(19)
(11) EP 1 185 387 B1

(12) FASCICULE DE BREVET EUROPEEN

(45) Mention de la délivrance du brevet:
11.12.2002  Bulletin  2002/50

(21) Numéro de dépôt: 00915237.2

(22) Date de dépôt:  12.04.2000
(51) Int. Cl.7B22D 11/06, C22C 38/40
(86) Numéro de dépôt:
PCT/FR0000/780
(87) Numéro de publication internationale:
WO 0006/4612 (02.11.2000 Gazette  2000/44)

(54)

PROCEDE DE COULEE CONTINUE ENTRE CYLINDRES DE BANDES D'ACIER INOXYDABLE AUSTENTIQUE D'EXCELLENTE QUALITE DE SURFACE, ET BANDES ANSI OBTENUES

VERFAHREN ZUM STRANGGIESSEN ZWISCHEN ZYLINDERN VON AUSTENITISCHEN ROSTFREIEN STAHLBÄNDERN HOHER OBERFLÄCHENQUALITÄT UND DIE SO HERGESTELLTEN BÄNDER

METHOD FOR CONTINUOUSLY CASTING BETWEEN TWO ROLLS AUSTENITIC STAINLESS STEEL STRIPS WITH EXCELLENT SURFACE QUALITY AND RESULTING STRIPS


(84) Etats contractants désignés:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Etats d'extension désignés:
RO SI

(30) Priorité: 22.04.1999 FR 9905052

(43) Date de publication de la demande:
13.03.2002  Bulletin  2002/11

(73) Titulaire: USINOR
92800 Puteaux (FR)

(72) Inventeurs:
  • MARCHIONNI, Christian
    F-57780 Rosselange (FR)
  • MAZURIER, Frédéric
    F-62400 Béthune (FR)
  • DAMASSE, Jean-Michel
    D-42139 Dusseldorf (DE)
  • DESCAVES, Frédéric
    F-62330 Isbergues (FR)

(74) Mandataire: Neyret, Daniel et al
c/o Cabinet Lavoix, 2, Place d'Estienne d'Orves
75441 Paris Cedex 09
75441 Paris Cedex 09 (FR)


(56) Documents cités: : 
EP-A- 0 409 645
WO-A-95/13889
EP-A- 0 796 685
   
       
    Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance de brevet européen, toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition. (Art. 99(1) Convention sur le brevet européen).


    Description


    [0001] L'invention concerne la coulée continue des métaux, et plus précisément la coulée continue, directement à partir de métal liquide, de bandes d'acier inoxydable de type austénitique dont l'épaisseur est de l'ordre de quelques mm, par le procédé dit de « coulée entre cylindres ».

    [0002] Ces dernières années ont vu s'accomplir des progrès sensibles dans le développement des procédés de coulée de bandes minces d'acier au carbone ou inoxydable directement à partir de métal liquide. Le procédé principalement utilisé aujourd'hui est la coulée dudit métal liquide entre deux cylindres refroidis intérieurement, tournant autour de leurs axes horizontaux dans des sens opposés, et disposés en regard l'un de l'autre, la distance minimale entre leurs surfaces étant sensiblement égale à l'épaisseur que l'on désire conférer à la bande coulée (par exemple quelques mm). L'espace de coulée renfermant l'acier liquide est défini par les surfaces latérales des cylindres, sur lesquelles s'initie la solidification de la bande, et par des plaques de fermeture latérale en réfractaire appliquées contre les extrémités des cylindres. Le métal liquide initie sa solidification au contact des surfaces extérieures des cylindres, sur lesquelles il forme des « peaux » solidifiées, dont on fait en sorte qu'elles se rejoignent au niveau du « col », c'est à dire de la zone où la distance entre les cylindres est minimale.

