(19)
(11) EP 1 007 772 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
12.03.2003 Bulletin 2003/11

(21) Application number: 98910577.0

(22) Date of filing: 08.04.1998
(51) International Patent Classification (IPC)7D01H 4/10
(86) International application number:
PCT/CZ9800/018
(87) International publication number:
WO 9804/5514 (15.10.1998 Gazette 1998/41)

(54)

SPINNING ROTOR OF AN OPEN-END SPINNING MACHINE

SPINNROTOR EINER OFFENEND-SPINNMASCHINE

ROTOR A FILER DE METIER A FILER A FIBRES LIBEREES


(84) Designated Contracting States:
DE IT

(30) Priority: 08.04.1997 CZ 106397

(43) Date of publication of application:
14.06.2000 Bulletin 2000/24

(73) Proprietor: RIETER ELITEX A.S.
CZ-562 15 Usti nad Orlici (CZ)

(72) Inventors:
  • TESAR, Oldrich
    562 06 Usti nad Orlici (CZ)
  • MLADEK, Milos
    562 06 Usti nad Orlici (CZ)

(74) Representative: Bergmeier, Werner, Dipl.-Ing. 
Patentanwälte Canzler & Bergmeier Friedrich-Ebert-Strasse 84
85055 Ingolstadt
85055 Ingolstadt (DE)


(56) References cited: : 
GB-A- 2 020 319
US-A- 3 952 493
   
  • PATENT ABSTRACTS OF JAPAN vol. 010, no. 017 (C-324), 23 January 1986 & JP 60 173124 A (TOYODA JIDO SHOKKI SEISAKUSHO KK;OTHERS: 01), 6 September 1985
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The invention relates to a spinning rotor of an open-end spinning machine, a cavity of which comprises a gliding surface followed by a collecting groove comprises an inclined overflow surface which passes via an arched transfer surface into an inclined defining surface leading onto an inner surface of the bottom of the rotor, which is formed by an inwards deflected truncated cone which includes ventilation channels and through-going ventilation grooves.

Background of the Invention



[0002] Open-end spinning of flax fibres Is generally a very difficult problem, as the flax fibres are substantially hard and their surface is considerably broken, especially due to the chips coming into being in the course of the fibre production.

[0003] While being spun, even into mixed yarn, the flax fibres get caught by the chips on the edges of the spinning rotor cavity, which causes frequent fouling of the ventilation channels and also frequent breakages, which makes it impossible to achieve the needed spinning up and yarn quality.

[0004] None of the currently used rotors is capable of spinning yarn, especially yarn spun from mixed yarn with high proportion of flax fibres, or pure flax fibre yarn because the air flow in such rotors does not have the needed qualities in combination with the needed level of self-cleaning abilities of these rotors.

[0005] Mixed yam with certain lower proportion of flax fibres, max. about 30% can be spun e.g. by a rotor according to CS AO 272017, which has a special shape of the collecting groove and the bottom of which comprises the ventilation channels.

[0006] The disadvantage of this rotor is that only mixed yarn with comparatively low proportion of flax fibres can be spun on it due to the fact that if the share of flax fibres exceeds the maximum limit of about 30% the process of fibre band twisting into yarn is troubled by interruptions.

[0007] Another rotor for open-end spinning of mixed yam with certain proportion of flax fibres is disclosed in CS AO 254785, which describes a spinning rotor with a collecting groove, ventilation channels and ventilation grooves leading from the rotor cavity into the channels. Ventilation grooves solve reduction of noisiness of ventilation channels and increase their efficiency.

[0008] This spinning rotor can be used only in spinning mixed yam with very small proportion of flax fibres. Spinning of mixed yarn with higher proportion of flax fibres, or the pure flax fibre yarn is impossible, especially due to the inconvenient shape of the collecting groove because of which fibre band twisting into the yarn is not achieved.

[0009] The aim of the invention is to invent a spinning rotor for an open-end spinning of the yarn with up to 100% high proportion of flax fibres.

Summary of the Invention



[0010] The aim of the invention by spinning rotors with ventilation channels is achieved by combination of the shape of collecting groove of spinning rotor and ventilation grooves arranged in the bottom of spinning rotor, whereby principle of the invention consists in that each ventilation groove passes through its respective ventilation channel in at least a part of its length. By this is achieved the change of air flow in the spinning rotor cavity and elimination of pulling down of flax fibres from gliding surface of spinning rotor and their interception on the ventilation channels inlets, which permits open-end spinning of yarn with up to 100% high proportion of flax fibres.

