(19)
(11) EP 1 292 176 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.03.2003  Patentblatt  2003/11

(21) Anmeldenummer: 02019754.7

(22) Anmeldetag:  04.09.2002
(51) Internationale Patentklassifikation (IPC)7H05H 1/30
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 07.09.2001 DE 10145131

(71) Anmelder: TePla AG
85622 Feldkirchen (DE)

(72) Erfinder:
  • Konavko, Rudolph
    85622 Feldkirchen (DE)
  • Konavko, Arkady
    85748 Garching (DE)
  • Schmid, Hermann
    85591 Vaterstetten (DE)

(74) Vertreter: Freitag, Joachim, Dipl.-Phys. et al
Patentanwälte Oehmke & Kollegen Neugasse 13
07743 Jena
07743 Jena (DE)

   


(54) Vorrichtung zum Erzeugen eines Aktivgasstrahls


(57) Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines chemisch aktiven Strahls (Aktivgasstrahls 6) mittels eines durch elektrische Entladung in einem Prozessgas (1) generierten Plasmas.
Die Aufgabe, eine neue Möglichkeit zum Erzeugen eines chemisch aktiven Strahls mittels eines durch elektrische Entladung generierten Plasmas zu finden, bei der bei erhöhter Prozessgasgeschwindigkeit der Aktivgasstrahl (6) auf der zu bearbeitenden Oberfläche (7) eine hohe chemische Aktivität entfaltet und bereits am Ausgang der Vorrichtung elektrisch neutral ist, so dass er keine Gefährdung für Bedienpersonal, Umgebung und bearbeitete Oberfläche darstellt, wird erfindungsgemäß gelöst, indem die Entladungskammer (2) ein konisch verjüngtes Ende (21) zur Erhöhung der Geschwindigkeit des Aktivgasstrahls (6) aufweist und dem verjüngten Ende (21) der Entladungskammer (2) ein Begrenzungskanal (4) zur Verhinderung der Ausbreitung der Entladungszone (22) in den freien Raum für die zu bearbeitende Oberfläche (7) nachgeordnet ist, wobei der Begrenzungskanal (4) im Wesentlichen zylinderförmig ausgebildet und geerdet ist und dessen Länge um den Faktor 5 bis 10 größer als sein Querschnitt ist.




Beschreibung


[0001] Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines chemisch aktiven Strahls (nachfolgend als Aktivgasstrahl bezeichnet) mittels eines elektrisch generierten Plasmas in einem verwendeten Prozessgas. Die Erfindung eignet sich insbesondere für die Behandlung von Oberflächen, z.B. zur Vorbehandlung und Reinigung von Oberflächen vor dem Verkleben, Beschichten oder Lackieren, zum Beschichten, Hydrophilisieren, Entfernen von elektrischen Ladungen oder Sterilisieren sowie zur Beschleunigung von chemischen Reaktionen.

[0002] Bekannt sind Vorrichtungen zur Oberflächenvorbehandlung von Werkstücken mittels eines in einer elektrischen Entladungszone aktivierten Gases, dargestellt in den Druckschriften DE 195 46 930 C1, DE 195 32 412 A1 und EP 03 05 241. Im Patent DE 195 46 930 C1 wird eine Wirbelströmung des zu aktivierenden Gases durch eine elektrische Entladungszone geführt, die sich zwischen einer kegelförmigen Zentralelektrode und einer am Ende einer Düse außen befindlichen Ringelektrode ausbildet.
Ein weiteres gleichartiges Verfahren ist in der DE 195 32 412 A1 beschrieben, bei dem das zu aktivierende Gas in einer Wirbelströmung zuerst in den Bereich einer Entladungszone, die entlang der Achse eines zylindrischen Düsenrohres mit innen isolierter zylindrischer Außenelektrode und koaxialer Zentralelektrode entsteht, eingeleitet sowie aktiviert wird und am Ausgang der Entladungszone, an dem das Düsenrohr in Form einer kreisringförmigen Abschlussfläche der zylindrischen Außenelektrode verengt ist, der Gasstrahl an der Abschlussfläche der Außenelektrode im Wesentlichen entladen wird.
Nachteilig an den vorgenannten Lösungen ist, dass der aus der Düse austretende Gasstrahl ein erhebliches elektrisches Potential besitzt, dessen Wert zwischen dem Potential der geerdeten Ringelektrode und dem der Zentralelektrode liegt. Bei entsprechend großem Gasdurchsatz durch die Austrittsöffnung des Gasstromes wölben sich zusätzlich Entladungsbüschel aus der Düse in Richtung des Aktivgasstrahles aus. Der genannte Nachteil begrenzt die Anwendungsmöglichkeiten der beiden vorgenannten Lösungen a) wegen der Stromschlaggefahr für das Bedienpersonal und b) wegen einer möglichen induzierten Defektbildung durch elektromagnetische Felder bei einer Oberflächenbehandlung von empfindlichen Materialen, wie z.B. Halbleitersubstraten, ggf. auch mit dotierten Schichten oder Strukturen.

[0003] Gemäß EP 03 05 241 wird das zu aktivierende Gas direkt durch eine elektrische Entladungszone geführt. Die Entladungszone bildet sich hierbei in einem Rohr mittels eines elektrischen Feldes aus, wobei entweder Elektroden in Strömungsrichtung des Gases nacheinander seitlich innerhalb des Rohres angeordnet sind oder eine in einem Wellenleiter installierte Entladungskammer aus Isoliermaterial ohne Elektroden vorgesehen ist. Diese Lösung hat den bereits oben angeführten Nachteil, dass bei hoher Geschwindigkeit des aktivierten Gasstromes eine hohe Wahrscheinlichkeit des Austretens von elektromagnetischen Feldern sowie der elektrischen Entladungszone selbst aus der Entladungskammer in die Richtung des Aktivgasstrahls besteht, da eine abschirmende Ringelektrode am Ende der Entladungskammer völlig fehlt. Die in der EP 0 305 241 A1 beschriebene Anordnung verhindert die Gefährdung des Bedienpersonals durch eine separate, geschlossene Bearbeitungskammer, in der die Oberflächenbehandlung des Materials stattfindet. Die so erschwerten Bedingungen der Materialbearbeitung sind nachteilig und würden bei Weglassen der Schutzkammer zu einer unkontrollierten Änderung der Verfahrensbedingungen und zur Gefährdung des Bedienpersonals führen.
Charakteristisch für alle vorgenannten technischen Lösungen ist, dass die Geschwindigkeit, die Temperatur und die Geometrie des Aktivgasstrahls durch die elektrischen, thermischen und gasdynamischen Bedingungen festgelegt werden, die für das Entstehen bzw. Zünden der elektrischen Entladungszone zur Gasaktivierung notwendig sind. Allerdings erweisen sich die genannten Bedingungen zur Gasaktivierung in einer elektrischen Entladungszone nicht immer als optimale Bedingungen für die Oberflächenbehandlung durch den Aktivgasstrahl.
So ist es z.B. sehr problematisch, eine elektrische Entladung bei Atmosphärendruck und den dabei entstehenden Temperaturen von mehr als 5000 K zur Oberflächenbehandlung zu nutzen, da die Mehrzahl der zu bearbeitenden Materialien solchen Temperaturen nicht standhält. Ein weiteres Problem stellen hohe Prozessgasgeschwindigkeiten - z.B. Überschallgeschwindigkeit - für die elektrische Entladungszone dar, da diese unter stark dynamischen Bedingungen nur unter großen Schwierigkeiten aufrechterhalten werden kann. Die erwähnten Anwendungen des Aktivgasstrahles verlangen aber höhere Gasdurchsätze, um die Zeit, innerhalb der der Aktivgasstrahl ausgehend von der Entladungszone die zu bearbeitende Oberfläche erreicht, zu verkürzen, weil damit durch Reduzierung der Rekombinationsvorgänge der Aktivitätsverlust des Gasstrahles wirksam verringert wird.

[0004] Der Erfindung liegt die Aufgabe zugrunde, eine neue Möglichkeit zum Erzeugen eines chemisch aktiven Strahls (Aktivgasstrahl) mittels eines durch elektrische Entladung generierten Plasmas in einem verwendeten Prozessgas zu finden, bei der bei erhöhter Prozessgasgeschwindigkeit der Aktivgasstrahl auf der zu bearbeitenden Oberfläche eine hohe chemische Aktivität entfaltet und bereits am Ausgang der Vorrichtung elektrisch neutral ist, so dass er keine Gefährdung für Bedienpersonal, Umgebung und bearbeitete Oberfläche darstellt.

