf. Wasserstoff - oder auch deren Verbindungen -, die in einem Reduktionsgas enthalten sind, das zur Einwirkung auf das Metallerz gebracht wird. Ausgehend von dem eingangs geschilderten bekannten Verfahren ist es das Ziel der Erfindung, Kunststoffabfall, auch in organisch und/oder anorganisch verunreinigter Form, als Lieferant für die Bestandteile des Reduktionsgases nutzbar zu machen. Kunststoffabfall fällt dauernd in großen Mengen an und stellt ein ernsthaftes Entsorgungsproblem dar. Es liegt zumeist, wenn nicht ausschließlich, in fester Form vor, sei es als - häufig stark verunreinigter - Verpackungsmüll, sei es als Verschnitt o.ä. im Zuge der Produktion von Kunststoffgegenständen. Demgemäß sieht die Erfindung vor, daß die beim Verfahren der eingangs bezeichneten Gattung zur Gewinnung des Reduktionsgases zugeführten kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen, wenigstens teilweise aus Kunststoff in zerkleinerter, fluidisierter Form als Agglomerat in den Windstrom im Gestell des metallurgischen Schachtofens, insbesondere eines Hochofens, eingeblasen werden. Dies geschieht über Lanzen, welche in den Schachtofen hineinragen und welche an eine Transportleitung angeschlossen sind. Über diese Transportleitung wird der einzublasende Kunststoff zu den Lanzen geführt. Für den Fall, daß wider Erwarten Stopfer auftreten oder Heißwind aus dem Hochofen in die Lanze und damit in die Transportleitung zurückschlagen sollte, werden mehrere Absperreinrichtungen in der Transportleitung vorgeschlagen, damit diese nicht nur geschützt ist, sondern eine umgehende Wiederaufnahme des Gesamtbetriebs der Anlage und des Einblasens der Kunststoffe erfolgt. Zur Lösung von Verstopfungen des Kunststoffmaterials in der Transportleitung sind eine erste und eine dritte Absperreinrichtung vorgesehen, zur Verhinderung des Rücktransports von Kunststoff bzw. eines Rückschlags der heißen Gasmassen aus dem Hochofen in die Transportleitung ist eine zweite Absperreinrichtung ausgebildet. Ihre Funktionsweise wird in den Ansprüchen, insbesondere aber auch in der Figurenbeschreibung näher erläutert.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung von Metall aus aus Metallerzen, insbesondere von Roheisen aus Eisenerz, bei dem das Metalloxide enthaltende Erz mit einem aus Kohlenstoff und/oder Wasserstoff (sowie ggf. deren Verbindungen) enthaltenden Reduktionsgas in Reaktionskontakt gebracht wird, welches zuvor aus festen kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen gewonnen wurde.

[0002] Es ist bekannt, daß das zum größten Teil aus (selbst bei Eisen verschiedenen) Metalloxiden bestehende Erz einem Reduktionsprozeß unterworfen werden muß, ehe das Metall gewonnen werden kann. Diese Reduktion geschieht mit Hilfe von Kohlenstoff und ggf. Wasserstoff - oder auch deren Verbindungen -, die in einem Reduktionsgas enthalten sind, das zur Einwirkung auf das Metallerz gebracht wird.

[0003] Hierauf gelangt das reduziert Metallerz in einen Schmelzprozeß. Das für die Reduktion benötigte Gas wird dabei im Bereich des Reduktions- und Schmelz-Prozesses selbst gewonnen, indem kohlenstoffhaltige Stoffe (z.B. Koks, Kohle, Öl, Erdgas) in die Zone des bereits reduzierten und erhitzten Metalles zugegeben werden, wodurch unter Zugabe von (Luft)-Sauerstoff eine Zerlegung bzw. Umwandlung in kohlenstoffhaltiges Gas erfolgt, welches der vorhergehenden Reduktion zugeführt wird.

