(19)
(11) EP 0 916 001 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.05.2001 Bulletin 2001/21

(21) Application number: 97926103.9

(22) Date of filing: 12.06.1997
(51) International Patent Classification (IPC)7D21H 13/26, D21H 17/68
(86) International application number:
PCT/GB9701/587
(87) International publication number:
WO 9749/864 (31.12.1997 Gazette 1997/57)

(54)

GASKET PAPER

DICHTUNGSPAPIER

PAPIER POUR JOINT D'ETANCHEITE


(84) Designated Contracting States:
DE ES FR GB IT SE

(30) Priority: 27.06.1996 GB 9613456

(43) Date of publication of application:
19.05.1999 Bulletin 1999/20

(73) Proprietor: Federal-Mogul Technology Limited
Rugby, Warwickshire CV22 7SB (GB)

(72) Inventors:
  • HALL, David Geoffrey
    Oldham, Lancashire OL2 5UW (GB)
  • LATKOWSKI, Antony
    Rochdale, Lancashire OL11 3JA (GB)

(74) Representative: Hammersley, John et al
Urquhart-Dykes & Lord European Patent Attorneys Greg's Buildings 1 Booth Street
Manchester M2 4DU
Manchester M2 4DU (GB)


(56) References cited: : 
EP-A- 0 522 441
GB-A- 2 138 854
GB-A- 2 250 302
GB-A- 2 093 474
GB-A- 2 138 855
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This invention relates to papers particularly, but not exclusively, suitable for use in fluid sealing applications such as cylinder head gaskets. It is known to make gasket papers from non-asbestos formulations based on other fibres such as glass fibres and/or mineral fibres and including a minor proportion of cellulose as a web-forming agent. For example. GB-A-2138854 and 2138855 disclose cellulose-containing compositions using ball clay as a filler. GB-A-2250302 discloses a gasket material which is cellulose-free and which includes a carefully selected mixture of calcined china clay and ball clay as filler. GB-A-2254346 discloses a high temperature gasket material including glass or carbon fibre staples and temperature tolerants. fillers. GB-A-2093474 and EP-A2-0522441 disclose compositions including aramid fibre staple materials.

    [0002] Whilst some of these non-asbestos products containing ball clay have good performance in non-critical applications, it has been observed that their behaviour at elevated temperatures is not adequate as regards stress relaxation (or creep), particularly when tested over an extended period of time to simulate actual use. Stress relaxation or creep results in a loss of loading in a bolted joint and can lead to gasket failure, so that in temperature critical applications, better stress retention is very desirable.

    [0003] It has now been discovered that replacement of the ball clay component by a silicate mineral such as a layered kaolinitic clay or a fibrous chain silicate, or by a mixture of these results in improved stress relaxation performance.

    [0004] According to the present invention, a method of manufacture of a paper stock for dewatering to paper, comprising, by weight, 4-15% aramid fibre pulp, 60-90% silicate mineral, 4-10% polymeric binder, and 2-15% inorganic binder, comprises the steps set out in the precharaterising part of claim 1 further characterised by producing a first mixture containing said aramid fibres and silicate mineral prior to adding the inorganic binder thereto and, prior to adding said inorganic binder, adding to said first mixture a 10% solution of papermakers alum such that the dry content is 1% of the total composition and agitating the mixture to prepare the surface of the silicate mineral by said alum to receive the inorganic binder, and, after addition of said inorganic binder, adding said polymeric binder having a solid content of 50% by weight and dispersing said polymeric binder in the mixture without precipitation thereof.

    [0005] According to a further aspect of the invention, at least some of the silicate mineral is constituted by attapulgite.

    [0006] The inorganic binder is preferably colloidal silica. The polymeric material is preferably nitrile rubber.

    [0007] A particularly preferred paper according to the inventive method comprises by weight, 4-8% aramid fibre pulp, 5-8% polymeric binder, 75-87% silicate mineral and 4-10% colloidal silica. It will be appreciated that in the present context "aramid" is a reference to polyaromatic amide material.