[0011] Another advantageous embodiment consists in that the overflow surface comprises a lateral area of a truncated cone with taper angle of 10 - 20°, where the axis of symmetry is the same as the axis of rotation and this truncated cone is in the direction from the bigger base to the smaller base oriented to the inlet aperture, the transfer surface advantageously comprises circumferential surface of a toroid and the defining surface comprises lateral area of a truncated cone with taper angle of 50 - 59°, the axis of symmetry is the same as the axis of rotation and this truncated cone is oriented from the bigger base to the smaller base in the opposite direction as compared with the truncated cone, by which the lateral area forms the overflow surface, by means of which with combination with ventilation grooves optimal conditions for fibre band twisting of pure flax fibres into yam and good spinnability are obtained.

[0012] Another advantageous embodiment, there is an auxiliary gliding surface provided between the gliding surface and overflow surface of the collecting groove, by which better conditions are reached in flax fibre transition from gliding surface onto overflow surface of the collecting groove.

[0013] Another advantageous embodiment consists in that the auxiliary gliding surface comprises a truncated cone lateral area whose axis of symmetry is identical with the axis of rotor rotation and taper angle of this truncated cone is of 50 - 60°, and the truncated cone is in the direction from the bigger base to the smaller base oriented to the inlet aperture, by which the optimal conditions are reached for flax fibre transition from the gliding surface onto the overflow surface of the collecting groove.

[0014] Another advantageous embodiment consists in that each ventilation groove Is displaced with respect to the axis of symmetry of its corresponding ventilation channel in the direction opposite to that of the rotor rotation by which the positive influence of air flow on the process of flax fibre spinning and self-cleaning ability of the rotor is still more increased.

[0015] Another advantageous embodiment consists in that of each ventilation groove is situated in a plane defined by the axis of rotor rotation and by the longitudinal axis of symmetry of its corresponding ventilation channel, and the opposite side surface of each ventilation groove is situated in a plane parallel to it, which is spaced from it less than half the diameter of the ventilation channels in the direction opposite to that of the rotor rotation thus eliminating one ventilation groove edge on its transition into the ventilation channel, by means of this achieving the optimal effect of air flow on the flax fibre spinning process with high self-cleaning ability of the rotor.

[0016] The ventilation grooves advantageously comprise inclined front surface passing into the inner surface of the rotor bottom near the transition of the defining surface of the collecting groove into the inner surface of the rotor bottom, whereby maximisation of positive effect on the air flow in rotor, on the moving of flax fibre into collecting groove, on the creating of fibre band and on the fibre band twisting into yarn is achieved.

Brief Description of the Drawings



[0017] Examples of embodiment of the invention are schematically shown in the drawings in which

Fig. 1 is a sectional view of the spinning rotor according to the invention,

Fig. 2 is a sectional view detail showing the collecting groove with ventilation channel and ventilation groove,

Fig. 3 is a view into the spinning rotor cavity,

Fig. 4 is a detail of the ventilation channel with ventilation groove,

Fig. 5 is an embodiment of the spinning rotor with auxiliary gliding surface


Specific Description



[0018] The spinning rotor comprises an inlet aperture 1 leading onto a gradually widening gliding surface 2 formed by the lateral area of a truncated cone with a taper angle of 75°, the longitudinal axis of which lies in the axis of the rotor rotation and whose gliding surface 2 passes to a collecting groove 3. The collecting groove 3 passes steplessly into an inner surface 4 of the bottom 5 of the spinning rotor. The bottom 5 of the spinning rotor comprises ventilation channels 6, which pass through from the inner surface 4 of the bottom 5 of the spinning rotor to the outer surface 7 of the bottom 5 of the spinning rotor. The bottom 5 of the spinning rotor also includes ventilation grooves 8 that connect the spinning rotor cavity with the ventilation channels 6 in such a way that one ventilation groove 8 passes into each ventilation channel 6.

[0019] The collecting groove 3 of the spinning rotor comprises the gliding surface 2 which is related to an overflow surface 31 which leads onto a transfer surface 32 which then passes onto a defining surface 33 which leads directly onto the inner surface 4 of the bottom 5 of the spinning rotor.