[0004] Bekannt sind insoweit der herkömmliche Hochofenprozeß, bei dem im Hochofenvon oben nach unten fortlaufend - sowohl die Reduktion des Metallerzes als auch die Bildung des Reduktionsgases sowie die anschließende Schmelzverflüssigung des Metalles stattfindet. Bei diesem Hochofenprozeß wird dem Eisenerz ggf. Zuschlagstoffen Koks als Kohlenstoffträger beigemischt. Es ist auch bekannt, zur besseren Steuerung des Hochofenprozesses und zur Ersparung von Koks in den Windstrom im Bereich des Gestells des Hochofens Öl oder Kohlenstoff über Lanzen mit einzublasen, wodurch auch der Verbrauch an Koks reduziert wird. Dieses zusätzlich eingeblasene Material (Öl oder Kohlenstaub) muß sehr fein zerteilt eingeführt werden, um eine saubere und ausreichende Vergasung zu gewährleisten. Zusammenfassungen über das Einblasen von Kohlenstaub in Hochöfen enthalten zwei Artikel in der Zeitschrift "Stahl und Eisen", Nr. 4 vom 25. Februar 1985, Seiten 211-220. Das Einblasen von Kohlenstaub wurde insbesondere im Zuge steigender Ölpreise forciert. Es stellte sich dabei heraus, daß beim Einblasen wegen der kurzen, zur Verfügung stehenden Zeit von ca. 10 ms gute Ergebnisse, nämlich eine fast vollständige Vergasung des Kohlenstaubs, nur bei Korngrößen unterhalb 0,1 mm zu erzielen waren, selbst wenn Versuche bei einigen Anlagen auch mit größeren Korngrößen erfolgreich durchgeführt wurden.

[0005] Es ist auch bereits vorgeschlagen worden, statt des Eindüsens von Öl und Kohlenstaub andere kohlenstoffhaltige Abfallstoffe wie z.B. getrockneten Klärschlamm oder anderer kohlenstoffhaltiger Abfall wie Müll, Altpapier, Lignit, sowie Abfall von Holz, Kunststoff, Gummi o.dgl. einzubringen (DE-A 29 35 544). Als entsprechende Versuche oder Ergebnisse werden jedoch nur Vermutungen angestellt, wie diese Stoffe in den Hochofen eingebracht werden sollen. Auch in der DE-A 41 04 252 wird vorgeschlagen, kunststoffhaltige Abfallstoffe dieser Art über die Windformen in feinkörniger und staubförmiger Form in einen Hochofen einzublasen, wobei als Beispiel das Einbringen von Klärschlamm (rieselfähiger Staub) angeführt wird. Auch bei diesem Verfahren wird die Notwendigkeit der Feinkörnigkeit des einzublasenen Stoffes ausdrücklich betont.

[0006] Ausgehend von dem eingangs geschilderten bekannten Verfahren ist es das Ziel der Erfindung, Kunststoffabfall, auch in organisch und/oder anorganisch verunreinigter Form, als Lieferant für die Bestandteile des Reduktionsgases nutzbar zu machen. Kunststoffabfall fällt dauernd in großen Mengen an und stellt ein ernsthaftes Entsorgungsproblem dar. Es liegt zumeist, wenn nicht ausschließlich, in fester Form vor, sei es als - häufig stark verunreinigter - Verpackungsmüll, sei es als Verschnitt o.ä. im Zuge der Produktion von Kunststoffgegenständen.

[0007] Demgemäß sieht die Erfindung vor, daß die beim Verfahren der eingangs bezeichneten Gattung zur Gewinnung des Reduktionsgases zugeführten kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen, wenigstens teilweise aus Kunststoff in zerkleinerter, fluidisierter Form als Agglomerat in den Windstrom im Gestell des metallurgischen Schachtofens, insbesondere eines Hochofens, eingeblasen werden. Dies geschieht über Lanzen, welche in den Schachtofen hineinragen und welche an eine Transportleitung angeschlossen sind. Über diese Transportleitung wird der einzublasende Kunststoff zu den Lanzen geführt. Für den Fall, daß wider Erwarten Stopfer auftreten oder Heißwind aus dem Hochofen in die Lanze und damit in die Transportleitung zurückschlagen sollte, werden mehrere Absperreinrichtungen in der Transportleitung vorgeschlagen, damit diese nicht nur geschützt ist, sondern eine umgehende Wiederaufnahme des Gesamtbetriebs der Anlage und des Einblasens der Kunststoffe erfolgt. Zur Lösung von Verstopfungen des Kunststoffmaterials in der Transportleitung sind eine erste und eine dritte Absperreinrichtung vorgesehen, zur Verhinderung des Rücktransports von Kunststoff bzw. eines Rückschlags der heißen Gasmassen aus dem Hochofen in die Transportleitung ist eine zweite Absperreinrichtung ausgebildet. Ihre Funktionsweise wird in den Ansprüchen, insbesondere aber auch in der Figurenbeschreibung näher erläutert.