    [0003] Un des principaux problèmes rencontrés lors de la fabrication de bandes minces d'acier inoxydable par coulée entre cylindres est le risque important d'une apparition sur la bande de défauts de surface appelés microcriques. Il s'agit de fissures de faibles dimensions qui sont néanmoins suffisantes pour rendre impropres à l'utilisation les produits transformés à froid qui en sont issus. Elles se forment au cours de la solidification de l'acier et ont une profondeur de l'ordre de 40 µm et une ouverture d'environ 20 µm. Leur apparition est liée aux contractions du métal lors de la solidification des peaux au contact des cylindres, sur la longueur de leur arc de contact. Cette solidification peut être décrite comme comportant deux étapes successives. La première étape se produit lors du contact initial entre l'acier liquide et la surface du cylindre, qui entraîne la formation d'une peau d'acier solide à la surface des cylindres. La seconde étape concerne la croissance de cette peau jusqu'au col, où comme on l'a dit. elle rejoint la peau formée sur l'autre cylindre pour constituer la bande entièrement solidifiée. Le contact entre l'acier et la surface du cylindre est conditionné par la topographie de la surface des cylindres de coulée, conjuguée à la nature du gaz d'inertage environnant l'espace de coulée et à la composition chimique de l'acier. Tous ces paramètres interviennent dans l'établissement des transferts thermiques entre l'acier et le cylindre et régissent les conditions de solidification des peaux. Lors de la solidification et du refroidissement des peaux, celles-ci subissent des contractions. Elles dépendent notamment de l'ampleur de la transformation de phase δ → γ, qui s'effectue avec une variation sensible de la densité du métal, au niveau microscopique. Elle est déterminée par la composition du métal coulé. Ces contractions vont, elles aussi, modifier les conditions de solidification et de refroidissement des peaux.

    [0004] Le rapport Creq/Nieq est classiquement considéré comme représentatif du chemin de solidification des aciers inoxydables austénitiques. On le calcule, selon la relation de Hammar et Swensson, au moyen des formules (les pourcentages sont des pourcentages pondéraux) :





    [0005] Diverses tentatives ont été faites pour mettre au point des procédés de coulée entre cylindres permettant l'obtention, de manière fiable, de bandes exemptes de défauts de surface rédhibitoires tels que des microcriques.

    [0006] En ce qui concerne les aciers inoxydables austénitiques, on peut citer le document EP-A-0 409 645. Il conjugue une géométrie définie des « fossettes » (gravures en creux de forme grossièrement circulaire ou elliptique) présentes à la surface des cylindres avec l'utilisation comme gaz d'inertage d'un mélange gazeux contenant 30 à 90% d'un gaz soluble dans l'acier, qui garnit les fossettes au moment du premier contact cylindres/acier liquide. Le document EP-A-0 481 481 conjugue une composition chimique, où l'indice δ-Fecal défini par δ-Fecal = 3 (Cr% + 1,5 Si% + Mo%) - 2,8 (Ni% + 0,5 Mn% + 0,5 Cu%) - 84 (C% + N%) - 19,8 est compris entre 5 et 9%, avec une géométrie de fossettes sur les cylindres, de manière à favoriser la solidification en ferrite primaire δ → δ + γ. Les fossettes peuvent classiquement être réalisées par grenaillage ou usinage laser. Dans tous les documents précédents, il est exigé que ces fossettes soient disjointes les unes des autres.

    [0007] Le document EP-A-0 679 114 propose l'utilisation de rainures circonférencielles ménagées sur la surface des cylindres, qui donnent à ladite surface une rugosité Ra de 2,5 à 15 µm. Elle est conjuguée à une composition chimique de l'acier permettant une solidification en austénite primaire, caractérisée par un rapport Creq/Nieq inférieur à 1,60. Toutefois, la solidification en austénite primaire augmente la sensibilité à la fissuration à chaud des aciers inoxydables et les risques de formation de criques longitudinales sur la bande.

    [0008] Le document EP-A-0 796 685 enseigne de couler un acier dont le rapport Creq/Nieq est supérieur à 1,55 de manière à minimiser les changements de phase à haute température, et de réaliser cette coulée en utilisant des cylindres dont la surface comporte des fossettes jointives de diamètre 100-1500 µm et de profondeur 20-150 µm et en inertant le voisinage du ménisque (l'intersection entre la surface de l'acier liquide et la surface des cylindres) avec un gaz soluble dans l'acier, ou un mélange de gaz composé majoritairement d'un tel gaz soluble. Les pics de rugosité servent de sites d'amorçage à la solidification, alors que les creux de la rugosité constituent des joints de contraction du métal au cours de la solidification, et permettent une meilleure répartition des contraintes. Toutefois, lorsque le rapport Creq/Nieq est supérieur à 1,70, on ne peut pas toujours éviter la présence de quelques microcriques.

