(19)
(11) EP 0 743 999 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
09.04.2003 Bulletin 2003/15

(21) Application number: 95937593.2

(22) Date of filing: 20.10.1995
(51) International Patent Classification (IPC)7E04B 1/19
(86) International application number:
PCT/US9513/614
(87) International publication number:
WO 9601/5333 (23.05.1996 Gazette 1996/23)

(54)

STRUCTURAL FRAME

KONSTRUKTIONSRAHMEN

STRUCTURE PORTEUSE


(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

(30) Priority: 14.11.1994 US 338408
08.03.1995 US 399048

(43) Date of publication of application:
27.11.1996 Bulletin 1996/48

(73) Proprietor: OWENS, Charles R.
Alexandria, VA 22304 (US)

(72) Inventor:
  • OWENS, Charles R.
    Alexandria, VA 22304 (US)

(74) Representative: Berkenfeld, Helmut, Dipl.-Ing. 
An der Schanz 2
50735 Köln
50735 Köln (DE)


(56) References cited: : 
WO-A-81/00130
DE-A- 2 159 969
US-A- 3 354 591
US-A- 5 125 206
WO-A-89/04902
US-A- 3 139 959
US-A- 4 809 146
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Background Of The Invention



    [0001] This invention relates in general to structures such as load bearing frames and trusses and more particularly to structures that provide an enhanced trade off between the stress that can be safely carried in relation to the amount of material required for the structure.

    [0002] This enhanced strength to weight ratio is a goal of a large number of designs including many of those proposed and constructed by Richard Buckminster Fuller. In most contexts where load bearing frames and trusses are employed, failure occurs because of a failure in tension rather than in compression. Although the loads imposed primarily induce compressive stress in the material, that stress is resolved within the material by vectors which introduce tension. For example, a dome subject to load will tend to deflect in such a fashion as to introduce tension along the trusses that constitute the dome. Failure will occur because of a failure in tension. Much attention has been paid to developing materials which have great tensile strength for use in load bearing structures in such a way as to employ the tensile strength of these materials so that loads supplied will be resolved, at least in part, by the tension created in these tension members. Such an approach is outlined in the Buckminster Fuller U.S. Patent No. 3,354,591 issued in 1967. A more recent improvement on that structure is set forth in U.S. Patent No. 4,207,715 issued in 1980. This combination of tension and compression members is also disclosed in the structure shown in U.S. Patent No. 4,711,062 issued in 1987.

    [0003] A truss structure is also known from U.S. Patent No. 5,125,206.

    Brief Description



    [0004] This invention is in a framework type of structure composed of a plurality of struts. Each strut is ideally equal in length and is deployed in such a fashion as to cause the stress applied to the structure to be resolved within the structure in a way that minimizes the creation of tensile stress. The set of struts can be analyzed as a plurality of interconnected sets of building blocks. These building blocks which when interconnected constitute the framework of this invention can be looked at in three different ways. That is, depending upon where one breaks apart the set of struts which constitutes the framework of the invention, one can end up with any one of three distinctly different sets of building blocks. Two of these sets are true building blocks. The other is a bit more abstract in that individual struts do double duty and are considered as constituting edges of two or more of the particular sub frames involved.

    [0005] A first set is a twenty strut building block which is called by Applicant a "Unicube". It is a frame in which twelve struts define a cube. From each of the eight corners of the cube, a single strut extends outward in such a fashion as to form an equal angle with each of three adjacent edge struts of the cube. A plurality of these unicubes connected by the outboard ends of the struts which extend from the corners of the cube creates a framework or truss in accordance with the teachings of this invention.

    [0006] A second set is composed of two buildings blocks. They are tetrax frames and cubic frames. Each tetrax frame is the four struts which extend from the center point of a tetrahedron to the four corners of a tetrahedron. Each cubic frame is the twelve struts that define the edges of a cube. The outboard end of each tetrax strut is connected to the corner of a cubic frame and, correspondingly, each corner of a cubic frame is connected to the outboard end of a strut of a tetrax frame. Thus from the eight corners of a cubic frame, eight tetrax frames will extend outwardly. Correspondingly at the outboard ends the four struts of a tetrax frame, there will extend four cubic frames each of which is connected at its corner to the strut of the tetrax. Since there are four outboard ends of a tetrax frame and eight corners of a cubic frame, this arrangement requires that there be twice as many tetrax frames as cubic frames.