[0020] Another example of spinning rotor embodiment shown in Fig. 5 there is an auxiliary gliding surface 21 situated between the gliding surface 2 and the overflow surface 31 of the collecting groove 3, the auxiliary surface 21 being formed by the lateral area of a truncated cone the axis of symmetry of which is identical with the axis of rotation and the taper angle of this truncated cone is 50° - 60°, and the truncated cone is oriented in the direction from the bigger base to the smaller base to the inlet aperture 1.

[0021] The overflow surface 31 is formed by the lateral area of a truncated cone with taper angle of 10° - 20° where the axis of this cone is identical with the rotor axis of rotation and the truncated cone is oriented in the direction from the bigger base to the smaller base to the inlet aperture 1 of the rotor.

[0022] In the lower part of the overflow surface 31, the overflow surface 31 is connected to the transfer surface 32, which is shaped as a part of a toroid surface with small diameter, by which the overflow surface 31 passes over to the defining surface 33 which has the shape of the lateral area of a truncated cone with a taper angle of 50° - 59° and the truncated cone is oriented in the direction from the bigger base to the smaller base to the bottom 5 of the rotor any by its edge between its base and lateral area it passes into the inner surface 4 of the bottom 5 of the rotor, which has the shape of an inwards deflected lateral area of a truncated cone as shown in Fig. 1 and 2.

[0023] The inner surface 4 of the bottom 5 passes into a closing surface 41 into which an aperture 42 for the well-known positioning of the rotor onto a not shown well-known shaft of the rotor leads.

[0024] The ventilation channels 6 lead into the lower part of the inner surface 4 of the bottom 5 of the rotor over the closing surface 41 and they are all over their length connected with the rotor cavity by the passing through ventilation grooves 8, where the ventilation grooves 8 are with respect to the axis of rotation of their related ventilation channels 6, displaced in the direction opposite to the rotor rotation as shown in Fig. 3.

[0025] Another, not shown, example of spinning rotor embodiment consists in that the ventilation channels 6 are connected with the cavity of the spinning rotor by only a part of their length.

[0026] The width of each ventilation groove 8 is smaller than half the diameter of the ventilation channels 6, and the side walls of each ventilation groove 8 are parallel to each other. The ventilation grooves 8 are positioned in such a way that one of their side walls lies in the plane defined by the axis of rotation and the longitudinal axis of symmetry of the respective ventilation channel 6 as shown in Fig. 3 and Fig. 4, where the second side wall of each ventilation groove 8 is to the first side wall of this ventilation groove 8 displaced in the direction opposite to the rotor rotation. The front surface 81 of the ventilation groove 8 is inclined with respect to the plane vertically to the axis of rotor rotation and it passes into the inner surface 4 of the bottom 5 of the rotor near this inner surface 4 of the bottom 5 of the rotor transition into the defining surface 33 of the collecting groove 3 of the rotor, which is an embodiment shown in the drawings formed by a curvated surface. In another, not shown, example embodiment the front surface 81 of the ventilation groove 8 is formed by a different type of surface.


Claims

1. A spinning rotor of an open-end spinning machine, a cavity of which comprises a gliding surface followed by a collecting groove comprising an inclined overflow surface which passes via an arched transfer surface into an inclined defining surface leading onto an inner surface of the bottom of the rotor, which is formed by an inwards deflected truncated cone and comprising ventilation channels and through-going ventilation grooves characterised by that each ventilation groove (8) passing through its related ventilation channel (6) at least, into a part of its length.
 
2. A spinning rotor as claimed in Claim 1, characterised by that the overflow surface (31) is formed by lateral area of a truncated cone, the axis of symmetry of which is identical with the axis of the rotor rotation and the taper angle of this cone is of 10° - 20° and the cone is in the direction from the bigger base to the smaller base oriented towards the inlet aperture (1) while the transfer surface (32) is formed by a part of a toroid and the defining surface (33) is formed by the lateral area of a truncated cone, the axis of symmetry of which is identical with the axis of rotor rotation and the taper angle of this cone is of 50° - 59° where the truncated cone is oriented in the direction opposite to that of the truncated cone whose lateral area forms the overflow surface (31).
 
3. , A spinning rotor as claimed in Claim 1 and 2, characterised by that between the gliding surface (2) and the overflow surface (31) of the collecting groove (3) there is situated an auxiliary gliding surface (21).
 