    [0009] Le but de l'invention est de proposer un procédé de coulée de bandes minces en acier inoxydable austénitique dont la surface serait exempte de microcriques et d'autres défauts majeurs, ne nécessitant pas de conditions de coulée particulièrement contraignantes pour sa mise en oeuvre, et permettant de couler des aciers ayant un rapport Creq/Nieq plus étendu que dans les procédés existants.

    [0010] A cet effet, l'invention a pour objet un procédé de coulée continue d'une bande d'acier inoxydable austénitique d'épaisseur inférieure ou égale à 10 mm, directement à partir de métal liquide, entre deux cylindres horizontaux refroidis, caractérisé en ce que :
    • la composition dudit acier, en pourcentage pondéraux, comprend : C% ≤ 0,08 ; Si% ≤1 ; P% ≤ 0,04 ; Mn% ≤ 2 ; Cr% compris entre 17 et 20 ; Ni% compris entre 8 et 10,5 ; S% compris entre 0,007 et 0,040 ; le reste étant du fer et des impuretés résultant de l'élaboration ;
    • le rapport Creq/Nieq est compris entre 1,55 et 1,90, avec :

      et

    • la surface des cylindres comporte des fossettes jointives de section approximativement circulaire ou elliptique, de diamètre 100 à 1500 µm et de profondeur 20 à 150 µm;
    • le gaz d'inertage environnant le ménisque est un gaz soluble dans l'acier ou un mélange de tels gaz, ou est constitué au moins par 50% en volume d'un tel gaz ou mélange de gaz.


    [0011] L'invention a également pour objet des bandes pouvant être produites par ce procédé.

    [0012] Comme on l'aura compris, l'invention consiste à combiner des conditions portant sur la composition du métal coulé, l'état de surface des cylindres et la composition du gaz d'inertage du ménisque, de manière à obtenir une surface de bande exempte de microcriques. La principale originalité de la composition requise est que le métal doit contenir une quantité de soufre supérieure aux quantités les plus usuellement rencontrées (sans être cependant importante au point de compromettre la résistance des produits à la corrosion), et que cette teneur doit être combinée à une gamme précise de rapports Creq/Nieq.

    [0013] L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :
    • la figure 1 qui montre vue en coupe une bande d'acier inoxydable austénitique coulée entre cylindres selon l'art antérieur, et qui met en évidence la morphologie des microcriques que l'on veut éviter ;
    • la figure 2 qui est une courbe montrant l'influence de la teneur en soufre du métal sur la présence de microcriques à la surface de la bande coulée.


    [0014] Les conditions du premier contact entre l'acier liquide et les cylindres constituent un facteur très important dans le processus de solidification de la bande, et influent notablement sur la qualité de surface de celle-ci. Leur bonne maîtrise est donc très importante pour garantir l'absence de microcriques sur la bande coulée. Cependant, les inévitables fluctuations du niveau de la surface du métal liquide présent entre les cylindres compliquent cette maîtrise, notamment en ce qu'ils sont source d'irrégularités dans les échanges thermiques qui ont lieu dans cette zone de premier contact. D'autres telles irrégularités sont dues, lors des stades ultérieurs de la solidification des peaux, aux contractions du métal lors de la solidification, qui résultent notamment des transformations de phase à haute température caractéristiques des aciers inoxydables austénitiques. Ces contractions peuvent être à l'origine de microcriques. La figure 1 montre une micrographie réalisée sur un échantillon d'une bande mince 1 d'acier inoxydable austénitique, vue en coupe longitudinale. Cette bande 1 présente sur sa surface 2 une microcrique 3, du type de celles que l'invention cherche précisément à éviter. L'attaque métallographique réalisée sur l'échantillon met en évidence une plage claire 4 située autour de la microcrique 3 et dans son prolongement : elle correspond à une zone ségrégée enrichie en certains éléments tels que le nickel et le manganèse.