[0008] Zur Lösung von Stopfern in der Transportleitung macht sich die Erfindung die Tatsache zunutze, daß in der Transportleitung ein Druck vorhanden ist, welcher 4 bis 6 Mal so groß ist wie der Atmosphärendruck. Wird also das Transportleitungsinnere über eine Entlüftungsöffnung auf die Außenatmosphäre (ca. 1 Bar) entspannt, stellt sich ein sehr großer Druck- und Saugeffekt auf die Verstopfungen ein, die sich hierbei lösen und aus der Transportleitung aus dem System wegbefördert werden.

[0009] Damit beim Stillstand der Einblasanlage die Einblaslanzen, welche in den Hochofen hineinragen, nicht überhitzen, ist ein Anschluß für Druckluft vorgesehen, welcher immer dann aktiviert wird.

[0010] Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.

[0011] Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Bezug auf die beigefügten Zeichnungen näher erläutert.

[0012] Es zeigen:
Figur 1
eine schematische Darstellung eines Hochofens einschließlich der entsprechenden Einrichtungen zur Zuführung von fluidisiertem Kunststoff und einschließlich der entsprechenden Einrichtungen zur Zuführung eines erhitzten Windstromes;
Figur 2
eine alternative Ausführungsform; und
Figur 3
eine Düsen-Lanzen-Anordnung zum Einblasen von fluidisiertem Kunststoff in die Windformen oder Düsen eines Hochofens;
Figur 4
eine vergrößerte Darstellung der Transportleitung für den Transport des Kunststoffs zur Lanze.


[0013] In Figur 1 ist ein in üblicher Weise aufgebauter Hochofen 1 gezeigt, der im unteren Gestellbereich eine Vielzahl von gleichmäßig um den Umfang verteilten Düsen oder Windformen 20 (s. Figur 3) aufweist, denen über eine Leitung 5 und eine Ringleitung 2 in einem Winderhitzer 4 erhitzter Wind 3 zugeführt wird. Darüber hinaus kann der Wind 3 auch noch mit Sauerstoff 3a (O2) angereichert werden. Der Ubersichtlichkeit halber ist in Figur 1 nur eine Düse 20 angdeutet.

[0014] Einige oder alle der Düsen 20 weisen eine oder mehrere Lanzen 18 auf, über die Zusatzbrennstoff eingeblasen werden kann. Bei den bisher bekannten Hochöfen war dies entweder Kohlenstaub oder Öl, wodurch ein besseres Betriebsverhalten des Hochofens 1 und eine Ersparnis an Koks zu erzielen war. Die übliche Anzahl von Düsen 20 der Windformanordnung beträgt z.B. 32, und jede Düse hat einen Durchmesser von z.B. 140 mm. Bei der Zuführung von Kohlenstaub oder Öl sind meist zwei Lanzen vorgesehen, die einen Durchmesser von typischerweise 12 bzw. 8 mm haben. Im vorliegenden Fall ist in jeder Düse 20 nur eine Lanze 18 zur Zuführung von fluidisiertem Kunststoff vorgesehen und hat z.B. einen Durchmesser von 28 mm.