[0005] Erfindungsgemäß wird die Aufgabe bei einer Vorrichtung zum Erzeugen eines chemisch aktiven Strahls (Aktivgasstrahls) mittels eines durch elektrische Entladung generierten Plasmas in einem verwendeten Prozessgas mit einer im Wesentlichen zylindrischen Entladungskammer, die von einem Prozessgas durchströmt wird und in der zur Aktivierung des Prozessgases eine Plasmaerzeugung infolge einer elektrischen Gasentladung vorgesehen ist, einem Gaseinlass zum kontinuierlichen Zuführen des Prozessgases in die Entladungskammer sowie einer Austrittsöffnung zum Ausrichten des Aktivgasstrahles auf eine zu bearbeitende Oberfläche, dadurch gekennzeichnet, dass die Entladungskammer ein konisch verjüngtes Ende zur Erhöhung der Geschwindigkeit des Aktivgasstrahls aufweist, dem verjüngten Ende der Entladungskammer ein Begrenzungskanal zur Verhinderung der Ausbreitung der Entladungszone in den freien Raum für die zu bearbeitende Oberfläche nachgeordnet ist, wobei der Begrenzungskanal im Wesentlichen zylinderförmig ausgebildet und geerdet ist und dessen Länge um den Faktor 5-10 größer als sein Querschnitt ist.

[0006] Vorteilhaft ist zur Aktivierung des Prozessgases eine Bogenentladung vorgesehen, wobei die Entladungskammer eine Zentralelektrode und eine Hohlelektrode, die die Innenwand der Entladungskammer mindestens im Bereich des konisch verjüngten Endes flächig und symmetrisch bedeckt, aufweist. Der Begrenzungskanal schließt sich vorzugsweise an die Hohlelektrode direkt an.
Die Zentralelektrode ist zweckmäßig stabförmig und im Gaseinlassbereich entlang der Symmetrieachse der Entladungskammer angeordnet.
Die Zentralelektrode kann vorteilhaft, um die Leistung des Aktivgasstrahls durch vergrößerte Elektrodenflächen zu erhöhen, die Form eine Zylinderkappe aufweisen, die eine Zylindermantelfläche geringer Höhe und eine Deckfläche beinhaltet und deren Öffnung koaxial zur Achse der Entladungskammer ausgerichtet und oberhalb des Gaseinlasses der Entladungskammer angeordnet ist.

[0007] Für die Verbesserung der Stabilität der Parameter des Aktivgasstrahles ist es von Vorteil, zur Aktivierung des Prozessgases die Entladungskammer in einem mit Hochfrequenz (Radiofrequenz) erzeugten Induktionsfeld anzuordnen.
Das kann zweckmäßig dadurch geschehen, dass die Entladungskammer (1) mit zwei entlang der Wand der Entladungskammer in Strömungsrichtung des Prozessgases angeordneten Elektroden, die mit Radiofrequenz betrieben werden, versehen ist.
Vorteilhaft kann die Hochfrequenzanregung zur Aktivierung des Prozessgases auch durch die Erzeugung eines Induktionsfeldes erreicht werden, indem die Entladungskammer in einer mit Radiofrequenz betriebenen Spule angeordnet ist.
Eine weitere Möglichkeit zur Aktivierung des Prozessgases ohne Kontaminierung des Aktivgases durch Elektrodenmaterial ist dadurch gegeben, dass die Entladungskammer in einem an einer Mikrowellenquelle angeschlossenen Wellenleiter angeordnet ist.
Zur Formung, Wahl der Strömungsart (laminare oder turbulente Strömung) und Einstellung des Aktivgasstrahls mit gewünschten Parametern, insbesondere Geschwindigkeit, Temperatur, geometrische Form und Strömungsart, ist dem Begrenzungskanal zweckmäßig eine strahlformende Einrichtung nachgeordnet.
Dabei kann es von Vorteil sein, dass an den Ausgang des Begrenzungskanals verzweigte Düsen zum Bearbeiten einzelner Teilflächen oder Vertiefungen der zu bearbeitenden Oberfläche angeschlossen sind.
Die strahlformende Einrichtung ist zweckmäßig durch Leitbleche an die Form der zu bearbeitenden Oberfläche angepasst, wobei der Abstand zwischen der Oberfläche und der strahlformenden Einrichtung in einem definiert kleinen Bereich gehalten wird, so dass die effektiv behandelte Oberfläche eine größere Fläche umfasst.
Für spezielle Anwendungen eines Aktivgasstrahles sind strahlformende Einrichtungen vorgesehen, die zwei oder mehrere erfindungsgemäße Vorrichtungen zur Erzeugung des Aktivgasstrahles in einen Bearbeitungskanal einbinden, wobei in dem Bearbeitungskanal bei kontinuierlichem Materialdurchlauf mehrere zu behandelnde Oberflächen eines Werkstücks gleichzeitig oder Oberflächen von Strangprofilen mit beliebigem Querschnitt allseitig bearbeitbar sind.

[0008] Bei Anwendung eines Aktivgasstrahles mit speziellen Zusatzstoffen (insbesondere für die Beschichtung von Oberflächen) ist vorzugsweise in der Entladungskammer axial ein Zufuhrrohr zur Einbringung von Zusatzstoffen angeordnet, das kurz vor dem Ausgang der Entladungskammer endet, wobei ein Einfluss der Zusatzstoffe auf die Entladungscharakteristik und eine Kontaminierung der Entladungskammer (1) durch die Zusatzstoffe oder deren Reaktionsprodukte vermieden wird.
Es erweist sich zur Erzielung einer definierten Gasströmung als vorteilhaft, wenn der Begrenzungskanal mehrere Einzelkanäle umfasst, um den gasdynamischen Widerstand und die Verweildauer des Aktivgases im Begrenzungskanal zu reduzieren, wobei die Einzelkanäle um einen zentralen Kanal herum gleichmäßig verteilt angeordnet sind. Dabei gestaltet sich die Zufuhr von Zusatzstoffen besonders günstig, wenn der Begrenzungskanal mit mehreren Einzelkanälen einen zentralen Einlasskanal für die Zusatzstoffe aufweist, wobei der Einlasskanal axial im Zentrum eines Ringes von mit Aktivgas durchströmten Einzelkanälen angeordnet ist, da eine vorzeitige Reaktion oder ein Zerfall der Zusatzstoffe sowie eine Kontamination der Entladungskammer durch die Zusatzstoffe vermieden werden kann.
Für alle vorgenannten Zufuhrvarianten sind die Zusatzstoffe im Bereich des Begrenzungskanals vorteilhaft als Gase, Flüssigkeiten in Form von Aerosolen oder Feststoffe in Form feiner Partikel einführbar.
In einer besonders zweckmäßigen Gestaltungsvariante der Erfindung sind die Hohlelektrode, der Begrenzungskanal und die strahlformende Einrichtung als einheitlicher Rotationskörper mit sehr guter elektrischer Leitfähigkeit gefertigt, die Zentralelektrode koaxial von einem Isolatorrohr umgeben in die von der Hohlelektrode gebildete Entladungskammer eingeführt und der Gaseinlass in die Entladungskammer zunächst einer zylindrischen Verteilungskammer zugeführt, wobei für das Prozessgas tangentiale Strömungskanäle von der Verteilungskammer zur Entladungskammer vorgesehen sind, so dass infolge einer resultierenden spiralförmigen Gasströmung aus der Verteilungskammer in die Entladungskammer Bogenentladungen zwischen Zentralelektrode und Hohlelektrode an einem aus dem Isolatorrohr herausragenden Ende der Zentralelektrode fixiert werden. Hierdurch wird eine Erosion des Isolatorrohres weitgehend verhindert. Vorteilhaft können tangentiale Strömungskanäle zusätzlich in eine zylindrische Ringkammer zwischen stabförmiger Zentralelektrode und innerer Oberfläche des Isolatorrohres geführt sein, so dass die Zentralelektrode direkt von einem Anteil des Prozessgases gekühlt wird und Austrittspunkte von Bogenentladungen im Wesentlichen auf nichtzylindrische Flächen der Zentralelektrode beschränkt sind. Dadurch wird das Isolatorrohr noch wirksamer vor der Erosionswirkung des Entladungsbogens geschützt.
Das Isolatorrohr wird zweckmäßig durch die Zentralelektrode um eine Länge von bis zum Zweifachen des Durchmessers der Zentralelektrode überragt. Verwendet man die zusätzlich Prozessgaszufuhr innerhalb des Isolatorrohres, kann das Ende der Zentralelektrode verkürzt werden und schließt im Extremfall mit dem Ende des Isolatorrohrs ab.
Der Begrenzungskanal ist vorzugsweise in Gasströmungsrichtung leicht kegelförmig verengt und weist ein mittleres Verhältnis von Kanaldurchmesser zu Kanallänge von 1:8 auf. Dem Begrenzungskanal schließt sich vorteilhaft eine strahlformende Einrichtung mit glockenförmig verbreitertem Ausgang an, so dass die Arbeitsbreite des Aktivgasstrahles vergrößert wird.