    [0007] A third set is not exactly a building block. The third set is the edge frame of the truncated rhombic dodecahedron (TRD) that is disclosed in detail in the referenced patent application. A structure composed of the edge struts defining a plurality of truncated rhombic dodecahedra will generate the frame of this invention. However, it has to be understood that in a packed set of TRDs each edge would be common to three of these TRDs. The framework of this invention is a framework which constitutes the common struts so that the three edges of adjacent TRDs are represented by a single strut rather than by three parallel coincident struts.

    [0008] FIGs. 1 through 6 illustrate these three sets or building blocks. FIGs. 1 and 2 show two views of a unicube. FIGs. 3 and 4 show the tetrax and cubic frame, respectively. FIGs. 5 and 6 show two views of a TRD frame. FIGs. 5 shows an opaque TRD representing only the visible edges of the TRD.

    [0009] More briefly, the invention relates to a load bearing structural frame comprising twelve compression bearing struts defining the edges of a cubic frame having eight corners, and eight outwardly extending compression bearing struts, each extending outwardly from a seperate one of said eight corners, each of said outwardly extending struts having an outer end.

    [0010] The invention also relates to suitable embodiments of this basic frame. Further, the invention relates to a method of constructing such load bearing frame.

    Brief Description Of The Figures



    [0011] FIG. 1 is a perspective view of the unicube in which the center cube is in opaque form so that only visible struts can be seen.

    [0012] FIG. 2 is a perspective view of the actual unicube showing all twelve struts of the center cube and the eight outwardly extending corner struts.

    [0013] FIG. 3 shows two views of the four strut tetrax which is also referred to herein as the tetrax frame.

    [0014] FIG. 4 is a perspective view of a cubic frame; this cubic frame being the center cube of a unicube.

    [0015] FIG. 5 is a perspective view of an opaque truncated rhombic dodecahedron (TRD) thereby representing only the visible edges of an opaque TRD.

    [0016] FIG. 6 is a perspective view of an actual TRD showing all edges thereof.

    [0017] FIG. 7 is a two dimensional aggregation of the FIG. 1 unicubes showing the connection of the outwardly extending struts 14 of adjacent unicubes in essentially a shell.

    Definitions



    [0018] Applicant hereby adopts the following terms. These terms are used in the specification and the claims in accordance with the following definitions.

    Unicube.



    [0019] A unicube consists of twenty equal struts connected to one another. Twelve of the struts define the edges of a cube and thus are a cubic frame. Eight of the struts extend outward from the eight corners of the cube in a direction so that each of these outwardly extending struts forms an equal angle with each of the three cubic frame struts to which it is connected. The twelve struts that define the cube are called cubic struts and the eight struts that extend outward from the corners of the cube are called outwardly extending struts. The outwardly extending struts of a single unicube each have an outer end. FIG. 2 illustrates a unicube.

    Cubic Frame.



    [0020] A cubic frame consists of a set of struts defining the twelve edges of a cube. A cubic frame constitutes one of two
    building blocks of an optimum structure of this invention. The other building block is the tetrax, defined below. A cubic frame is illustrated in FIG. 4.

    Tetrax.



    [0021] The tetrax is the four equal sized axes extending from the center point of a tetrahedron to the four corners of the tetrahedron. The mutual angle between any two of the struts or legs of the tetrax is 109.47°. A plurality of tetraxes and a plurality of cubic frames can be combined to create an optimum structural frame of the invention. This tetrax is also called a tetrax frame herein. FIG. 3 illustrates a tetrax.

    Tetrax Structure.



    [0022] A tetrax structure is a four strut structure or building block that approximates a tetrax. The four struts are all connected to a common point. But the struts may not be equal in length and may deviate somewhat from the 109.47° angle between any two of the struts. A tetrax structure may be used as a building block in an embodiment of the invention which is less than optimum. The limits of how much a tetrax structure can deviate from a tetrax frame and still be usable in some embodiment of this invention is discussed in greater detail under the detailed description.

    Truncated Rhombic Dodecahedron (TRD).