[0015] In der Windformanordnung können entweder alle Lanzen 18 mit fluidisiertem Kunststoff beschickt werden, oder die Düsen 20 sind gemischt bestückt, d.h. einige Düsen weisen z.B. zwei Öllanzen auf, während andere Düsen 20 wiederum mit einer Kunststofflanze 18 bestückt sind. Es ist jedoch zweckmäßig, die Verteilung von Kunststofflanzen 18 und Öllanzen gleichmäßig untereinander über den Umfang der Windformanordnung vorzunehmen.

[0016] Die Aufbereitung des Kunststoffes erfolgt im vorliegenden Ausführungsbeispiel folgendermaßen:

[0017] Aus einer Kunststoffaufbereitungsanlage 6 wird einem Silo 7 zerkleinerter Kunststoff in der Form eines Agglomerats mit hoher spezifischer Oberfläche zugeführt und einer Korngröße von 1 bis 10 mm, vorzugsweise 5 mm. Bewährt hat sich die Verwendung von Kunststoff, der zu einem Agglomerat mit einer Schüttdichte von größer als 0,35 führt. Für diese Zwecke sind Kunststoff-Verpackungsbecher o.dgl. geeignet, während z.B. Kunststoffolien beim Zerkleinern zu einergeringeren Schüttdichte führen, so daß vor dem oder beim Einblasen besondere Vorkehrungen getroffen werden müssen, um eine ausreichende Menge einblasen zu können.

[0018] In Figur 1 ist dann ein Einblasgefäß 8 dargestellt, in das das Kunststoff-Agglomerat über ein Grobkornsieb 14 eingebracht und durch Einblasen eines Fluidisierungsgases mittels eines Gebläses 11 über Leitungen 12 und 13 fluidisiert wird. Bei einem Einblasgefäß von z.B. 3 m3 Volumen sind ca. 2 bis 25 m3 Fluidisierungsgas/h erforderlich. Anschließend wird der fluidisierte Kunststoff in einer getrennten Dosiervorrichtung 9, z.B. einer mechanischen Schnecken-Dosiervorrichtung oder einer Zellenrad-Dosiervorrichtung, dosiert und über eine Leitung 10 den entsprechenden Lanzen 18 der Windformanordnung gleichmäßig zugeführt. Die Förderung der Kunststoffteilchen erfolgt hierbei mittels Flugstromförderung, d.h., bei hohem Gasanteil, z.B. bei einem Verhältnis von 5 bis 30 kg Kunststoff pro 1 kg Fluidisierungsgas. Als Fluidisierungsgas wird im vorliegenden Beispiel Preßluft verwendet, da wegen der Größe der Kunststoffteilchen von 1 bis 10 mm keine Explosionsgefahr besteht.

[0019] Die Einblasmenge des Kunststoffes ist über weite Grenzen variierbar (z.B. 30-150 kg Kunststoff/t RE). Es wurde außerdem herausgefunden, daß bei gleich guter Vergasung eine um den Faktor 1,5 höhere Menge an Kunststoff im Vergleich zu Öl eingeblasen werden kann. Liegt die Einblasmenge des Kunststoffs über 70 kg/t RE, so wird zwecks guter Vergasung dem Windstrom zweckmäßigerweise O2 zugegeben, wie bereits vorstehend erwähnt. Für jedes über dem Wert von 70 kg/t RE liegende kg Kunststoff/t RE sollte der Wind dann mit 0,05 bis 0,1% O2 angereichert werden, vorzugsweise 0,08% O2. Für eine gute Vergasung liegt die Mischwindtemperatur aus dem Winderhitzer 4 über 1100°C. Der Einblasdruck an den Lanzen 18 liegt zweckmäßigerweise 0,5 x 105 bis 1,5 x 105 Pa über dem Druck im Hochofen 1.