[0009] Der Grundgedanke der Erfindung basiert darauf, dass bei den bekannten Vorrichtungen des Standes der Technik mit plasmainduziertem Aktivgasstrahl entweder die Aktivität des Gasstrahles zu gering oder der Aktivgasstrahl bei seinem Austritt in den Bearbeitungsraum noch ein gefährlich hohes elektrisches Potential besitzt, das zu einer Gefährdung des Bedienpersonals führt. Diese einander gegensätzlich beeinflussenden Probleme werden gemäß der Erfindung dadurch beseitigt, dass das Prozessgas der Reihe nach durch drei Zonen geführt wird. Zuerst wird das Prozessgas (im Entladungsraum) aktiviert und beschleunigt, dann in einem engen geerdeten Begrenzungskanal die geschwindigkeitsbedingte Ausbreitung der Entladungszone aus dem Entladungsraum heraus in den Aktivgasstrahl abgefangen (begrenzt) und zuletzt ein elektrisch neutraler, chemisch wirksamer Aktivgasstrahl durch strahlformende Einrichtungen entsprechend der gewünschten Anwendung (Reinigung, Beschichtung, Aktivierung usw.) geformt wird. Die erfindungsgemäße Vorrichtung kann dabei mit allen bekannten Methoden der plasmainduzierten Aktivierung von Prozessgasen kombiniert werden, bei denen eine Korona-, Glimmoder Bogenentladungszone (unter Verwendung eines Gleich-, Wechsel- oder Impulsstromes) oder eine im elektromagnetischen Wechselfeld erzeugte Hochfrequenzentladungszone (mit Anregungsfrequenzen bis in den Mikrowellenbereich), entsteht.
Die Wirksamkeit des Begrenzungskanals hängt dabei wesentlich davon ab, dass er einen kleineren Durchmesser im Verhältnis zur Entladungskammer aufweist. Deshalb ist die Entladungskammer in Strömungsrichtung des Prozessgases konisch verjüngt, so dass bei großem Verhältnis von Querschnitt der Entladungskammer zu Querschnitt des Begrenzungskanals die Geschwindigkeit des Aktivgasstrahls wesentlich ansteigt, wodurch die Zeit, die die chemisch aktiven Teilchen des Aktivgasstrahls benötigen, um die Strecke von der Entladungskammer bis zum Anwendungsort zurückzulegen, stark reduziert wird. Infolge der Zeitverkürzung kommt es zu weniger Rekombinationen aktiver Teilchen (verringerter Aktivitätsverlust des Aktivgasstrahls) und dies führt zu einer Erhöhung der Effektivität des Aktivgasstrahles auf der zu bearbeitenden Oberfläche. Bei sehr hohem Gasdurchsatz durch die Entladungszone wölben sich Entladungsbüschel aus der Entladungszone in den ausströmenden Aktivgasstrahl aus. Die elektrische Leitfähigkeit und der damit verbundene elektrische Widerstand des Plasmabogens bei gleichzeitig hohem Strom führt zu einem erheblichen Potential gegenüber der geerdeten Elektrode auch in naher Distanz des Plasmabogens der geerdeten Elektrode. Um das Austreten der Entladungsbüschel mit gefährlichem elektrischen Potential in den freien Raum zu verhindern, wird der Aktivgasstrahl am Ausgang der Entladungszone durch einen engen geerdeten Kanal geführt. Der Begrenzungskanal ist so dimensioniert, dass ein in ihn eintretender Entladungsbogen ein Potential besitzt, dessen Größe am Eintritt in den Begrenzungskanal für einen Durchbruch zur Kanalwand noch zu gering ist. Mit zunehmender Weglänge im Begrenzungskanal steigt die Spannung im Entladungsbogen so weit an, bis ein Durchbruch zur Kanalwand erfolgt. Damit muss der Begrenzungskanal entsprechend den übrigen Bedingungen der Plasmaerzeugung eine Mindestlänge besitzen, die sicherstellt, dass vorgenannte Auswölbungen der Entladungszone in den freien Raum nicht auftreten können. Das geschieht bei einem Verhältnis des Querschnittes zur Kanallänge von 1:5 bis 1:10.

[0010] Die erfindungsgemäße Vorrichtung erlaubt die Erzeugung eines elektrisch neutralen, chemisch aktiven Strahls, wobei mit erhöhter Prozessgasgeschwindigkeit der Aktivgasstrahl auf der zu bearbeitenden Oberfläche eine hohe chemische Aktivität entfaltet und bereits am Ausgang der Vorrichtung elektrisch neutral ist, so dass er keine Gefährdung für Bedienpersonal, Umgebung und bearbeitete Oberfläche darstellt.

[0011] Die Erfindung soll nachstehend anhand von Ausführungsbeispielen näher erläutert werden. Die Zeichnungen zeigen:
Fig. 1:
eine schematische Darstellung der erfindungsgemäßen Vorrichtung mit elektrischer Entladung, die durch ein beliebiges elektromagnetisches Feld ausgelöst wird;
Fig. 2:
eine Ausgestaltung der Erfindung mit elektrischer Bogenentladung zwischen stabförmiger Zentralelektrode und Hohlelektrode an der Wand der Entladungskammer sowie mit einem aus mehreren Einzelkanälen bestehenden Begrenzungskanal;
Fig. 3:
eine Gestaltung der Erfindung mit Bogenentladung über eine Zentralelektrode in Form einer Zylinderkappe;
Fig. 4:
eine Gestaltungsform mit einem mittels Innenelektroden erzeugten Hochfrequenzfeld;
Fig. 5:
eine Ausführungsform mit Erzeugung der Gasentladung durch Mikrowellen;
Fig. 6:
eine Gestaltungsform mit einem induktiv erzeugten Hochfrequenzfeld;
Fig. 7:
schematische Darstellung der Erfindung zum Aufteilen des Aktivgasstrahls zur gleichzeitigen Bearbeitung einzelner Teilflächen auf Oberflächen mit kompliziertem Relief;
Fig. 8:
schematische Darstellung der erfindungsgemäßen Vorrichtung, wobei die strahlformende Einrichtung einer ebenen Oberfläche angepasst ist;
Fig. 9:
schematische Darstellung wie in Fig. 8, wobei die strahlformende Einrichtung einer sphärischen Oberfläche angepasst ist;
Fig. 10:
eine spezielle Ausgestaltung, bei der mehrere erfindungsgemäße Vorrichtungen mit deren strahlformenden Einrichtungen in einen Bearbeitungskanal mit kontinuierlichem Materialfluss eingebunden sind;
eine Gestaltungsform zum Zuführen von Zusatzstoffen in den Aktivgasstrahl vor dem Begrenzungskanal;
Fig. 11:
eine Gestaltungsform zum Zuführen von Zusatzstoffen vor Beginn des Begrenzungskanals;
Fig. 12:
eine Variante zum Zuführen von Zusatzstoffen am Ende des Begrenzungskanals;
Fig. 13:
eine konstruktive Ausführung der Vorrichtung mit spezieller Gestaltung der Strömungskanäle für das zugeführte Prozessgas bei Aktivierung mittels Bogenentladung.