    [0008] The formulations of the present invention may be used in at least two different ways. Firstly, the use of calcined china clay in combination with colloidal silica lends itself to the product of a paper which can be impregnated with a silicone or other resin such as polybutadiene in order to enhance resistance to and sealabilty against fluids such as water-antifreeze mixtures and oil. Alternatively, by including attapulgite it is possible to produce a paper which swells when exposed to water. Such papers can be used without a resin impregnation treatment.

    [0009] The process of the invention leads to a paper stock which is capable of producing gaskets both with and without a post-treatment with a resin impregnant.

    [0010] Surprisingly, it has been found that by eliminating ball clay (previously regarded as a critical ingredient) in the formulations of the present invention, it is possible to achieve improved stress relaxation performance at elevated temperatures, without using inorganic fibres.

    [0011] In order that the invention be better understood, preferred embodiments of it will now be described by way of example with reference to the following Examples.

    [0012] In the interests of clarity, the stress relaxation performance was determined by a method based on ASTM test F1276, the samples being exposed to 300°C for 22 hours. It will be appreciated that the latter is significantly longer than some other tests, but investigation reveals that stress relaxation is appreciably higher after longer exposures, which more closely approximate actual use.

    [0013] Thus testing was carried out by bonding the test paper to both sides of a plain steel core, blanking out annular samples of inside diameter 14.7mm and outside diameter 34.5mm. These were then tested, again based on ASTM F1276, by applying an initial stress of 58.6 MPa. After 22 hours at 300°C the residual stress was measured, the stress relaxation calculated and then normalised to a paper thickness of 1.0mm, in the usual way. This procedure was used throughout the following Examples, including tests on paper made according to prior art.

    Example 1



    [0014] A paper was made having the following composition:
      % by dry weight
    Fibrillated Aramid Fibre Pulp 8
    Calcined China Clay 76
    Nitrile Rubber 6
    Colloidal Silica 10

    Stock Preparation



    [0015] The aramid fibres were dispersed in water to give a slurry of around 2% solids content by weight. This pulp had a freeness of 50°SR. The pulp was transferred to a mixing vessel and further diluted with water at 40°C. The calcined china clay was added and the mixture agitated. Further water was added to give a slurry having a solids content of approximately 4% by weight. A 10% solution of papermakers alum was added such that the dry content was approximately 1% of the total composition. The mixture was agitated for 2 minutes before adding the colloidal silica as a 30% solids content suspension. The mixture was agitated for a further 5 minutes and nitrile rubber added in latex form, having a solids content of around 50%. The nitrile rubber latex was diluted 5:1 with water before adding to the mix. When fully dispersed the latex was then caused to precipitate onto the fibres and fillers by the addition of a further quantity of papermakers alum solution until the supernatant liquid became clear.

    Paper Manufacture



    [0016] A paper was produced from the above stock by the conventional technique of dewatering on a wire mesh, pressing and drying, a polyacrylamide flocculant was used to aid processing. The paper was subsequently calendered to the required density using a conventional 2-bowl calender.

    [0017] The resulting paper had the following properties:
    Thickness 0.83mm
    Substance 920gm-2
    Density 1100kgm-3
    Tensile Strength 4.2 MPa
    Compression at 34.5 MPa 14.3%
    Stress Relaxation 24.8%


    [0018] A conventional paper made according to GB 2250302 showed a stress relaxation of 42% by the same test method.

    [0019] In additional to the above properties the ability of the paper to seal against a mixture of 50% water and 50% antifreeze (w/w) was measured. A sealing stress of 10.3 MPa was applied to an annular sample of the paper and the internal pressure of the water/antifreeze mixture increased in steps of 1 bar. Each pressure was held for a period of 5 minutes and the pressure at which leakage occurred was noted. Samples of the above paper were found to leak at an intemal pressure of 2 bar.

    [0020] It was found that the sealing performance of the paper could be dramatically improved by impregnation of the paper with a silicone resin, such that a fluid pressure of 10 bar was sealed.