[0020] Da Kunststoff bei höheren Temperaturen - im Gegensatz zu Kohlenstaub oder Öl - schmilzt, besteht die Gefahr von Verbackungen des Kunststoffes vor dem Austritt aus der Einblaslanze 18 durch Wärmerückstrahlung aus der Düse. Aus diesem Grunde muß die Strömungsgeschwindigkeit des Gases mit den schwebenden Kunststoffteilchen im Vergleich zum Rohrquerschnitt der Lanze 18 ausreichend hoch sein, um ein Auf- oder Anschmelzen und damit Verbacken des Kunststoffes in der Lanze 18 durch Wärmerückstrahlung zu vermeiden. Ein geeignetes Verhältnis der Strömungsgeschwindigkeit zum Lanzenquerschnitt liegt im Bereich von 20000 bis 40000 1/sec x m, vorzugsweise bei 25000 1/sec x m. Liegt dieser Wert zu niedrig, besteht die Gefahr von Verbackungen, liegt der Wert zu hoch, so tritt ein zu hoher Verschleiß in den Lanzen 18 auf. Darüber hinaus müssen bei allen Transportleitungen, insbesondere auch im Anschlußbereich 18a der Lanzen 18, Unstetigkeiten und Einschnürungen im Strömungsverlauf sowie Radien von kleiner als 1 m bei Krümmungen vermieden werden.

[0021] In der Anordnung nach Figur 1 erfolgt die Dosierung durch eine getrennte Dosiervorrichtung 9. Eine andere Lösung ist in Figur 2 gezeigt und kann darin bestehen, das Fluidisieren und Dosieren in einem Zuge durchzuführen. Hierzu ist im unteren Bereich des Einblasgefäßes ein Kugelhahn 19 als Dosiereinrichtung vorgesehen. Die Feineinstellung erfolgt über die Druckeinstellung und die Fluidisierungsgasmenge. Diese Lösung erfordert jedoch eine genaue und schnelle Regelung der Preßluftzufuhr an der oberen Leitung 13 des Einblasgefäßes 8 abhängig von dem schwankenden Innendruck des Hochofens 1. Zu diesem Zwecke ist also an geeigneter Stelle im Hochofen 1 ein Druckfühler vorgesehen, der über eine Regelschleife 17 ein Ventil in der Leitung 13 schnell nachregelt, um zu einer genauen Dosierung zu kommen.

[0022] Die Fluidisierung und Dosierung der Kunststoffteilchen kann auch mittels einer druckdichten Zellenradschleuse erfolgen. In diesem Fall kann das Einblasgefäß 8 entfallen.

[0023] Figur 4 zeigt in vergrößerter Darstellung den als l. bezeichneten Abschnitt in Figur 1 und 2 der Leitung 10, über welche die in den Hochofen 1 einzublasenden Kunststoffe, insbesondere Kunststoffabfälle in agglomerierter Form, zur Lanze 18 transportiert werden. Diese Transportleitung 10 wird im Anschluß an die Armaturen im Einblasturm (diese umfassen beispielsweise die Dosiervorrichtung 9, aber auch beispielsweise den Anschluß für die Druckluft bzw. die Versorgung für Spülluft/-Stickstoff) durch ein Schlauchstück 21 gebildet. Hieran schließt sich an ein Absperrblock 22 der Transportleitung 10 und an den Absperrblock in Richtung Einblaslanze 18 schließt sich wiederum an ein wesentliches Lanzen-Armaturenteil 23 einschließlich der Einblaslanze 18.

[0024] Der Absperrblock 22 umfaßt als erste Absperreinrichtung 24 ein Absperrventil, welches zur Stopferbeseitigung geschlossen wird (wird später ausgeführt). Darüber hinaus geht im Absperrblock von der Transportleitung 10 eine Entlüftungsleitung (-öffnung) 25 ab, weiche ein Absperrventil 26 aufweist.

[0025] An den Absperrblock schließt sich der Bereich der Transportleitung 10 an, welcher nachfolgend auch als Armaturenteil 23 der Lanze bezeichnet ist. Innerhalb dieses Armaturenteils 23 befindet sich ein Schlauchstück 27, welches die Transportleitung 10 des Absperrblocks mit einem Wärmeabsperrventil 28 als zweite Absperreinrichtung verbindet. An diese zweite Absperreinrichtung schließt sich an eine dritte Absperreinrichtung 29 zur Absperrung der Lanze 18. Hinter der dritten Absperreinrichtung (vom Absperrblock gesehen) befindet sich ein Mündungsstück 30, über welches mittels eines Anschlußstücks 31 Druckluft in die Lanze 18 und damit in den Hochofen 1 eingeblasen werden kann.