[0012] Die Vorrichtung zur Erzeugung eines Aktivgasstrahles gemäß Fig. 1 besteht in ihrem Grundaufbau aus einer von einem Prozessgas 1 durchströmten Entladungskammer 2, in der eine Aktivierung des Prozessgases 1 in Form einer durch ein starkes Feld 3 erzeugten elektrischen Entladung stattfindet, einem im Wesentlichen zylindrischen Begrenzungskanal 4 und einer Strahlformungseinrichtung 5 für den zur Materialbearbeitung im freien Raum vorgesehenen Aktivgasstrahl 6.
Die Entladungskammer 2 weist in Durchströmungsrichtung des Prozessgases 1 ein konisch verjüngtes Ende 21 (d.h. eine düsenähnlich verengte Form) auf, das der Erhöhung der Strömungsgeschwindigkeit des Prozessgases 1 während seiner Aktivierung in der Entladungskammer 2 dient. Mit dieser Erhöhung der Gasgeschwindigkeit wird die Zeitdauer zum Erreichen einer zu bearbeitenden Oberfläche 7 (nur in Fig. 7 bis 9 dargestellt) verkürzt und damit die Rekombination von aktiven Gasteilchen vor Erreichen des Bearbeitungsortes vermindert. Gleichzeitig mit der Erhöhung der Strömungsgeschwindigkeit erhöht sich jedoch die Gefahr, dass sich eine in der Entladungskammer 2 durch die Wirkung des Feldes 3 ausbildende Entladungszone 22 über das konisch verjüngte Endes 21 der Entladungskammer 2 hinaus nach außerhalb fortsetzt. Um zu verhindern, dass infolge der hohen Gasgeschwindigkeit sogenannte Entladungsbüschel mit gefährlich hohem elektrischen Potential als Auswölbung 24 der Entladungszone 22 aus der Entladungskammer 1 in den freien Raum austreten, wird der durch das verjüngte Ende 21 beschleunigte Aktivgasstrahl 6 am Ausgang der Entladungskammer 1 durch einen engen, geerdeten Begrenzungskanal 4 geführt. Hierdurch wird wirkungsvoll eine Begrenzung der Ausbreitung der Entladungszone 22 in Richtung der freien Austrittsöffnung des Aktivgasstrahls 6 verhindert.
Der Begrenzungskanal 4 ist so dimensioniert, dass der in ihn eintretende Teil der Entladungszone 22 ein solches Potential erreicht, dessen Größe am Eintritt in den Begrenzungskanal 4 für einen Durchbruch zur Kanalwand noch zu gering ist, jedoch mit zunehmender Weglänge im Begrenzungskanal 4 so weit ansteigt, bis ein Durchbruch zur geerdeten Wand des Begrenzungskanals 4 erfolgt.
Des Weiteren muss der Begrenzungskanal 4 entsprechend den übrigen Bedingungen der zur Aktivierung des Prozessgases 1 erforderlichen Plasmaerzeugung eine Mindestlänge besitzen, die sicherstellt, dass vorgenannte Auswölbungen 24 der Entladungszone 22 in den freien Raum nicht geschehen können. Dies wird in der Regel mit einem Verhältnis des Kanalquerschnittes zur Kanallänge von 1:5 bis 1:10 erreicht.
Die Wirksamkeit des Aktivgasstrahles 6 hängt aber auch wesentlich davon ab, dass der Begrenzungskanal 4 einen deutlich kleineren Durchmesser im Verhältnis zum Hauptteil der Entladungskammer 2 (vor deren konisch verjüngtem Ende 21) aufweist, so dass bei großem Verhältnis (1:5 bis 1:8) des Querschnitts der Entladungskammer 2 gegenüber dem Querschnitt des Begrenzungskanals 4 die Geschwindigkeit des Aktivgasstrahls 6 wesentlich ansteigt, wodurch die Zeit, die die chemisch aktiven Teilchen des Aktivgasstrahls 6 benötigen, um die Strecke von der Entladungskammer 2 bis zum Anwendungsort zurückzulegen, stark reduziert wird. Infolge der Zeitverkürzung kommt es zu weniger Rekombinationen aktiver Teilchen (verringerter Aktivitätsverlust des Aktivgasstrahls 6) und dies führt zu einer Erhöhung der Effektivität des Aktivgasstrahles 6 auf der zu bearbeitenden Oberfläche 7 (in Fig. 1 nicht dargestellt). Andererseits wird dadurch jedoch aufgrund des geringen Durchmessers des Begrenzungskanals 4 der aerodynamische Widerstand am verjüngten Ende 21 der Entladungskammer 2 steigen und die Effektivität innerhalb der Entladungszone 22 beeinträchtigen. Dies erklärt sich dadurch, dass die Temperatur des Plasmas mit steigendem Druck zunimmt. Der Begrenzungskanal 4 ist deshalb im Wesentlichen zylinderförmig ausgebildet und weist einen auf den Durchmesser der Entladungskammer 2 angepassten Querschnitt von 1:5 bis 1:8 auf.