    [0015] On a découvert que l'addition au métal liquide d'éléments tensioactifs, tels que le soufre, qui agissent sur la tension superficielle de l'acier liquide à la surface des cylindres, a une influence sensible sur les conditions du premier contact entre le métal et les cylindres de coulée. En particulier, une telle addition permet de stabiliser très sensiblement la forme du ménisque du métal liquide, grâce à un meilleur mouillage de la surface du cylindre. Il en résulte une amélioration significative de l'homogénéité et de la régularité dans le temps des échanges thermiques entre le métal liquide et la surface des cylindres lors de leur premier contact. Ces effets ont été mis en évidence par les inventeurs à partir de mesures de la régularité des épaisseurs de peaux colonnaires réalisées sur des coupes métallographiques en sens travers de bandes minces brutes de coulée en acier inoxydable austénitique de type 304. Une irrégularité des ces épaisseurs se traduit par une propension élevée de la bande coulée à présenter des microcriques sur sa surface. En revanche une épaisseur régulière de la partie colonnaire de la peau solidifiée, qui est l'indice que le niveau du ménisque n'a que peu varié pendant la coulée, va de pair avec une absence de microcriques à la surface de la bande.

    [0016] La courbe de la figure 2 traduit les résultats de ces investigations, qui ont été menées sur des bandes d'épaisseur 3 mm coulées à une vitesse de 50 m/min. Les surfaces des cylindres de coulée étaient rendues rugueuses par des fossettes jointives de profondeur moyenne 80 µm et de diamètre moyen 1000 µm. La composition des aciers coulés s'inscrivait dans les limites : C : 0,02-0,06% ; Mn : 1,3-1,6% ; P : 0,019-0,024% ; Si : 0,34-0,45% ; Cr : 18,0-18,7% ; Ni : 8,6-9,8% ; S: 0,0005-0,446%. Les rapports Creq/Nieq de ces aciers variaient de 1,79 à 1,85. Le gaz d'inertage environnant le ménisque contenait 60% en volume d'azote et 40% en volume d'argon. En abscisses figure la teneur en soufre du métal, en ordonnées un indice représentatif de l'ampleur des fluctuations du niveau du ménisque lors de la coulée, qui représente l'écart-type sur l'épaisseur des zones colonnaires observées sur la structure de solidification de la bande. On voit qu'à conditions de coulée égales, plus la teneur en soufre du métal est élevée, alors que par ailleurs les teneurs des autres éléments restent similaires, plus les fluctuations du niveau du ménisque ont une ampleur réduite. A partir d'une teneur en soufre de 0,007%, cette influence diminue très sensiblement, alors qu'elle est très nette pour les teneurs plus basses. On se rend également compte que la présence de microcriques à la surface de la bande est directement liée à ces fluctuations, et que la limite inférieure de 0,007% pour la teneur en soufre correspond également au minimum nécessaire pour éviter la formation de microcriques.

    [0017] De manière générale, les inventeurs ont déterminé un ensemble de conditions à respecter pour que la coulée d'aciers inoxydables austénitiques en bandes minces s'effectue sans formation de microcriques à la surface des bandes, et elles ont été citées plus haut. Elles se justifient par les considérations suivantes.

    [0018] Lorsque la teneur en soufre est inférieure à 0,007%, les fluctuations du niveau du ménisque deviennent trop importantes, et les irrégularités des transferts thermiques qui en résultent provoquent la formation de microcriques, en particulier lorsque le rapport Creq/Nieq est supérieur à 1,70. On fixe à 0,04% la limite supérieure de la teneur en soufre parce qu'au-delà de cette valeur, l'influence de la teneur en soufre sur la stabilité du ménisque n'augmente plus significativement, et qu'en revanche, on observe un accroissement des risques de dégradation de la résistance à la corrosion par piqûres du produit fini fabriqué à partir de ces bandes.

    [0019] La teneur en phosphore doit être maintenue à moins de 0,04%, afin d'éviter des risques de fissuration à chaud des bandes lorsque le rapport Creq/Nieq est proche de 1,55, c'est à dire lorsque la solidification s'effectue partiellement en austénite primaire, et pas majoritairement en ferrite primaire.

    [0020] Le rapport Creq/Nieq doit être d'au moins 1,55, en ce qu'en dessous de cette valeur, l'acier se solidifie au moins partiellement en austénite primaire, ce qui augmente la sensibilité à la fissuration de la bande et favorise l'apparition de criques longitudinales, qui doivent être absolument évitées, elles aussi. Pour un rapport Creq/Nieq supérieur à 1,90, la contraction liée à la transformation ferrite-austénite devient trop importante, et les microcriques sont alors inévitables. De plus, le taux de ferrite dans la bande devient trop élevé, ce qui peut entraîner des ruptures après la mise en forme des produits finis réalisés à partir des bandes ainsi coulées.