[0026] Die Funktionsweise der vorgenannten Anordnung ist wie folgt: Wenn aus irgendeinem Grund kein Kunststoff oder anderes Reduktionsmittel in den Hochofen eingeblasen wird, wird die Absperreinrichtung (29) geschlossen und der Anschluß 31 geöffnet und es wird dann Druckluft bei Stillstand der Einblasanlage in die Lanze geblasen. Das Einblasen dieser Druckluft geschieht entweder manuell oder auch automatisch immer dann, wenn der Kunststofftransport zur Lanze unterbrochen ist. Durch das Einbringen dieser Druckluft wird verhindert, daß sich die Einblaslanze unerwünscht stark aufheizt und somit Hitzeschäden vorgebeugt wird. Der Anschluß 31 zur Eingabe von Druckluft in die Lanze wird immer dann geöffnet, wenn die Kunststoffzufuhr zur Lanze durch die dritte Absperreinrichtung geschlossen ist. Das Anschlußstück 31 selbst besteht im wesentlichen aus einem Ventil, welches an ein Druckluftreservoir angeschlossen ist.

[0027] Um bei - immer wieder unerwünscht auftretenden - Druckschwankungen in der Blasform eine Rückströmung von heißem Formengas aus der Blasform (Hochofen) in die Lanze und das dahinterliegende Einblassystem zu unterbinden, ist das als Rückschlagventil ausgebildete Wärmeabsperrvenril als zweite Absperreinrichtung ausgebildet. Dieses Wärmeabsperrventil kann eine einfache Klappe sein, welche den Material-/Lufttransport zur Lanze hin zuläßt (also dann öffnet), in entgegengesetzter Richtung jedoch automatisch durch den Massen/Gasrückstrom schließt.

[0028] Die in den Hochofen 1 einzublasenden Kunststoff-Agglomerate neigen in Abhängigkeit von ihrer Kornform und -größe, wie aber auch von ihrer spezifischen Zusammensetzung zur Verstopfung der Leitung 10, was - wie vorbeschrieben - verhindert werden sollte. Wenn ein solches Verstopfen (Stopfer) dennoch auftritt, muß eine schnelle Stopferbeseitigung vorgesehen werden. Hierzu ist der Absperrblock ausgebildet, bei welchem im Falle eines Stopfers nach Schließen der Absperrventile (erst und/oder dritte Absperreinrichtung) eine Entlüftungs-Armatur bzw. das Entlüftungsventil 26 geöffnet wird. Diese Entlüftung geschieht über der Außenatmosphäre, was zur Folge hat, daß zwischen der Transportleitung 10 in den betroffenen Teil über die Entlüftungsleitung 25 ein Druckabfall von nahezu 4 bis 6 Bar zu verzeichnen ist, während der gesamte Druckabfall über die Leitung von den Einblasarmaturen bis zur Einblaslanze nur etwa 0,5 bis 0,8 Bar beträgt. Durch den krassen Luftdruckabfall wird ein erheblicher Druck auf die verstopfende Kunststoffmasse ausgeübt, was zur schlagartigen Entleerung von Stopfern in der Transportleitung führt, so daß diese anschließend wiederum nach Sperrung des Ventils 26 für das Einblasen der agglomerierten Kunststoffe zur Verfügung steht.