    [0023] This is the term applied to a rhombic dodecahedron in which the six vertices that have four edges extending therefrom are truncated. Truncating each of the six four-edge vertices of each rhombic dodecahedron at approximately the midpoint of the edge and removing the truncated portions provides the TRD as defined herein.

    Description Of The Preferred Embodiments



    [0024] FIGs. 1 and 2 illustrate one form of the building block of the load bearing structural frame of this invention. It is referred to herein as a unicube 10. As shown in FIG. 1, there are twelve struts 12 which form the edges of a cube. There are eight struts 14 which extend outward from the eight corners of the cube. Each outwardly extending strut 14 forms an equal angle with each of the three cube edge struts 12 that form the corner from which the strut 14 extends. The struts 14 and 12 are all equal in length.

    [0025] In order to facilitate viewing this unicube 10 building block, FIG. 1 shows the cube as opaque. Since the structure itself is a series of struts, FIG. 2 is the more accurate representation. In building the framework of this invention from the FIG. 1 unicube, the outboard ends 14E of each of the struts 14 is attached to an outboard end 14E of three other unicubes. FIG. 7 is designed to illustrate and suggest this arrangement. In FIG. 7 only three, not four, ends 14E are illustrated as being connected in order to provide a clearer presentation.

    [0026] A plurality of the FIG. 2 unicubes 10 connected by their strut ends 14E to each other will create an optimum frame embodiment of this invention. It should be noted that each end 14E is connected to three other ends 14E of three other unicubes. Thus any set of four connected unicubes will share only one common point.

    [0027] FIGs. 3 and 4 illustrate elements of the building blocks of this invention.

    [0028] One of the building blocks is a cubic frame 16 shown in FIG. 1 and the other is a tetrax frame 18 shown in FIG. 3. Each cubic frame consists of twelve struts 12 defining the edges of a cube. Each cubic frame 16 has eight corners. Each tetrax frame 18 is constituted by four struts 14 which comprise the corner axes of a tetrahedron. The four struts are equal in length, extend out from a center point 14E to which all four struts are connected and in which any two of the struts have a mutual angle of 109.47°. That is, there are six angles involved in these four struts, taking two at a time. Each angle has a value of 109.47°. If the four end points 14C of these four struts are considered to be the four vertices of a regular tetrahedron, then these four struts are the four lines which extend from the center of the tetrahedron to the four vertices of the tetrahedron.

    [0029] The end point 14c of each tetrax is connected to a corner of a cubic frame and the corner of each cubic frame is connected to an end point 14c of a tetrax. Since there are four end points 14C to each tetrax and eight corners to a cubic frame, there are twice as many tetrax frames as there are cubic frames in the structure of this invention.

    [0030] In the preferred embodiment, the tetrax frame is a true tetrax in which each strut is equal in length and has internal angles of 109.47°. The internal angle is the angle between any two of the four struts.

    Relation Between Unicube, Cubic Frame and Tetrax.



    [0031] Each strut 14 of a 'tetrax is an outwardly extending strut of a unicube in the assembled structure. FIG. 7 may aid in seeing this relationship. Thus the same reference number "14" is used for the struts. Similarly, the cubic struts 12 of the unicube are the cubic frame 16 in the assembled structure. Thus the end point 14E of the strut 14 in the unicube is the center point of the tetrax struts. And the end point 14C of the tetrax struts is the corner point of the cubic frame 16.

    [0032] Similarly the center point of the cubic frames 16 is the center point of the cubes of the unicube.

    [0033] The center point of all of the cubic frames 16 is a set of points having a relationship to each other such that each member of this set of center points will be equal distant from the twelve neighboring members of the set of points. This relationship is important because that set of points must always be spaced from the set of struts 12, 14 so as to avoid transmission of forces along a strut through those points. By avoiding the transmission of forces through the set of center points, the forces are steered in such a fashion as to minimize the development of tension.

    [0034] The closer the arrangement is to the preferred embodiment, the less tension will be developed. However, some deviation in uniform length of struts 12, 14 and in the center angle of the tetrax 18 as well as in the right angle of the cube 16 can be tolerated while still obtaining much of the improvement of this invention which improvement is to minimize the development of tension in the struts of the structure. Accordingly, the term tetrax structure is used herein to refer to a four strut structure based on the tetrax 18 but having less than ideal equal length struts and/or less than ideal internal angles. Thus a tetrax structure is a tetrax modelled structure that provides a significant improvement in the stress steering.