[0013] In die Entladungskammer 2 wird Prozessgas 1 eingeleitet. Dabei wird das zugeführte Prozessgas 1 durch die Wechselwirkung mit dem Feld 3 in der elektrischen Entladungszone 22 aktiviert, im konisch verjüngten Teil 21 der Entladungskammer 2 beschleunigt und größtenteils entladen und in den Begrenzungskanal 4 eingeleitet, der die Ausbreitung der Entladungszone 22 nach außen in den freien Bearbeitungsraum verhindert. Nach dem Begrenzungskanal 4 strömt der Aktivgasstrahl 6 durch eine strahlformende Einrichtung 5, in der er entsprechend dem Anwendungszweck in bezug auf Geschwindigkeit, Temperatur, geometrische Form und Strömungsart (laminar oder turbulente Strömung) geformt wird. Die Entladungszone 22 kann dabei beliebig (je nach Art der verwendeten Felderzeugung) durch Gleich-, Wechsel- oder Impulsstrom, elektromagnetische Induktion, Mikrowellen oder andere Anregungsarten, die eine elektrische Gasentladung beim verwendeten Prozessgas 1 auslösen, entstehen.
Fig. 2 stellt die Erfindung in einer Variante dar, bei der eine Aktivierung des Prozessgases 1 durch eine Bogenentladung 34 zwischen zwei Elektroden in der Entladungskammer 2 erfolgt. Eine der Elektroden ist eine stabförmige Zentralelektrode 31, die andere befindet sich an der Innenwand der Entladungskammer 2 und bildet eine sogenannte Hohlelektrode 32. Die Hohlelektrode 32 ist mindestens an dem konisch verjüngten Ende 21 der Entladungskammer 2 angebracht. Sie kann aber auch selbst die Wand der Entladungskammer 2 bilden (wie z.B. in Fig. 13 dargestellt).
In die Entladungskammer 2, in der zwischen der Zentralelektrode 31 und der Hohlelektrode 32 entlang der inneren Wand der Entladungskammer 2 mittels eines Generators 33 eine elektrische Bogenentladung 34 stattfindet, wird tangential das Prozessgas 1 eingeleitet.
Durch die Wechselwirkung mit der elektrischen Bogenentladung 34 wird das Prozessgas 1 aktiviert, im kegelförmig verjüngten Teil 21 der Entladungskammer 1 beschleunigt und auf dem Weg zum Begrenzungskanal 4 größtenteils entladen. Im nachfolgenden Begrenzungskanal 4, der eine bei großen Gasgeschwindigkeiten mögliche Auswölbung 23 der Entladungszone 22 aufnimmt, wird eine Weiterleitung des elektrischen Potentials der Entladungszone 22 nach außen in den freien Raum der zu bearbeitenden Oberfläche 7 verhindert. Bei sehr hohem Gasdurchsatz durch die Entladungskammer 2 werden Entladungsbüschel in den Aktivgasstrahl des Begrenzungskanals 4 ausgeblasen, d.h. es bildet sich eine Auswölbung 23 der Entladungszone 22. Die elektrische Leitfähigkeit und der damit verbundene elektrische Widerstand des Plasmabogens (elektrischer Entladungsbogen im Prozessgas 1) bei gleichzeitig hohem Strom führt zu einem erheblichen Potential gegenüber der geerdeten Hohlelektrode 32 auch in naher Distanz des Plasmabogens. Es tritt deshalb auch außerhalb der Entladungskammer 2 ein erhebliches elektrisches Potential auf, wenn mit hoher Prozessgasgeschwindigkeit gearbeitet wird. Dieses Potential kann unter Umständen am kreisringförmigen Ende der Hohlelektrode 32 noch einige Hundert Volt betragen. Diese Erscheinung stellt eine Gefährdung für das Bedienpersonal dar, falls an dieser Stelle der Bearbeitungsraum anschließt. Im Fall des Austretens von Entladungsbüscheln könnten außerdem elektrische Defekte an sensiblen Oberflächen zu behandelnder Objekte - z.B. Halbleiter oder Halbleiterstrukturen - hervorgerufen werden. Um das Austreten der Auswölbungen 23 (Entladungsbüschel) mit gefährlichem elektrischen Potential infolge einer hohen Aktivgasstrahlgeschwindigkeit aus der Entladungszone 22 in den freien Raum zu verhindern, wird der Aktivgasstrahl 6 am Ausgang der Entladungskammer 2 durch den engen, geerdeten Begrenzungskanal 4 geleitet, in dem mit einem gewissen aerodynamischen Stau eine weitere Entladung des Aktivgasstrahles 6 erfolgt. Der Begrenzungskanal 4 ist so dimensioniert, dass die in ihn eintretende Auswölbung 23 der Entladungszone 22 ein Potential besitzt, dessen Größe am Eintritt in den Begrenzungskanal 4 für einen Durchbruch zur Kanalwand noch zu gering ist. Mit zunehmender Weglänge im Begrenzungskanal 4 steigt die Spannung im Entladungsbogen so weit an, bis ein Durchbruch zur Kanalwand erfolgt. Somit muss der Begrenzungskanal 4 entsprechend den übrigen Bedingungen der Plasmaerzeugung eine gewisse Mindestlänge besitzen, die sicherstellt, dass vorgenannte Auswölbung 23 der Entladungszone 22 den Begrenzungskanal 4 nicht durchqueren kann und die mit einem Verhältnis zwischen Kanalquerschnitt und Kanallänge von 1/5 bis 1/10 anzugeben ist. Der Aktivgasstrahl 6 weist eine mit der Temperatur am Ausgang der Entladungskammer 2 vergleichbare Temperatur auf, seine gasdynamischen Eigenschaften (Geschwindigkeit und Strömungsverhältnisse) werden jedoch vom Gasdurchsatz und von den Dimensionen und der konstruktiven Gestaltung des Begrenzungskanals 4 wesentlich mitbestimmt.
Nach dem Begrenzungskanal 4 strömt der Aktivgasstrahl 6 durch die strahlformende Einrichtung 5, in der er entsprechend dem Anwendungszweck in bezug auf Geschwindigkeit, Temperatur, geometrische Form und Strömungsart (laminar oder turbulente Strömung) geformt wird. Hierfür können verschiedene Ausführungen von strahlformenden Einrichtungen 5 zur Anwendung gelangen, z.B. Düsen, derartig gestaltet, dass eine adiabatische Expansion des Aktivgaststrahls auftritt, um die Temperatur zu senken, oder abgeflachte strahlformende Einrichtungen 5, wie sie nachfolgend noch näher beschrieben werden, um einen flachen, breiten Aktivgasstrahl 6 zu formen.
Die elektrische Entladungszone 22 kann für die beschriebene Vorrichtung beliebig (je nach Art des verwendeten Spannungsgenerators 33) durch Gleich-, Wechsel- oder Impulsstrom entstehen.
Der in der Entladungskammer 2 erzeugte Aktivgasstrahl 6 verliert beim Durchströmen des Begrenzungskanals 4 leider auch einen Teil seiner Aktivität infolge von Rekombination der aktiven Teilchen und wegen Wechselwirkungen des Aktivgasstrahles 6 mit der Kanalwand. Um die Wirkung vorgenannter Prozesse zu vermindern, ist bei einer Kürzung der Kanallänge eine gleichzeitige Verkleinerung des Querschnitts des Begrenzungskanals 4 erforderlich. Dadurch würde jedoch der aerodynamische Widerstand des Begrenzungskanals 4 steigen und die Effektivität innerhalb der Entladungskammer 2 beeinträchtigt. Dies erklärt sich dadurch, dass die Temperatur des Plasmas mit steigendem Druck zunimmt. Gleichzeitig wird eine stärkere thermische Belastung der Zentralelektrode 31 und Hohlelektrode 32 verursacht, die zu höherem Elektrodenverschleiß führt. Dies kann dadurch vermindert werden, dass der Begrenzungskanal 4 aus zwei oder mehreren geerdeten Einzelkanälen 41 besteht, die in elektrisch leitendem Material parallel zueinander angeordnet sind und einen größeren effektiven Strömungsquerschnitt ergeben. Fig. 2 zeigt dazu eine Ausführung, bei der um einen zentralen Einzelkanal 41 herum weitere Einzelkanäle 41 gleichmäßig verteilt angeordnet sind.
Fig. 3 stellt eine Erzeugung eines Aktivgasstrahles 6 dar, bei der - im Unterschied zum oben beschriebenen Beispiel - die Zentralelektrode 31 anstatt der Stabform die Form einer elektrisch leitenden Zylinderkappe aufweist. Diese Zentralelektrode 31 ist mit ihrer Öffnung in Richtung der Entladungskammer 2 koaxial angeordnet. Das Prozessgas 1 wird tangential in einen Spalt zwischen der zylindrischen Zentralelektrode 31 und der Entladungskammer 2 eingeleitet. Beim Einsatz einer solchen Form der Zentralelektrode 31 vergrößert sich die Stützfläche der Bogenentladung 34 auf der Zentralelektrode 31, d.h. die Fußpunkte der Bogenentladungen 34 bewegen sich bei intensiv verwirbelter Strömung des Prozessgases 1 auf einer größeren Oberfläche. Dadurch wird bei der Zentralelektrode 31 eine Überhitzung verhindert und die Lebensdauer sowie der maximale Entladungsstrom erhöht.
In Fig. 4 ist eine Variante dargestellt, bei der das Prozessgas 1 zwischen zwei in der Entladungskammer 2 in Strömungsrichtung nacheinander angeordneten Elektroden 35 aktiviert wird. Mittels eines Hochfrequenzgenerators 36 wird die Entladungszone 22 durch eine Hochfrequenzentladung in einem Wechselfeld 3 erzeugt, wobei die Entladungskammer 2 aus elektrisch isolierendem Material (z.B. Quarz) besteht.
Da hinlänglich bekannt ist, dass die bei Verwendung von kalten Elektroden 35 entstehende elektrische Entladung unter bestimmten Drücken, z.B. bei Atmosphärendruck, ohne zusätzliche Maßnahmen instabil ist, weil hohe Elektronendichten und Energiegradienten vor den Elektroden 35 eine Raumladungsschicht erzeugen und die Entladung destabilisieren. In Hochfrequenzentladungen wird diese Stabilisierung durch einfache Maßnahmen (wie sie beispielsweise von J. Reece Roth in: Industrial Plasma Engineering, Vol. 1: Principles, Inst. of Physics Publishing, Bristol and Philadelphia, 1995, S. 382-385, 404-407, 464f. beschrieben sind) erzielt. Aus diesem Grund der einfachen Erhaltung einer stabilen Entladung ist eine HF-Entladung zur Aktivierung des Prozessgases 1 besonders vorteilhaft.
Sämtliche Elektroden, wie sie in den vorhergehenden Gestaltungsvarianten zur Erzeugung der elektrischen Entladungszone 22 beschrieben wurden, sind jedoch mehr oder weniger einem Erosionsprozess ausgesetzt, d.h. sie verschleißen. Das führt zu einer Kontamination der Entladungskammer 2 und des Prozessgases 1 durch Elektrodenmaterial. Um einen von Kontaminierung durch Elektrodenmaterial freien Aktivgasstrahl 6 zu erzeugen, wird gemäß Fig. 5 die Entladungszone 22 ohne Elektroden erzeugt. Dazu wird die in diesem Beispiel aus elektrisch isolierendem, aber mikrowellentransparentem Material bestehende Entladungskammer 2 in das Feld 3 eines Mikrowellengenerators 37 eingebracht, wobei in einem typischen Mikrowellenleiter 38, der an den Mikrowellengenerator 37 angeschlossen ist, ein Ort relativ gleichmäßiger und hoher Feldstärke genutzt wird. Alle übrigen Abläufe, die aus der Entladungszone 22 den Aktivgasstrahl 6 hervorbringen, laufen entsprechend den vorhergehenden Beispielen ab.
Eine ebenfalls elektrodenlose Aktivierung des Prozessgases 1 ist in Fig. 6 dargestellt. Hier wird ein Hochfrequenzgenerator 36 dazu benutzt, mit einer Spule 39 ein hochfrequent wechselndes Feld 3 in der Entladungskammer 2 zu induzieren. Dabei ist die Entladungskammer 2 innerhalb der Windungen der Spule 39 angeordnet und bildet innen die gewünschte Entladungszone 22 aus. Das Material der Entladungskammer 2 ist relativ frei wählbar, jedoch notwendig nicht ferromagnetisch. Wie bereits in den vorherigen Beispielen beschrieben, wird das Prozessgas 1 im konisch verjüngten Ende 21 der Entladungskammer 2 beschleunigt und im geerdeten Begrenzungskanal 4 von seinem gefährlichen Potential befreit, so dass am Ausgang der strahlformenden Einrichtung 5 ein elektrisch neutraler Aktivgasstrahl 6 zur Verfügung steht.