    [0021] Les autres conditions analytiques sur l'acier coulé sont classiques sur les aciers inoxydables austénitiques les plus courants, notamment ceux du type 304 et apparentés. Il est entendu que d'autres éléments que ceux cités explicitement dans ce qui précède peuvent être présents dans l'acier, au titre d'impuretés ou d'éléments d'alliage en faible quantité, dans la mesure où ils ne modifieraient pas notablement les conditions de solidification et la tension superficielle de l'acier liquide à la surface des cylindres, ce que confirmerait l'absence de microcriques sur les bandes produites.

    [0022] Comme on l'a dit, la nature du gaz d'inertage environnant le ménisque a une forte influence sur les conditions de contact entre l'acier et la surface des cylindres, notamment sur la manière dont s'effectue le transfert « en négatif» de la rugosité des cylindres sur la surface de la bande, et sur les risques de formation de microcriques. Avec un gaz totalement ou majoritairement insoluble dans l'acier, tel que l'argon ou l'hélium, l'acier en cours de solidification ne pénètre pas ou peu dans les dépressions de la surface du cylindre. L'extraction de chaleur ne s'effectue donc pratiquement qu'au droit des pics de rugosité, ce qui la rend très hétérogène sur la surface du cylindre. Cette hétérogénéité est favorable à l'apparition de nombreuses microcriques. En revanche, avec un gaz d'inertage contenant une quantité notable d'un gaz soluble dans l'acier tel que l'azote, l'hydrogène, l'ammoniac le CO2, a fortiori s'il est constitué dans sa totalité par un tel gaz ou un mélange de tels gaz, l'acier pénètre bien dans les dépressions de la surface des cylindres, et l'extraction de chaleur au premier contact est importante. De plus, cela diminue l'hétérogénéité de l'extraction de la chaleur au droit des pics et des dépressions. Tout cela va dans le sens d'une limitation des risques de formation de microcriques. Dans la pratique, compte tenu des autres conditions de coulée exigées pour la composition du métal et la rugosité des surfaces des cylindres, on fixe à 50% en volume la limite inférieure de la teneur du gaz d'inertage en un gaz (ou mélange de gaz) soluble dans l'acier.

    [0023] Les conditions qui viennent d'être décrites conduisent aux résultats souhaités dans le cas où les cylindres ont sur leur surface des fossettes jointives d'un diamètre compris entre 100 et 1500 µm et une profondeur comprise entre 20 et 150 µm.

    [0024] Des exemples d'application vont à présent illustrer l'invention et justifier ses exigences.

    Exemple 1 :



    [0025] On a coulé entre cylindres des bandes d'acier inoxydable austénitique de 3 mm d'épaisseur. Les surfaces des cylindres comportaient des fossettes jointives de diamètre moyen 1000 µm et de profondeur moyenne 100 µm. Le gaz d'inertage environnant le ménisque comportait 40% d'argon et 60% d'azote. La composition de l'acier variait dans les limites suivantes : C : 0,02-0,06% ; Mn : 1,3-1,6% ; P : 0,019-0,024% ; Si : 0,34-0,45% ; Cr : 18,0-18,7% ; Ni : 8,6-9,8% ; S : 0,0005-0,0446%. Le rapport Creq/Nieq des aciers coulés variait de 1,79 à 1,85. On a mesuré la densité surfacique des microcriques sur les bandes ainsi coulées, et on a confronté les résultats de ces mesures avec les teneurs en soufre dans les aciers coulés. Le tableau 1 présente les conclusions des ces essais.
    Tableau 1 :
    Effet de la teneur en soufre de l'acier sur la densité surfacique de microcriques
    S% Nombre de microcriques par dm2
    0,0005 110
    0,0028 75
    0,0066 10
    0,0075 0
    0,0080 0
    0,0150 0
    0,0388 0
    0,0446 0


    [0026] Dans ces exemples, où le rapport Creq/Nieq des aciers coulés était de 1,79 à 1,85 (et ne variait donc que dans des limites très étroites), il apparaît clairement que la densité de microcriques observées dépend fortement de la teneur en soufre de l'acier. Pour des teneurs en soufre supérieures à 0,007%, on n'observe pas de microcriques, alors que pour les teneurs basses et très basses en soufre, les microcriques sont présentes de manière très significative. C'est à partir de ces résultats qu'a été établie la courbe de la figure 2.