    [0035] FIG. 7 illustrates a panel approximately two unicubes deep constructed in accordance with the teachings of this invention. This network of struts 12, 14 can be used to produce a number of a wide range of building structures such as a wall truss, a floor truss, a dome and an arch as well as many other structural components. The structures can be made extremely light compared to comparable structures made by other techniques because they resolve loads in terms of compression rather than in terms of tension. Thus the structures take full advantage of the high compressive strength to weight ratios as opposed to much lower tensile strength to weight ratios.

    [0036] It might be noted that the struts can be made of any suitable material such as steel, aluminum, fiber, reinforced plastic or ordinary plastic struts. The strut material as well as its length and cross-sectional size will be a function of the particular design requirements of the structure involved. The struts can be joined to one another using any known technique such as bolting, welding, or being cast as integral cubic and tetrax building blocks.

    [0037] The surface of the structural frame created in accordance with this invention would normally be closed and preferably smooth in some sense. Thus at the boundary, the struts 12 or 14 will connect to some structure that is not part of the structural frame of this invention.

    Hypothesis as to Stress Steering.



    [0038] The framework of this invention steers stresses due to loads in such a fashion as to minimize the development of tension and resolve these stresses as stresses in compression.

    [0039] Applicant believes that an understanding of why this occurs may best be obtained from a consideration of the TRD arrangement shown in FIGs. 5 and 6. The TRD is a closed structure having six square frames and twelve hexagon frames. Pairs of these square frames and pairs of the hexagon frames are parallel to one another. All edges are exactly equal in length. The set of struts 12, 14 that form an optimum embodiment of this invention (that is, true cubic frames and tetraxes with all equal struts) will also define TRDs. The TRDs are not strictly building blocks because each strut 12 and 14 will be common to three TRDs.

    [0040] It is believed significant that the volume of this truncated rhombic dodecahedron (TRD) is very nearly equal to the volume of a regular sphere which would be inscribed within the TRD. An aggregation of independent spheres would transmit forces only in compression. Of course, they would fly apart unless they were constrained at their ends. Viewing the frame of this invention as composed of interconnected TRDs is believed to suggest why the frame steers stresses in a fashion similar to that which would occur if they were independent spheres. But because of the interconnection of the TRDs, they do not fly apart.

    [0041] It is believed that additional reinforcing struts that do not conform to the pattern of the struts described above will normally provide no useful benefit and will usually result in some degradation from optimum performance. For example, a diagonal strut along the surface of the cubic frame 16 might appear to provide additional rigidity and strength. Applicant believes that the main result of such an additional strut would be to deflect the optimum force steering created by the struts 12, 14 of this invention and thereby increase the development of tension in certain strut members. At the best such additional struts would provide no improvement in reducing tension yet create additional cost and weight.

    [0042] Furthermore, additional struts that go through the center of the cubic frames 16 or through points defined by the center of the cubic frames would undercut the objectives of this structure by causing forces to be resolved in a fashion that would tend to increase the tension developed rather than minimize the tension.

    [0043] The tetrax and cubic frame strut building blocks are so connected that each end point of a tetrax leg or strut is connected to a corner of a cubic frame strut and each corner of a cubic frame strut is connected to an end point of a tetrax strut.


    Claims

    1. Load bearing structural frame comprising:

    twelve compression bearing struts (12) defining the edges of a cubic frame (16) having eight corners, and

    eight outwardly extending compression bearing struts (14), each extending outwardly from a separate one of said eight corners (14C), each of said outwardly extending struts (14) having an outer end (14E).


     
    2. Load bearing structural frame according to claim 1, wherein each of said twelve struts (12) is equal in length.
     
    3. Load bearing structural frame according to claim 1, wherein the angles between each of said outwardly extending struts (14) and the three cubic struts (12) to which it is connected are all equal.
     
    4. Load bearing structural frame assembly comprising:

    a plurality of frames (16) according to claim 1, wherein each outer end (14E) of each of said outwardly extending struts (14) is connected to three other outer ends (14E) of said outwardly extending struts, thus forming a four strut structure (18).