    Example 2



    [0021] A paper was prepared largely as described above from the following formulation.
      % by dry weight
    Fibrillated Aramid Fibre Pulp 4
    Calcined China Clay 30
    Attapulgite 50
    Colloidal Silica 10
    Nitrile Rubber 6


    [0022] The paper had the following properties:
    Thickness 0.65mm
    Substance 860gm-2
    Density 1330kgm-3
    Tensile Strength 7.0 MPa
    Compression at 34.5 MPa 15.3%
    Stress Relaxation 29.8%


    [0023] A sealing test was carried out as described above and the paper was found to seal an internal pressure of 10 bar without detectable leakage at a sealing stress of 10.3 MPa. The paper also sealed 10 bar fluid pressure at a reduced sealing stress of 3.4 MPa.


    Claims

    1. A method of manufacture of a paper stock for dewatering to paper, comprising by weight 4-15% aramid fibre pulp, 60-90% silicate mineral, 4-10% polymeric binder and 2-15% inorganic binder, comprising the steps of

    producing a mixture in water of aramid fibres in a slurry of 2% solids content by weight, the silicate mineral and the inorganic binder, adding the polymeric binder to the mixture and, when the polymeric binder is fully dispersed, adding papermaker's alum until the polymeric binder is precipitated and the supernatant liquid of the mixture becomes clear, characterised by

    producing a first mixture containing said aramid fibres and silicate mineral prior to adding the inorganic binder thereto and, prior to adding said inorganic binder,

    adding to said first mixture a 10% solution of papermakers alum such that the dry content is 1% of the total composition and agitating the mixture to prepare the surface of the silicate mineral by said alum to receive the inorganic binder, and,

    after addition of said inorganic binder,

    adding said polymeric binder having a solid content of 50% by weight and dispersing said polymeric binder in the mixture without precipitation thereof.


     
    2. A method according to claim 1 characterised by adding at least some of the silicate mineral added as a fibrous chain silicate.
     
    3. A method according to claim 2 characterised by adding said fibrous chain silicate as attapulgite.
     
    4. A method according to any of claims 1-3 characterised by adding said silicate mineral as a layered kaolinitic clay.
     
    5. A method according to claim 4 characterised by calcining the china clay before adding it.
     
    6. A method according to claim 5 characterised by calcing said china clay at over 800°C.
     
    7. A method according to any of claims 1-6 characterising by adding said inorganic binder as colloidal silica.
     
    8. A method according to any preceding claim characterised by adding said polymeric binder as nitrile rubber.
     
    9. A method according to any preceding claim comprising mixing by weight, 4-8% aramid fibre pulp, 5-8% polymeric binder, 75-87% silicate mineral, 4-10% inorganic binder.
     


    Ansprüche

    1. Verfahren zur Herstellung eines Papierausgangsmaterials zum Entwässern zu Papier, umfassend 4-15 Gew.-% Aramidfaserpulpe, 60-90 Gew.-% Silikatmineral, 4-10 Gew.-% Polymerbinder und 2-15 Gew.-% anorganischen Binder, umfassend die Schritte

    Herstellen eines Gemisches von Aramidfasern in Wasser in einer Aufschlämmung mit 2 Gew.-% Feststoffgehalt, dem Silikatmineral und dem anorganischen Binder, Zugeben des Polymerbinders zu dem Gemisch und, wenn der Polymerbinder vollständig dispergiert ist, Zugeben von Papiermacheralaun, bis der Polymerbinder ausgefällt ist, und die überstehende Flüssigkeit des Gemisches klar wird, gekennzeichnet durch

    Herstellen eines ersten Gemisches, das die Aramidfasern und das Silikatmineral enthält bevor der anorganische Binder zugegeben wird, und vor dem Zugeben des anorganischen Binders,

    Zugeben einer 10 %-igen Papiermacheralaun-Lösung zu dem ersten Gemisch, derart, dass der Trockengehalt 1 % der Gesamtzusammensetzung beträgt, und Rühren des Gemisches, um die Oberfläche des silikatischen Minerals durch das Alaun aufzubereiten, um den anorganischen Binder aufzunehmen und,

    nach Zugabe des anorganischen Binders,

    Zugeben des Polymerbinders mit einem Feststoffgehalt von 50 Gew.-% und Dispergieren des Polymerbinders in dem Gemisch, ohne diesen auszufällen.