4. A spinning rotor as claimed in Claim 1 to 3, characterised by that the auxiliary gliding surface (21) is formed by the lateral area of a truncated cone, the axis of symmetry of which is identical with the axis of the rotor rotation and the taper angle of this cone is of 50° - 60°, said truncated cone being oriented to the inlet aperture in the direction from its bigger base to its smaller base.
 
5. A spinning rotor as claimed in Claim 1 to 4, characterised by that each ventilation groove (8) is shifted in the direction opposite the rotor rotation with respect to the axis of symmetry of its related ventilation channel (6).
 
6. A spinning rotor as claimed in claim 1 to 5, characterised by that one side surface of each ventilation groove (8) is situated in the plane defined by the axis of rotor rotation and the longitudinal axis of symmetry of the respective ventilation channel (6) and that the opposite side surface of each ventilation groove (8) lies in a parallel plane spaced apart from it by less than a half of the ventilation channel (6) diameter in the direction opposite to the rotor rotation.
 
7. A spinning rotor as claimed in Claim 1 to 6, characterised by that the ventilation grooves (8) comprise a front surface( 81) which is inclined with respect to the plane perpendicular to the axis of rotor rotation and its transition into the inner surface (4) of the bottom (5) of the rotor is situated near the transition between the defining surface (33) of the collecting groove (3) into the inner surface (4) of the bottom (5) of the rotor.
 
8. A spinning rotor as claimed in Claim 1 to 7, characterised by that the front surface (81) of the ventilation groove (8) is formed by a curved surface.
 


Ansprüche

1. Spinnrotor einer Offen-End-Spinnmaschine, dessen Höhle enthält eine Gleitwand gefolgt von einer Sammelnut, mit geneigter Überfallfläche, die durch eine bogenartige Übertragungsfläche in eine geneigte, auf die innere Fläche des Spinnrotorbodens führende Bestimmungsfläche übergeht, die als nach innen gebeugter Kegelstumpf ausgestattet ist und Lüftungskanäle und durchlaufende Lüftungsnuten enthält, dadurch gekennzeichnet, daß jede Lüftungsnut (8) durch den ihr zugeordneten Lüftungskanal (6) wenigstens in einem Teil seiner Länge durchgeht.
 
2. Spinnrotor nach Anspruch 1, dadurch gekennzeichnet, daß die Überfallwand (31) als eine Mantelfläche eines Kegelstumpfs gebildet ist, dessen Symmetrieachse mit der Drehachse des Spinnrotors identisch ist, wobei der Neigungswinkel des Kegelstumpfs 10° bis 20° groß ist und der Kegelstumpf in der Richtung von seiner größeren Basis zu seiner kleineren Basis zur Eingangsöffnung (1) orientiert ist, wobei die Übergangswand (32) als ein Teil einer Toroidfläche gebildet ist und die Abgrenzungswand (33) als Mantelfläche eines Kegelstumpfes gebildet ist, dessen Symmetrieachse mit der Drehachse des Spinnrotors identisch ist und dessen Neigungswinkel 50° bis 59° beträgt, wobei dieser Kegelstumpf im Vergleich mit dem Kegelstumpf, dessen Seitenfläche (Mantelfläche) die Überallwand (31) bildet, in der entgegengesetzten Richtung orientiert ist.
 
3. Spinnrotor nach den Ansprüchen 1 and 2, dadurch gekennzeichnet, daß zwischen der Gleitwand (2) und der Überfallwand (31) eine Hilfsgleitwand (21) untergebracht ist.
 
4. Spinnrotor nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Hilfsgleitwand als Mantelfläche eines Kegelstumpfes ausgebildet ist, dessen Symmetrieachse mit der Drehachse des Spinnrotors identisch ist und dessen Neigungswinkel 50° bis 60° beträgt, wobei dieser Kegelstumpf in Richtung von seiner größeren Basis zu seiner kleineren Basis zur Eingangsöffnung (1) gerichtet ist.
 
5. Spinnrotor nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß jede Lüftungsnut (8) gegenüber der Symmetrieachse des ihr zugeordneten Lüftungskanals (6) gegen die Drehrichtung des Spinnrotors versetzt ist.
 