     
    5. Load bearing structural frame assembly according to claim 4, comprising:

    at least six spaced apart four strut structures (18), said structures (18) having four compression bearing struts (14) extending from a common origin, each of said struts in each of said four strut structures (18) having an end point,

    said end points of said struts of eight adjacent ones of said four strut structures (18) constituting a first set of eight points, there being a plurality of said first set of eight points,

    each of said first set of eight end points interconnected by a predetermined compression bearing structure.


     
    6. Load bearing structural frame assembly according to claim 4, wherein:

    said predetermined connecting structure is a set of interconnecting struts, each of said interconnecting struts connecting end points (14E) of struts (14) from separate ones of said four strut structures (18).


     
    7. Load bearing structural frame assembly according to claim 4, wherein:

    each strut (14) of said four strut structure (18) is substantially 109.47° from each of the other three connecting struts of the four strut structure.


     
    8. Load bearing structural frame assembly according to claim 4, wherein:

    each of said four strut structure (18) struts (14) is substantially equal in length to one another.


     
    9. Load bearing structural frame assembly according to claim 6, wherein:

    said predetermined compression bearing connecting structure is the cubic frame (16).


     
    10. Load bearing structural frame assembly according to any one of claims 4 to 9, comprising:

    a plurality of interconnected four strut structures (18) and cubic frames (16), each four strut structure (18) having four compression bearing struts (14) extending from a common origin and each cubic frame (16) having twelve compression bearing edge struts (12), all struts of said cubic frames and four strut structures being substantially equal to one another,

    said cubic frames (16) and four strut structures (18) being interconnected such that the outboard end of each strut (14) of a four strut structure (18) is connected to a corner (14C) of a cubic frame (16) and the corner (14C) of each cubic frame (16) is connected to the outboard end of a strut (14) of a four strut structure (18),

    whereby each strut of a four strut structure (18) extends from the center point of each four strut structure (18) and, except at the outer extremes of the structure, each strut of a four strut structure (18) extends from the corner of each cubic frame (16),

    whereby the set of points determined by the center point of each cubic frame is such that each member of said set of points is spaced an equal distance from twelve and only twelve adjacent members of said set of points.


     
    11. Method of constructing a load bearing structural frame assembly according to any one of claims 4 to 10, characterized by the steps of:

    selecting a set of compression bearing struts (12, 14) having an appropriate strength and being substantially equal in size to one another,

    creating a set of building blocks from said set of struts, each said block having twelve struts (12) defining the edges of a cube and eight diagonal struts (14) extending outwardly from each of the eight corners of the struts (12) defining the edges of the cube, each of said eight outwardly extending struts (14) having an outboard end,

    assembling said set of building blocks by connecting said outboard ends of one outwardly extending strut (14) of four separate building blocks such that the outwardly extending strut of each corner of each building block forms one strut of a four strut structure (18) with three outwardly extending struts of three other adjacent building blocks.


     
    12. Method of manufacturing a load bearing structural frame assembly according to claim 11, characterized by:

    connecting a first selected set of compression bearing struts (12, 14) into a set of cubic frames (16),

    connecting a second selected set of said compression bearing struts (12, 14) into a set of four strut structure frames, there being approximately twice as many four strut structures (18) as cubic frames (16),

    connecting an end point of each strut of each four strut structure (18) to a corner of a cubic frame (16) and connecting each corner of a cubic frame (16) to an end point of a four strut structure (18).


     
    13. Method of manufacturing a load bearing structural frame assembly according to claims 11 and 12, characterized by:

    assembling a first set of said struts (12, 14) into a set of four strut structures (18),

    assembling a second set of said struts (12, 14) into a second set of predetermined structures, having eight predetermined corner points, and

    connecting an end of a strut of eight separate ones of said four strut structures (18) to said eight corner points of each of said second set of structures, said step of connecting including connecting each four strut structure (18) strut end to a corner point of one of said second set of structures.


     


    Ansprüche

    1. Lastaufnehmendes Baugerüst aus:

    zwölf druckaufnehmenden Druckstäben (12), die die Ecken eines kubischen Gerüstes (16) mit acht Ecken bestimmen, und

    acht nach außen verlaufenden druckaufnehmenden Druckstäben (14), von denen jeder von einer anderen der acht Ecken (14C) nach außen verläuft und ein Außenende (14E) aufweist.