    Exemple 2 :



    [0027] On a coulé entre cylindres des bandes d'épaisseur 3,8 mm en acier inoxydable austénitique, dont les compositions figurent dans le tableau 2. Les cylindres avaient des rugosités superficielles caractérisées par la présence de fossettes jointives de diamètre moyen 1000 µm et de profondeur moyenne 120 µm.
    Tableau 2 :
    Composition chimique des aciers de l'exemple 2
    Acier C% Mn% P% S% Si% Ni% Cr% Cu% Mo% N% Creq/Nieq
    A 0,038 0,87 0,019 0,004 0,451 8,61 18,28 0,128 0,071 0,0456 1,82
    B 0,035 0,82 0,021 0,019 0,562 8,58 18,23 0,114 0,218 0,0535 1,85
    C 0,015 1,57 0,020 0,005 0,510 10,16 18,25 0,108 0,082 0,0423 1,64
    D 0,053 1,50 0,023 0,039 0,266 9,07 18,11 0,264 0,299 0,0509 1,62


    [0028] Au cours de la coulée de ces aciers, on a fait varier la composition du gaz d'inertage présent au voisinage du ménisque en modulant ses proportions respectives en argon et azote, et on a mesuré sur les bandes coulées la densité surfacique de microcriques observées, pour les différentes compositions du gaz d'inertage employées. Les résultats sont regroupés dans le tableau 3 :
    Tableau 3 :
    Influence de la composition du gaz d'inertage sur la densité surfacique des microcriques de la bande, selon la teneur en soufre et le rapport Creq/Nieq de l'acier coulé
    Argon % / Azote % Acier A microcriques/dm2 Acier B microcriques/dm2 Acier C microcriques/dm2 Acier D microcriques/dm2
    0/100 200 0 0 0
    10/90 290 0 0 0
    20/80 280 0 0 0
    30/70 320 0 5 0
    40/60 330 0 20 0
    50/50 370 0 40 0
    60/40 350 5 70 15
    70/30   40 110 30
    80/20   110 130 120


    [0029] Ces essais montrent que l'acier A, qui a un rapport Creq/Nieq satisfaisant, mais une teneur en soufre faible, conduit systématiquement à la formation de microcriques en quantités importantes, quelle que soit la composition du gaz d'inertage. L'acier C a une teneur en soufre légèrement plus forte, et cela suffit à améliorer sensiblement la qualité de surface de la bande, puisqu'on n'observe pas de microcriques lorsque la teneur en azote du gaz d'inertage est d'au moins 80%. Cependant, ce résultat ne peut être considéré comme entièrement satisfaisant, car cette nécessité de maintenir la teneur en azote du gaz d'inertage à un niveau élevé réduit les possibilités, pour les opérateurs, de piloter le fonctionnement de l'installation de coulée de façon fine. En effet, la composition du gaz d'inertage est un paramètre sur lequel on désire souvent jouer pour maîtriser l'intensité des transferts thermiques entre les cylindres et le métal, par exemple pour faire varier le bombé des cylindres qui affecte la forme de la bande (voir le document EP-A-0 736 350). Les résultats obtenus avec l'acier C font donc conclure qu'une teneur en soufre de 0,005% ne peut entrer dans le cadre de l'invention.

    [0030] En revanche, les bandes coulées avec les aciers B et D ne présentent pas de microcriques tant que la teneur en azote du gaz d'inertage est d'au moins 50%. Leurs teneurs en soufre sont respectivement de 0,019 et 0,039%, et leurs rapports Creq/Nieq sont respectivement de 1,82 et 1,64. Ces exemples entrent donc bien dans le cadre de l'invention. L'invention s'applique préférentiellement au cas des aciers présentant un rapport Creq/Nieq compris entre 1,70 et 1,90, car cette gamme correspond à des aciers dans lesquels on a ajouté moins d'éléments gammagènes (tels que le nickel) que pour les aciers présentant un rapport Creq/Nieq plus faible, et qui sont donc plus économiques à fabriquer.