6. Spinnrotor nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß eine Seitenwand jeder Lüftungsnut (8) in einer durch die Drehachse des Spinnrotors und durch die Längssymmetrieachse des jeweiligen Lüftungskanals (6) bestimmten Ebene liegt und daß die gegenüberliegende Seitenfläche in einer parallelen Ebene liegt, die davon (von der ersten Ebene) um weniger als die Hälfte des Durchmessers des Lüftungskanals (6) in Richtung gegen die Drehrichtung des Spinnrotors entfernt ist.
 
7. Spinnrotor nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Lüftungsnuten (8) eine Stirnwand (81) enthalten, die gegenüber einer zur Drehachse des Spinnrotors senkrechten Ebene geneigt ist und deren Übergang in die Innenwand (4) des Bodens (5) des Spinnrotors in der Nähe des Übergangs zwischen der Abgrenzungswand (33) der Sammelnut (3) in die Innenwand (4) des Bodens (5) des Spinnrotors liegt.
 
8. Spinnrotor nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Stirnwand (81) der Lüftungsnut (8) eine gebeugte Form aufweist.
 


Revendications

1. Rotor fileur pour un métier sans broches dont la cavité comprend une paroi glissante suivie d'une rainure collectrice qui contient une paroi de descente inclinée qui passe par une paroi de transition courbée vers une paroi de délimitation inclinée menant vers la surface intérieure du fond du rotor ayant la forme d'un cône tronqué courbé vers l'intérieur et possédant des canaux d'aération et des rainures d'aération de passage, caractérisé en ce que chaque rainure d'aération (8) passe par son canal (6) d'aération adjoint au moins dans une partie de sa longueur.
 
2. Rotor fileur selon la revendication 1, caractérisé en ce que la paroi de descente (31) est formée comme la surface latérale d'un cône tronqué dont l'axe de symétrie est identique à l'axe de rotation du rotor et dont l'angle de conicité est de 10° à 20°, ce cône étant orienté dans la direction à partir de sa base plus grande vers sa base plus petite vers l'orifice d'entrée (1) tandis que la paroi de transition a la forme d'une partie d'une toroide et la paroi de délimitation (33) est formée comme la surface latérale d'un cône tronqué dont l'axe de symétrie est identique à l'axe de rotation du rotor et dont l'angle de conicité est de 50° à 59°, ce cône tronqué étant orienté dans la direction contraire à celle du cône tronqué dont la surface latérale constitue la paroi de descente (31).
 
3. Rotor fileur selon les revendications 1 et 2, caractérisé en ce qu'il comprend une paroi de glissage auxiliaire (21) située entre la paroi de glissage (2) et la paroi de descente (31) de la rainure collectrice (3).
 
4. Rotor fileur selon les revendications 1 à 3, caractérisé en ce que la paroi de glissage auxiliaire (21) est formée comme la surface latérale d'un cône tronqué dont l'axe de symétrie est identique à l'axe de rotation du rotor et dont l'angle de conicité est de 50° à 60°, ce cône tronqué étant orienté dans la direction à partir de sa base plus grande vers sa base plus petite vers l'orifice d'entrée (1).
 
5. Rotor fileur selon les revendications 1 à 4, caractérisé en ce que chaque rainure d'aération (8) est déplacée dans la direction contraire au sens de rotation du rotor par rapport à l'axe de symétrie de son canal d'aéraration (6) adjoint.
 
6. Rotor fileur selon les revendications 1 à 5, caractérisé en ce qu'une paroi latérale de chaque rainure d'aération (8) es située dans un plan défini par l'axe de rotation du rotor et par l'axe longitudinal de symétrie du canal d'aération (6) respectif et que la paroi latérale opposée de chaque rainure d'aération (8) est située dans un plan parallèle distant de moins d'une moitié du diamètre du canal d'aération (6) dans la direction opposée à la rotation du rotor.
 
7. Rotor fileur selon les revendications 1 à 6, caractérisé en ce que les rainures (8) d'aération comprennent une paroi frontale (81) inclinée par rapport au plan perpendiculaire à l'axe de rotation du rotor et sa transition dans la paroi intérieure (4) du fond (5) du rotor se trouve près de la transition entre la paroi de délimitation (33) de la rainure collectrice (3) dans la paroi intérieure (4) du fond (5) du rotor.
 
8. Rotor fileur selon les revendications 1 à 7, caractérisé en ce que la paroi frontale (81) de la rainure d'aération (8) consiste en une surface courbée.
 




Drawing