     
    2. Lastaufnehmendes Baugerüst nach Anspruch 1, wobei sämtliche zwölf Druckstäbe (12) gleich lang sind.
     
    3. Lastaufnehmendes Baugerüst nach Anspruch 1, wobei die Winkel zwischen jedem der nach außen verlaufenden Druckstäbe (14) und den drei kubischen Druckstäben (12), an die sie angeschlossen sind, sämtlich gleich sind.
     
    4. Anordnung eines lastaufnehmenden Baugerüstes aus:

    einer Vielzahl von Gerüsten (16) nach Anspruch 1, wobei jedes Außenende (14E) von jedem der nach außen verlaufenden Druckstäbe (14) an drei andere Außenenden (14E) der nach außen verlaufenden Druckstäbe angeschlossen ist und damit ein aus vier Druckstäben bestehendes Gefüge (18) bildet.


     
    5. Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 4 aus:

    mindestens sechs auseinanderliegenden, aus vier Druckstäben bestehenden Gefügen (18), die vier von einem gemeinsamen Ursprung ausgehende druckaufnehmende Druckstäbe (14) aufweisen, von denen jeder in jedem dieser aus vier Druckstäben bestehenden Gefügen (18) einen Endpunkt aufweist,

    wobei die Endpunkte der Druckstäbe von acht benachbarten der vier Druckstäbe aufweisenden Gefügen (18) einen ersten Satz aus acht Punkten bilden und viele dieser ersten Sätze aus acht Punkten vorhanden sind und

    jeder erste Satz der acht Endpunkte durch ein vorbestimmtes druckaufnehmendes Gefüge verbunden ist.


     
    6. Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 4, wobei
       das vorbestimmte verbindende Gefüge ein Satz aus verbindenden Druckstäben ist, von denen jeder Endpunkte (14E) der Druckstäbe (14) von verschiedenen der vier Druckstäbe aufweisenden Gefügen (18) verbindet.
     
    7. Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 4, wobei
       jeder Druckstab (14) dieses aus vier Druckstäben bestehenden Gefüges (18) im wesentlichen unter 109,47° zu jedem der anderen drei verbindenden Druckstäbe des aus vier Druckstäben bestehenden Gefüges verläuft.
     
    8. Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 4, wobei
       jeder Druckstab (14) des aus vier Druckstäben bestehenden Gefüges (18) im wesentlichen gleich lang ist.
     
    9. Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 6, wobei
       das vorbestimmte druckaufnehmende verbindende Gefüge das kubische Gerüst (16) ist.
     
    10. Anordnung eines lastaufnehmenden Baugerüstes nach irgendeinem der Ansprüche 4 bis 9 aus:

    einer Vielzahl von verbundenen, vier Druckstäbe aufweisenden Gefügen (18) und kubischen Gerüsten (16), wobei jedes vier Druckstäbe aufweisende Gefüge (18) vier von einem gemeinsamen Ursprung ausgehende druckaufnehmende Druckstäbe (14) und jedes kubische Gerüst (16) zwölf Eckendruckstäbe (12) aufweist und sämtliche Druckstäbe dieser kubischen Gerüste und der vier Druckstäbe aufweisenden Gefüge einander im wesentlichen gleich sind,

       wobei die kubischen Gerüste (16) und die vier Druckstäbe aufweisenden Gefüge (18) so miteinander verbunden sind, daß das Außenende jedes Druckstabes (14) eines vier Druckstäbe aufweisenden Gefüges (18) an eine Ecke (14C) eines kubischen Gerüstes (16) und die Ecke (14C) jedes kubischen Gerüstes (16) an das Außenende eines Druckstabes (14) eines vier Druckstäbe aufweisenden Gefüges (18) angeschlossen ist,
       wobei jeder Druckstab eines vier Druckstäbe aufweisenden Gefüges (18) vom Mittelpunkt jedes vier Druckstäbe aufweisenden Gefüges (18) ausgeht und, mit Ausnahme an den Außenenden des Gefüges, jeder Druckstab eines vier Druckstäbe aufweisenden Gefüges (18) von der Ecke jedes kubischen Gerüstes (16) ausgeht,
       wobei der Satz der durch den Mittelpunkt jedes kubischen Gerüstes bestimmten Punkte derart ist, daß jedes Glied aus dem Satz der Punkte einen gleichen Abstand von zwölf und nur zwölf benachbarten Gliedern des Satzes der Punkte aufweist.
     