     
    2. Verfahren gemäß Anspruch 1, gekennzeichnet durch Zugabe von mindestens einem Teil des zugegebenen Silikatminerals als faseriges Silikat in Kettenform.
     
    3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass das faserige Silikat in Kettenform als Attapulgit zugegeben wird.
     
    4. Verfahren gemäß einem der Ansprüche 1-3, gekennzeichnet durch Zugabe des Silikatminerals als geschichteter Kaolitton.
     
    5. Verfahren gemäß Anspruch 4, gekennzeichnet durch Calcinieren des Kaolins vor dessen Zugabe.
     
    6. Verfahren gemäß Anspruch 5, gekennzeichnet durch Calcinieren des Kaolins bei über 800° C.
     
    7. Verfahren gemäß einem der Ansprüche 1-6, gekennzeichnet durch Zugabe des anorganischen Binders als kolloidales Siliciumdioxid.
     
    8. Verfahren gemäß irgendeinem vorstehendem Anspruch, gekennzeichnet durch Zugabe des Polymerbinders als Nitrilkautschuk.
     
    9. Verfahren gemäß einem der vorstehenden Ansprüche, umfassend das Vermischen von 4-8 Gew.-% Aramidfaserpulpe, 5-8 Gew.-% Polymerbinder, 75-87 Gew.-% Silikatmineral, 4-10 Gew.-% anorganischem Binders.
     


    Revendications

    1. Procédé de fabrication d'une pâte de papier pour la déshydratation de papier, comprenant, en poids, de 4 à 15 % de pâte de fibres d'aramide, de 60 à 90 % de minéral silicate, de 4 à 10 % de liant polymère et de 2 à 15 % de liant inorganique, comprenant les étapes consistant: à :
       préparer un mélange, dans de l'eau, formé de fibres d'aramide sous la forme d'une suspension ayant une teneur en solides de 2 % en poids, du minéral silicate et du liant inorganique, ajouter le liant polymère au mélange et quand le liant polymère est complètement dispersé, ajouter de l'alun des papetiers jusqu'à ce que le liant polymère précipite et que le liquide surnageant du mélange devienne limpide,
       caractérisé par les étapes consistant à :

    préparer un premier mélange contenant lesdites fibres d'aramide et ledit minéral silicate avant d'y ajouter le liant inorganique et, avant d'ajouter ledit liant inorganique,

    ajouter audit premier mélange une solution à 10 % d'alun des papetiers de façon à ce que la teneur à l'état sec soit de 1 % par rapport à la composition totale et agiter le mélange pour apprêter la surface du minéral silicate au moyen dudit alun pour recevoir le liant inorganique, et après l'addition dudit liant inorganique,

    ajouter ledit liant polymère ayant une teneur en solides de 50 % en poids et disperser ledit liant polymère dans le mélange sans le faire précipiter.


     
    2. Procédé selon la revendication 1, caractérisé en ce qu'on ajoute au moins une partie du minéral silicate sous la forme d'un silicate à chaîne fibreuse.
     
    3. Procédé selon la revendication 2, caractérisé en ce qu'on ajoute ledit silicate à chaîne fibreuse sous la forme d'attapulgite.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on ajoute ledit minéral silicate sous la forme d'une argile kaolinique en couches.
     
    5. Procédé selon la revendication 4, caractérisé en ce qu'on effectue la calcination du kaolin avant de l'ajouter.
     
    6. Procédé selon la revendication 5, caractérisé en ce qu'on effectue la calcination dudit kaolin à plus de 800°C.
     
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on ajoute ledit liant inorganique sous la forme de silice colloïdale.
     
    8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on ajoute ledit liant polymère sous la forme de caoutchouc au nitrile.
     
    9. Procédé selon l'une quelconque des revendications précédentes, comprenant le mélange, en poids, de 4 à 8 % de pâte de fibres d'aramide, de 5 à 8 % de liant polymère, de 75 à 87 % de minéral silicate et de 4 à 10 % de liant inorganique.