[0014] Bei anspruchsvollen Oberflächenbehandlungen ist es häufig erforderlich, einzelne Teile von Oberflächen 7 oder Vertiefungen an Werkstücken gleichwertig zu bearbeiten. Dazu wird der ursprünglich einheitliche Aktivgasstrahl 6 für die Bearbeitung von einzelnen Flächenteilen 71 und Vertiefungen in mehrere Strahlen aufgeteilt. Fig. 7 zeigt dazu eine stilisierte Entladungskammer 2, bei der die Art der Erzeugung der elektrischen Entladung beliebig gewählt sein kann. Das erzeugte Aktivgas wird aus der Entladungskammer 2 durch den Begrenzungskanal 4 in eine strahlformende Einrichtung 5 geleitet, die verzweigte Düsen 51 aufweist. Die verzweigten Düsen 51 sind dabei auf unterschiedliche Teilflächen 71 gerichtet, die unterschiedliche Höhen in der zu bearbeitenden Oberfläche 7 darstellen und jeweils einen Anteil des Aktivgasstrahles 6 auf die Teilflächen 71 leiten.

[0015] Bei den zur Oberflächenbearbeitung bekannten Plasmastrahl-Generatoren, wie z.B. nach DE 195 46 930 C1, DE 195 32 412 A1, wird der Gasstrahl nach dem Verlassen des Generators verbreitert, bevor er die zu bearbeitende Oberfläche erreicht. Geschieht das allerdings zu großzügig, verliert der Gasstrahl auf dem Weg zur Oberfläche 7 zuviel Aktivität durch Rekombinationen sowie Wechselwirkungen mit den Gasteilchen der umgebenden Atmosphäre. Zu der vorliegenden Erfindung werden deshalb einige zusätzliche Maßnahmen vorgeschlagen, die die Aktivitätsverluste auf dem Weg von der Erzeugung des Aktivgasstrahles 6 bis zum Erreichen der zu bearbeitenden Oberfläche 7 auch bei einer großen gleichzeitig bearbeiteten Oberfläche 7 gering halten. Dazu zeigen die Figuren 8 und 9 zwei Möglichkeiten für regelmäßig geformte Oberflächen 7. In Fig. 8 sind als strahlformende Einrichtung 5, direkt an den Begrenzungskanal 4 anschließend, abgewinkelte, weitgehend ebene Leitbleche 52 vorgesehen, die in geringem Abstand über der ebenen Oberfläche 7 gleichmäßig geführt werden müssen. Durch diese Maßnahme wird die bereits in der am Ende verjüngten Entladungskammer 2 erzeugte und über den Begrenzungskanal 4 weitergeleitete hohe Gasgeschwindigkeit auch in der strahlformenden Einrichtung 5 in Form eines Strahls, der parallel zur Oberfläche 7 geführt wird, durch eine Art Grenzschichtleitung fortgesetzt. Chemisch aktive Teilchen des Aktivgasstrahles 6, der hierbei zu einer nahezu laminaren Strömung entartet, kommen somit in kürzester Zeit auf eine größere Fläche der zu bearbeitenden Oberfläche 7, noch bevor sie rekombinieren können. Dieselbe Funktionsweise zeigt Fig. 9 für eine sphärische Oberfläche 7, wobei hier die Leitbleche 52 entsprechend der Oberflächenkrümmung eine konzentrische Wölbung aufweisen müssen, um den gleichen Effekt der laminaren Strömungsschicht zu erreichen.
Eine weitere spezielle Gestaltung von strahlformender Einrichtung ist in Fig. 10 gezeigt. Dieses Beispiel beschäftigt sich mit der effektiven Bearbeitung eines kontinuierlichen Materialflusses, bei dem entweder ein Strangprofil 72 oder ein Materialfluss identischer Werkstücke gleichzeitig an mehreren Oberflächen 7 mit einem Aktivgasstrahl 6 bearbeitet werden sollen. In Fig. 10 wird ein Strangprofil 72 durch einen geschlossenen Bearbeitungskanal 53 geführt, wobei an wenigstens zwei gegenüberliegenden Seiten dieses Bearbeitungskanals 53 schräg zur Bewegungsrichtung des Strangprofils 72 jeweils eine erfindungsgemäße Vorrichtung angebracht ist.
Alle bisher beschriebenen Anordnungen beinhalten nur den Einsatz eines Prozessgases oder Prozessgasgemisches, das direkt in die Entladungskammer 1 in entsprechender Anordnung eingeleitet wird. Soll ein zusätzlicher Stoff zugesetzt werden, der nicht in der Entladungszone 22 aktiviert werden soll, so kommen zwei mögliche Anordnungen in Frage, die entweder gemäß Fig. 11 durch Zugabe unmittelbar vor dem Begrenzungskanal 4 oder gemäß Fig. 12 durch Einleitung direkt in den neutralen Aktivgasstrahl 6 nach dem Begrenzungskanal 4 in der Strahlformungseinrichtung 5 realisiert werden können.
Im ersten Fall (Fig. 11) wird hierzu der Zusatzstoff 8 über ein hochtemperaturfestes Zufuhrrohr 81 zugeführt, das wenige Millimeter vor dem der Entladungszone 22 zugewandten Ende des Begrenzungskanals 4 endet und aus Keramik, Quarz oder einem vergleichbar temperaturbeständigen Material besteht. Um möglichst keine Störung durch diesen Zusatzstoff 8 in der Entladungszone 22 zu erhalten, darf der Massenstrom dieses Zusatzstoffes 8 nur einen Bruchteil des Massenstroms des Prozessgases 1 in der Entladungskammer 2 ausmachen. Die Entladungskammer 2 ist in dieser Ausführungsform in ein Gehäuse 9 eingebunden, da hier eine elektrodenlose Aktivierung des Prozessgases 1 angenommen werden soll. Das Gehäuse 9 symbolisiert im einfachsten Fall einen Wellenleiter 38 mit angeschlossener Mikrowellenquelle 37 gemäß Fig. 5, kann aber auch eine Spule 39 gemäß Fig. 7 sowie eine zugehörige Kühlung aufnehmen.
Im zweiten Fall (Fig. 12) wird das aktivierte Prozessgas 1 durch einen Begrenzungskanal 4 mit mehreren parallelen Einzelkanälen 41, die in einem Ring 42 angeordnet sind, geführt. Im Zentrum des als dicke Lochplatte ausgebildeten Begrenzungskanals 4 befindet sich anstelle eines zentralen Einzelkanals 41 ein Zufuhrkanal 82, der von außen zugeleitet wird. Über diesen Zufuhrkanal 82, der innerhalb der metallischen Lochplatte des Begrenzungskanals 4 von außen in die Mitte des Ringes 42 der Einzelkanäle 41 geführt ist, wird der Zusatzstoff 8 in das Zentrum eines Aktivgasstrahls 6, der näherungsweise einen Gasring darstellt, eingebracht. Da der Aktivgasstrahl 6 bei den geringen Querschnitten der Einzelkanäle 41 mit sehr hoher Geschwindigkeit ausströmt, kann der Massenstrom des Zusatzstoffes 8 über den Zufuhrkanal 82 über einen großen Bereich variiert und sehr genau eingestellt werden.
Die Fig. 13 stellt den Längs- und Querschnitt der Vorrichtung für die Erzeugung eines elektrisch neutralen Aktivgasstrahls 6 in einem handhabbaren Gehäuse 9 dar. Die Vorrichtung besteht aus Entladungskammer 2, Begrenzungskanal 4 und Strahlformungseinrichtung 5, die als ein einheitlicher Grundkörper 91 in der Form eines griffigen Handstückes (Pen) aus Kupfer oder einem anderen sehr guten elektrischen Leiter gebildet sind, einer stabförmigen Zentralelektrode 31, die mittels eines aus Quarz bestehenden Isolatorrohres 29, koaxial zu der Wand der Entladungskammer 2, die zugleich die Hohlelektrode 32 darstellt, angeordnet ist. Das Isolatorrohr 29 wird durch einen elastischen Dichtungsring 92 im Grundkörper 91 gasdicht bezüglich der Entladungskammer 21 abgedichtet. Das Ende der Zentralelektrode 31 steht aus dem Isolatorrohr 29 um eine Länge von bis zum zweifachen Durchmesser der Zentralelektrode 31 in die Entladungskammer 2 vor. Das Isolatorrohr 29 selbst ragt mindestens um eine Länge von der Größe des eigenen Außendurchmessers in die Entladungskammer 2 hinein und bildet somit außerhalb seiner Mantelfläche einen Teil der Entladungskammer 2 in Form eines Hohlzylinders. In diesen Hohlzylinder nahe der hinteren Stirnwand der Entladungskammer 2 wird das Prozessgas 1 symmetrisch in die Entladungskammer 2 eingeleitet.