Ansprüche

1. Verfahren zur Erzeugung von Metall aus Metallerzen, insbesondere von Roheisen aus Eisenerz, bei dem das Metalloxide enthaltende Erz mit einem Kohlenstoff und/oder Wasserstoff (sowie ggf. deren Verbindungen) enthaltenden Reduktionsgas in Reaktionskontakt gebracht wird, welches zuvor aus festen kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen gewonnen wurde,
dadurch gekennzeichnet, daß Kunststoff in zerkleinerter, fluidisierter Form als Agglomerat in den Windstrom im Gestell eines metallurgischen Schachtofens, insbesondere eines Hochofens (1) eingeblasen wird, daß der Kunststoff über Lanzen (18), die in Luftdüsen eines Hochofens angeordnet sind, in den Luftstrom eingeblasen wird, und daß der Kunststoff über eine Transportleitung (10) zu den Lanzen (18) befördert wird, daß die Kunststoff-Transportleitung (10) eine erste Absperreinrichtung (24), eine zweite Absperreinrichtung (28) und eine dritte Absperreinrichtung (29) vorgesehen ist und daß ferner in der Transportleitung oder in der Lanze Mittel (31) zur Einkopplung von Druckluft ausgebildet sind, daß die erste Absperreinrichtung (24) geschlossen wird, wenn Verstopfungen des Kunststoffs in der Transportleitung (10) oder der Lanze (18) gegeben sind, daß die zweite Absperreinrichtung (28) dann geschlossen wird, wenn über die Einblaslanze (18) Heißluft in die Transportleitung (10) und/oder Lanze (18) entgegen der üblichen Transportrichtung (RT) eindringt und daß die dritte Absperreinrichtung (29) geschlossen wird, wenn Druckluft über die Einblaslanze (18) zur Kühlung dieser aufgegeben wird.
 
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß zwischen der ersten und zweiten Absperreinrichtung ein Entlüftungsauslaß (26) in der Transportleitung (10) vorgesehen ist und bei Verstopfung der Transportleitung mit Kunststoff die erste Absperreinrichtung (24) den Weitertransport von Kunststoff sperrt und eine Entlüftungsöffnung (26) in der Leitung (10) geöffnet wird, damit verstopfte Kunststoffpartikel aus der Transportleitung (10) abgeführt werden können.
 
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß die zweite Absperreinrichtung (28) ein Wärmeabsperrventil mit der Funktion eines Rückschlagventils ist, welches den Transport von Kunststoff in der vorgeschriebenen Richtung in der Transportleitung zuläßt, jedoch dann schließt, wenn Kunststoffpartikel oder Gas entgegen der vorgeschriebenen Transportrichtung bewegt werden.
 
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die dritte Absperreinrichtung (29) aktiviert wird, wenn kein Kunststoff eingeblasen wird und daß dann gleichzeitig Druckluft zur Kühlung der Lanze (18) eingeblasen wird.
 
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der einzublasende Kunststoff von einem Kunststoffreservoir über eine Schleuse in die Transportleitung abgegeben wird.
 
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der Druckabfall über die Transportleitung bis zum Hochofen etwa 0,3 bis bis 1 Bar beträgt und daß die Druckdifferenz zwischen dem Inneren der Transportleitung und der äußeren Athmosphäre etwa 4 bis 6 Bar beträgt.
 
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der Kunststoff die Form eines Agglomerats mit hoher spezifischer Oberfläche bei einer Teilchengröße von etwa 3 bis 25 mm und eine Schüttdichte von größer als 0,25 aufweist.
 
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der Einblasdruck in den Lanzen 0,5 x 105 bis 1,5 x 105 Pa über dem Druck im Hochofen liegt.
 
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Kunststoffteilchen vor Einschleusung in die Transportleitung in getrennten Vorrichtungen nacheinander fluidisiert und dosiert werden.
 
10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Kunststoffteilchen in einer kombinierten Fluidisierungs- und Dosiervorrichtung fluidisiert und dosiert werden, wobei der Einblasdruck über eine schnelle Regelschleife (17) ständig abhängig vom Ofendruck angepaßt wird.
 
11. Verfahren nach Anspruch 10,
dadurch gekennzeichnet, daß als kombinierte Fluidisierungs- und Dosiervorrichtung eine druckdichte Zellenradschleuse verwendet wird.
 
12. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, bestehend aus einer Lanze (18), mittels der Kunststoff in zerkleinerter, fluidisierter Form als Agglomerat in den Windstrom im Gestell eines metallurgischen Schachtofens, insbesondere eines Hochofens (1), einblasbar ist, daß die Lanze (18) über eine Transportleitung (10) mit Kunststoff oder einem anderen Reduktionsmittel versorgt wird und daß in der Transportleitung (10) eine erste Absperreinrichtung (24), eine zweite Absperreinrichtung (28) und eine dritte Absperreinrichtung (29) vorgesehen ist, daß ferner ein Anschluß (31) zur Einleitung von Luft in die Transportleitung (10) und/oder Lanze (18) vorgesehen ist, daß die erste Absperreinrichtung (24) bei Verstopfung der Transportleitung (10) mit Kunststoff aktiviert wird, daß die zweite Absperreinrichtung (28) aktiviert wird, wenn Kunststoffmaterial oder Gas entgegen der vorgesehenen Transportrichrung transportiert wird und daß die dritte Absperreinrichtung (29) aktiviert wird, wenn kein Kunststoff eingeblasen wird und daß dann ein Gas zur Kühlung der Lanzen (19) über den Anschluß (31) eingeblasen wird.
 
13. Vorrichtung nach Anspruch 12,
dadurch gekennzeichnet, daß zwischen der ersten und zweiten Absperreinrichtung ein Lüftungsauslaß (26) in der Transportleitung (10) vorgesehen ist und bei Verstopfung der Transportleitung mit Kunststoff die erste Absperreinrichtung (24) den Weitertransport von Kunststoff sperrt und die Entlüftungsöffnung (26) geöffnet wird, damit verstopfte Kunststoffpartikel aus der Transportleitung (10) abgeführt werden können.
 
14. Vorrichtung nach Anspruch 12 oder 13,
dadurch gekennzeichnet, daß die zweite Absperreinrichtung (28) ein Wärmeabsperrventil mit der Funktion eines Rückschlagventils ist, welches den Transport von Kunststoff in der vorgeschriebenen Richtung (RT) in der Transportleitung (10) zuläßt, jedoch dann schließt, wenn Kunststoff oder Gas entgegen der vorgesehenen Transportrichtung bewegt wird.
 
15. Vorrichtung nach Anspruch 12, 13 oder 14,
dadurch gekennzeichnet, daß die dritte Absperreinrichtung (29) aktiviert wird, wenn kein Kunststoff eingeblasen wird und daß dann Druckluft zur Kühlung der Lanze eingeblasen wird.
 
16. Hochofen zur Erzeugung von Metall aus Metallerzen, insbesondere von Roheisen aus Eisenerz, bei dem das Metalloxid enthaltende Erz mit einem Kohlenstoff und/oder Wasserstoff (sowie gegebenenfalls deren Verbindung) enthaltende Reduktionsgas in Reduktionskontakt gebracht wird, welches zuvor aus festem Kohlenstoff- und/oder kohlenwasserstoffhaltigen Substanzen gewonnen wurde, mit einer Vorrichtung zum Einblasen von Kunststoff in zerkleinerter, fluidisierter Form als Agglomerat in den Windstrom im Gestell des Hochofens, wobei der Kunststoff über Lanzen (18), die in Luftdüsen des Hochofens angeordnet sind, in den Luftstrom eingeblasen wird, und daß der Kunststoff über eine Transportleitung (10) zu den Lanzen (18) befördert wird, daß die Kunststofftransportleitung (10) eine erste Absperreinrichtung (24), eine zweite Absperreinrichtung (28) und eine dritte Absperreinrichtung (29) vorgesehen ist und daß ferner in der Transportleitung (10) oder in der Lanze (18) Mittel (31) zur Einkopplung von Druckluft ausgebildet sind, daß die erste Absperreinrichtung (24) schließt, wenn Verstopfungen des Kunststoffs in der Transportleitung (10) oder der Lanze (18) gegeben sind, daß die zweite Absperreinrichtung (28) schließt, wenn über die Einblaslanze Heißluft/Kunststoff in der Transportleitung entgegen der üblichen Transportrichtung eindringt und daß die dritte Absperreinrichtung (29) schließt, wenn Druckluft über die Einblaslanze zur Kühlung dieser aufgegeben wird.
 




Zeichnung
















Recherchenbericht