    Revendications

    1. Procédé de coulée continue d'une bande d'acier inoxydable austénitique d'épaisseur inférieure ou égale à 10 mm, directement à partir de métal liquide, entre deux cylindres horizontaux refroidis, caractérisé en ce que :

    - la composition dudit acier, en pourcentage pondéraux, comprend : C% ≤ 0,08 ; Si% ≤1 ; P% ≤ 0,04 ; Mn% ≤ 2; Cr% compris entre 17 et 20 ; Ni% compris entre 8 et 10,5 ; S% compris entre 0,007 et 0,040 ; le reste étant du fer et des impuretés résultant de l'élaboration ;

    - le rapport Creq/Nieq est compris entre 1,55 et 1,90, avec :

    et

    - la surface des cylindres comporte des fossettes jointives de section approximativement circulaire ou elliptique, de diamètre 100 à 1500 µm et de profondeur 20 à 150 µm;

    - le gaz d'inertage environnant le ménisque est un gaz soluble dans l'acier ou un mélange de tels gaz, ou est constitué au moins par 50% en volume d'un tel gaz ou mélange de gaz.


     
    2. Procédé selon la revendication 1, caractérisé en ce que le rapport Creq/Nieq est compris entre 1,70 et 1,90.
     
    3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le gaz d'inertage est composé d'un mélange azote 50-100%-argon 50-0% en volume.
     
    4. Bandes d'acier inoxydable austénitique, caractérisées en ce qu'elles sont susceptibles d'être obtenues par le procédé selon l'une des revendications 1 à 3.
     


    Claims

    1. A method of continuously casting austenitic stainless steel strip having a thickness less than or equal to 10 mm directly from liquid metal between two cooled horizontal cylinders, characterised in that:

    - the composition of said steel, in weight percent, comprises: C% ≤ 0.08, Si% ≤ 1, P% ≤ 0.04, Mn% ≤ 2, Cr% from 17 to 20, Ni% from 8 to 10.5, S% from 0.007 to 0.040, the remainder being iron and manufacturing impurities;

    - the Creq/Nieq ratio is from 1.55 to 1.90, where:

    and

    - the surfaces of the cylinders include dimples which are joined up and have an approximately circular or elliptical section with a diameter from 100 µm to 1 500 µm and a depth from 20 µm to 150 µm; and

    - the inert gas surrounding the meniscus is a gas that is soluble in the steel or a mixture of gases that is soluble in the steel or contains at least 50% by volume of a gas or a gas mixture that is soluble in the steel.


     
    2. A method according to claim 1, characterised in that the Creq/Nieq ratio is from 1.70 to 1.90.
     
    3. A method according to claim 1 or claim 2, characterised in that the inert gas comprises a mixture of 50% by volume to 100% by volume of nitrogen and 50% by volume to 0% by volume of argon.
     
    4. Austenitic stainless steel strip, characterised in that it can be produced by the method according to any of claims 1 to 3.
     


    Ansprüche

    1. Verfahren zum Stranggiessen eines Bandes aus rostfreiem austenitischem Stahl mit einer Dicke unter oder gleich 10 mm, direkt ausgehend von dem flüssigen Metall, zwischen zwei horizontalen gekühlten Walzen, dadurch gekennzeichnet, dass:

    - die Zusammensetzung des Stahls in Gewichtsprozent umfasst: C% ≤ 0,08; Si% ≤ 1; P% ≤ 0,04; Mn% ≤ 2; Cr% zwischen 17 und 20; Ni zwischen 8 und 10,5; S% zwischen 0,007 und 0,040, wobei den Rest Eisen und aus der Verarbeitung stammende Verunreinigungen bilden;

    - das Verhältnis CrÄq/NiÄq zwischen 1,55 und 1,90 umfasst mit

    und

    - die Oberfläche der Walzen nebeneinander liegende Vertiefungen mit ungefähr rundem oder elliptischem Querschnitt, einem Durchmesser von 100 bis 1500 µm und einer Tiefe von 20 bis 150 um besitzt;

    - das Schutzgas, das den Meniskus umgibt, ein in Stahl lösliches Gas oder ein Gemisch dieser Gase ist oder aus mindestens 50% Vol.-% eines solchen Gases oder Gasgemischs besteht.


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis CrÄq/NiÄq zwischen 1,70 und 1,90 umfasst.
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Schutzgas aus einem Gemisch von 50-100 Vol.-% Stickstoff-50-0 Vol.-% Argon besteht.
     
    4. Bänder aus rostfreiem austenitischen Stahl, dadurch gekennzeichnet, dass sie durch das Verfahren nach einem der Ansprüche 1 bis 3 erhalten werden können.
     




    Dessins