Das konisch verjüngte Ende 21 der Entladungskammer 2 geht fließend in den engen Begrenzungskanal 4 über. Der Durchmesser des Begrenzungskanals 4 steht im Verhältnis 1:8 zu dessen Länge und ist in Fig. 13 nur stilisiert (nicht maßstabsgerecht) gezeichnet. An den Begrenzungskanal 4 schließt sich die strahlformende Einrichtung 5 an. Die Entladungskammer 2, der Begrenzungskanal 4 und die strahlformende Einrichtung 5 sind einheitlich aus Kupfer gefertigt und weisen einen gemeinsamen geerdeten Kontakt 93 auf. Der geerdete Kontakt 93 ist zugleich mit dem negativen Pol des Spannungsgenerators 33 (in Fig. 13 nicht dargestellt) verbunden. Der positive Pol des Spannungsgenerators 33 ist an die Zentralelektrode 31 angeschlossen.
Die Zufuhr des Prozessgases 1 erfolgt über den Gaseinlass 24 zunächst in eine zylindrische Verteilungskammer 25, von der aus über gleichmäßig verteilte tangentiale Strömungskanäle 26 eine spiralförmige Gasströmung im hohlzylinderförmigen Teil der Entladungskammer 2 generiert wird. Diese Maßnahme bewirkt, dass die Fußpunkte der Bogenentladung 34 (in Fig. 13 nicht darstellt) an der Zentralelektrode 31 auf deren Stirnfläche und unmittelbar angrenzende Teile der Elektrodenoberfläche einschränkt werden, so dass das Isolatorrohr 29 thermisch weniger belastet und dessen Erosion verringert wird.
Am rückwärtigen Ende des Grundkörpers 91 - genauer gesagt an der hinteren Stirnwand der Entladungskammer 2 ist ein isolierender Anschlusskörper 94 befestigt (z.B. geschraubt), der die Befestigung und den Anschluss der Zentralelektrode 31 trägt. Der Anschlusskörper 94 weist einen zusätzlichen Gaseinlass 27 auf, der über eine schmale Ringkammer 28 entlang der Zentralelektrode 31 mit der Entladungskammer 2 verbunden ist. Durch diese schmale Ringkammer 28 wird zwischen Zentralelektrode 31 und Isolatorrohr 29 ein Teil des Prozessgases 1 mit der Funktion einer Elektrodenkühlung und direkter Einspeisung in die Entladungszone 22 zugeführt. Die Ringkammer 28 wird rückwärtig im Anschlusskörper 94 durch einen elastischen Ring 96 gegen die Zentralelektrode 31, die nach hinten zur Anschlussklemme 95 hindurch geführt ist, abgedichtet. Auch in die Ringkammer 28 können - wie zwischen der Verteilungskammer 25 und dem hohlzylindrischen Teil der Entladungskammer 2 - tangentiale Strömungskanäle 26 (für Ringkammer 28 nicht dargestellt) zur Erzeugung einer spiralförmigen Gaszirkulation vorgesehen sein.
Die Vorrichtung nach Fig. 13 funktioniert nun in folgender Art und Weise. Ein Teil des Prozessgases 1 wird durch den zusätzlichen Gaseinlass 27 zugeführt und strömt durch die Ringkammer 28 zwischen der Zentralelektrode 31 und dem Isolatorrohr 29 in die Entladungskammer 2. Gleichzeitig wird der andere (größere) Teil des Prozessgases 1 durch den Gaseinlass 24 über die Verteilungskammer 25, durch die tangentialen Öffnungen 26 der Entladungskammer 2 in deren hohlzylinderförmigen Teil, der durch die Hohlelektrode 32 und das hereinragende Isolatorrohr 29 gebildet wird, zugeführt. Dadurch wird eine spiralförmige Wirbelströmung in der Entladungskammer 2 erzeugt. Bei der Zufuhr des Prozessgases 1 durch die Gaseinlässe 24 und 27 und gleichzeitigem Anliegen einer Gleichspannung zwischen geerdetem Kontakt 93 und Anschlussklemme 95 entsteht eine elektrische Entladung in der Entladungskammer 2. Das Prozessgas 1 wird aufgrund der Wechselwirkungen in der Entladungszone 22 (analog zu Fig. 2, jedoch in Fig. 13 nicht dargestellt) aktiviert, verlässt die Entladungskammer 2 - durch deren konisch verjüngtes Ende 21 beschleunigt - mit hoher Geschwindigkeit und strömt durch den anschließenden Begrenzungskanal 4 sowie die strahlformende Einrichtung 5 in den (freien) Bearbeitungsraum. Der Aktivgasstrahl 6 verliert im Wesentlichen im Begrenzungskanal 4 sein Potential, dessen Größe am Ende des Begrenzungskanals 4 gegenüber Masse (geerdet) nahezu Null ist. In der nachfolgenden strahlformenden Einrichtung 5 wird der Aktivgasstrahl 6 dann auf die für die Anwendung gewünschte Breite und Form (wie beispielhaft zu den Figuren 7 bis 9 beschrieben) gebracht. Damit steht ein chemisch sehr wirkungsvoller und elektrisch neutraler Aktivgasstrahl 6 für beliebige Anwendungsfälle zur Verfügung.

Liste der verwendeten Bezugszeichen



[0016] 
1
Prozessgas
2
Entladungskammer
21
konisch verjüngtes Ende
22
Entladungszone
23
Auswölbung der Entladungszone
24
tangentiale Strömungskanäle
25
Verteilungskammer
26, 27
Gaseinlass
28
Ringkammer
29
Isoiatorrohr
3
Feld
31
Zentralelektrode
32
Hohlelektrode
33
Spannungsgenerator
34
Bogenentladung
35
HF-Elektrode
36
HF-Quelle
37
Mikrowellenquelle
38
Mikrowellenleiter
39
Spule
4
Begrenzungskanal
41
Einzelkanäle
42
Ring (von Einzelkanälen)
5
strahlformende Einrichtung
51
verzweigte Düsen
52
Leitbleche
53
Bearbeitungskanal
6
Aktivgasstrahl
61
Teilstrahlen
7
Oberfläche
71
Teilflächen
72
Strangprofil
8
Zusatzstoffe
81
Zufuhrrohr
82
Zufuhrkanal
9
Gehäuse
91
Grundkörper
92
elastischer Dichtungsring
93
Erdungsklemme
94
isolierender Anschlusskörper
95
Anschlussklemme (der Zentralelektrode)
96
elastischer Ring



Ansprüche

1. Vorrichtung zum Erzeugen eines chemisch aktiven Strahls (Aktivgasstrahls) mittels eines durch elektrische Entladung generierten Plasmas in einem verwendeten Prozessgas mit einer im Wesentlichen zylindrischen Entladungskammer, die von einem Prozessgas durchströmt wird und in der zur Aktivierung des Prozessgases eine Plasmaerzeugung infolge einer elektrischen Gasentladung vorgesehen ist, einem Gaseinlass zum kontinuierlichen Zuführen des Prozessgases in die Entladungskammer sowie einer Austrittsöffnung zum Ausrichten des Aktivgasstrahles auf eine zu bearbeitende Oberfläche, dadurch gekennzeichnet, dass

- die Entladungskammer (2) ein konisch verjüngtes Ende (21) zur Erhöhung der Geschwindigkeit des Aktivgasstrahls (6) aufweist und

- dem verjüngten Ende (21) der Entladungskammer (2) ein Begrenzungskanal (4) zur Verhinderung der Ausbreitung der Entladungszone (22) in den freien Raum für die zu bearbeitende Oberfläche (7) nachgeordnet ist, wobei der Begrenzungskanal (4) im Wesentlichen zylinderförmig ausgebildet und geerdet ist und dessen Länge um den Faktor 5 bis 10 größer als sein Querschnitt ist.


 
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
zur Aktivierung des Prozessgases (1) eine Bogenentladung (34) vorgesehen ist, wobei die Entladungskammer (2) eine Zentralelektrode (31) und eine Hohlelektrode (32), die die Innenwand der Entladungskammer (2) mindestens im Bereich des konisch verjüngten Endes (21) flächig und symmetrisch bedeckt, aufweist.
 
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass
der Begrenzungskanal (4) direkt an die Hohlelektrode (32) angefügt ist.
 
4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass
die Zentralelektrode (31) stabförmig ausgebildet und entlang der Symmetrieachse der Entladungskammer (2) angeordnet ist.
 
5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass
die Zentralelektrode (31) die Form einer Zylinderkappe aufweist, die eine Zylindermantelfläche geringer Höhe sowie eine Deckfläche beinhaltet und deren Öffnung koaxial zur Symmetrieachse der Entladungskammer (2) ausgerichtet und oberhalb des Gaseinlasses (26) der Entladungskammer (2) angeordnet ist.
 
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
zur Aktivierung des Prozessgases (1) die Entladungskammer (2) in einem mit Hochfrequenz (Radiofrequenz) erzeugten Induktionsfeld angebracht ist.
 
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass
zur Aktivierung des Prozessgases (1) die Entladungskammer (2) mit zwei entlang der Wand der Entladungskammer (2) in Strömungsrichtung des Prozessgases (1) angeordneten HF-Elektroden (35), die mit Radiofrequenz betrieben werden, versehen ist.
 
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass
zur Aktivierung des Prozessgases (1) die Entladungskammer (2) in einer mit Hochfrequenz betriebenen Spule (39) angeordnet ist.
 
9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
zur Aktivierung des Prozessgases (1) die Entladungskammer (2) in einem an einer Mikrowellenquelle (37) angeschlossenen Wellenleiter (38) angeordnet ist.
 
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
dem Begrenzungskanal (4) eine strahlformende Einrichtung (5) zur Einstellung des Aktivgasstrahls (6) mit gewünschten Parametern, insbesondere Geschwindigkeit, Temperatur, geometrische Form und Strömungsart, nachgeordnet ist.
 
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass
an den Ausgang des Begrenzungskanals (4) verzweigte Düsen (51) zum Bearbeiten einzelner Teilflächen (71) oder Vertiefungen der zu bearbeitenden Oberfläche (7) angeschlossen sind.
 
12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass
die strahlformende Einrichtung (5) durch Leitbleche (52) an die Form der zu bearbeitenden Oberfläche (7) angepasst ist, wobei der Abstand zwischen der Oberfläche (7) und den Leitblechen (52) in einem definiert kleinen Bereich gehalten wird, so dass die effektiv behandelte Oberfläche (7) eine größere Fläche umfasst.
 
13. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass
strahlformende Einrichtungen (5) vorgesehen sind, die zwei oder mehrere erfindungsgemäße Vorrichtungen zur Erzeugung des Aktivgasstrahles (6) in einen Bearbeitungskanal (53) einbinden, wobei in dem Bearbeitungskanal (53) bei kontinuierlichem Materialdurchlauf mehrere zu behandelnde Oberflächen (7) eines Werkstücks gleichzeitig oder Oberflächen (7) von Strangprofilen (72) mit beliebigem Querschnitt allseitig bearbeitbar sind.
 
14. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
ein in der Entladungskammer (2) axial angeordnetes Zufuhrrohr (81), das kurz vor dem Ausgang der Entladungskammer (2) endet, zur Einbringung von Zusatzstoffen (8) in den Aktivgasstrahl (6) vorgesehen ist, wobei ein Einfluss der Zusatzstoffe (8) auf die Entladungscharakteristik und eine Kontaminierung der Entladungskammer (2) durch die Zusatzstoffe (8) oder deren Reaktionsprodukte vermieden wird.
 
15. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
der Begrenzungskanal (4) mehrere Einzelkanäle (41) umfasst, um den gasdynamischen Widerstand und die Verweildauer des Aktivgases (6) im Begrenzungskanal (4) zu reduzieren, wobei die Einzelkanäle (41) um einen zentralen Kanal herum gleichmäßig in einem Ring (42) verteilt angeordnet sind.
 
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass
der Begrenzungskanal (4) mit mehreren Einzelkanälen (41) einen zentralen Zufuhrkanal (82) für Zusatzstoffe (8) aufweist, wobei der Zufuhrkanal (82) axial im Zentrum des Ringes (42) von mit aktiviertem Prozessgas (6) durchströmten Einzelkanälen (41) angeordnet ist.
 
17. Vorrichtung nach Anspruch 14 oder 16, dadurch gekennzeichnet dass
die Zusatzstoffe (8) im Bereich des Begrenzungskanals (4) als Gase, Flüssigkeiten in Form von Aerosolen oder Feststoffe in Form feiner Partikel einführbar sind.
 
18. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass
die Hohlelektrode (32), der Begrenzungskanal (4) und die strahlformende Einrichtung (5) als einheitlicher Rotationskörper mit sehr guter elektrischer Leitfähigkeit gefertigt sind, die Zentralelektrode (31) als koaxial von einem Isolatorrohr (29) umgebene stabförmige Zentralelektrode (31) in die Entladungskammer (2), die von der Hohlelektrode (32) gebildet wird, eingeführt ist, und die Gaszufuhr für das Prozessgas (1) tangentiale Strömungskanäle (24) in einer die Zentralelektrode (31) konzentrisch umgebenden zylindrischen Verteilungskammer (15; 16) aufweist, wobei infolge einer resultierenden spiralförmigen Gasströmung aus der Verteilungskammer (15; 16) in die Entladungskammer (2) Bogenentladungen (34) zwischen Zentralelektrode (31) und Hohlelektrode (32) einen auf das Ende der Zentralelektrode (31) konzentrierten Austrittsbereich aufweisen.
 
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass
tangentiale Strömungskanäle (24) in einen zylindrischen ringförmigen Teil der Entladungskammer (2) zwischen innerer Oberfläche der Hohlelektrode (32) und äußerer Oberfläche des Isolatorrohres (29) geführt sind, so dass das Prozessgas (1) das Isolatorrohr (29) von.außen spiralförmig umströmt.
 
20. Vorrichtung nach den Anspruch 18, dadurch gekennzeichnet, dass
tangentiale Strömungskanäle (24) zusätzlich in eine zylindrische Ringkammer (28) zwischen stabförmiger Zentralelektrode (31) und innerer Oberfläche des Isolatorrohres (29) geführt sind, so dass die Zentralelektrode (31) direkt von einem Anteil des Prozessgases (1) gekühlt wird und Austrittspunkte von Bogenentladungen (34) im Wesentlichen auf nichtzylindrische Flächen der Zentralelektrode (31) beschränkt sind.
 
21. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass
das Ende der stabförmigen Zentralelektrode (31) das Isolatorrohr (29) um eine Länge von bis zum zweifachen Durchmesser der Zentralelektrode (31) überragt.
 
22. Vorrichtung nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass
das Ende der Zentralelektrode (31) mit dem Ende des Isolatorrohrs (29) abschließt.
 
23. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass
der Begrenzungskanal (4) in Gasströmungsrichtung leicht kegelförmig verengt ist und ein mittleres Verhältnis von Kanaldurchmesser zu Kanallänge von 1:8 aufweist.
 
24. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass
dem Begrenzungskanal (4) eine strahlformende Einrichtung (5) mit glockenförmig erweitertem Ausgang nachgeordnet ist, so dass die Arbeitsbreite des Aktivgasstrahles (6) vergrößert ist.
 




Zeichnung