    11. Verfahren zum Herstellen einer Anordnung eines lastaufnehmenden Baugerüstes nach irgendeinem der Ansprüche 4 bis 10, gekennzeichnet durch die Stufen:

    Auswählen eines Satzes aus druckaufnehmenden Druckstäben (12, 14) mit einer angemessenen Festigkeit und im wesentlichen gleicher Größe,

    Kreieren eines Satzes aus Bausteinen aus dem Satz der Druckstäbe, wobei jeder Stein zwölf die Ecken eines Kubus bestimmende Druckstäbe (12) und acht diagonale Druckstäbe (14) aufweist, die von jeder der acht Ecken der die Ecken des Kubus bestimmenden Druckstäbe (12) nach außen verlaufen, und jeder der acht nach außen verlaufenden Druckstäbe (14) ein Außenende aufweist,

    Zusammensetzen des Satzes der Bausteine durch Verbinden der Außenenden eines nach außen verlaufenden Druckstabes (14) der vier getrennten Bausteine derart, daß der nach außen verlaufende Druckstab jeder Ecke jedes Bausteins einen Druckstab eines vier Druckstäbe aufweisenden Gefüges (18) mit drei nach außen verlaufenden Druckstäben von drei anderen benachbarten Bausteinen bildet.


     
    12. Verfahren zum Herstellen einer Anordnung eines lastaufnehmenden Baugerüstes nach Anspruch 11, gekennzeichnet durch
       Verbinden eines ersten ausgewählten Satzes aus druckaufnehmenden Druckstäben (12, 14) zu einem Satz kubischer Gerüste (16),
       Verbinden eines zweiten ausgewählten Satzes aus druckaufnehmenden Druckstäben (12, 14) zu einem Satz aus vier Druckstäbe aufweisenden Gefügegerüsten, wobei annähernd zweimal so viele vier Druckstäbe aufweisende Gefüge (18) wie kubische Gerüste (16) vorhanden sind,
       Anschließen eines Endpunktes jedes Druckstabes jedes vier Druckstäbe aufweisenden Gefüges (18) an eine Ecke eines kubischen Gerüstes (16) und Anschließen jeder Ecke eines kubischen Gerüstes (16) an einen Endpunkt eines vier Druckstäbe aufweisenden Gefüges (18).
     
    13. Verfahren zum Herstellen einer Anordnung eines lastaufnehmenden Baugerüstes nach den Ansprüchen 11 und 12, gekennzeichnet durch
       Zusammensetzen eines ersten Satzes der Druckstäbe (12, 14) zu einem Satz aus vier Druckstäbe aufweisenden Gefügen (18),
       Zusammensetzen eines zweiten Satzes der Druckstäbe (12, 14) zu einem zweiten Satz aus vorbestimmten Gefügen mit acht vorbestimmten Eckpunkten und
       Anschließen eines Endes eines Druckstabes von acht verschiedenen der vier Druckstäbe aufweisenden Gefüge (18) an die acht Eckpunkte jedes des aus Gefügen bestehenden zweiten Satzes, wobei die Stufe des Anschließens das Anschließen des Druckstabendes jedes der vier Druckstäbe aufweisenden Gefüge (18) an einen Eckpunkt eines des zweiten Satzes von Gefügen einschließt.
     


    Revendications

    1. Charpente de construction qui soutient la charge, comprenant :

    douze barres (12) qui soutiennent la compression et qui définissent les coins d'une charpente cubique (16) ayant huit coins, et

    huit barres (14) soutenant la compression et s'étendant vers l'extérieur, dont chacune s'étend vers l'extérieur à partir d'un autre desdits huit coins (14C) et présente une extrémité extérieure (14E).


     
    2. Charpente de construction qui soutient la charge selon la revendication 1, dans laquelle chacune des douze barres (12) présente la même longueur.
     
    3. Charpente de construction qui soutient la charge selon la revendication 1, dans laquelle les angles entre chacune desdites barres (14) s'étendant vers l'extérieur et les trois barres cubiques (12) auxquelles elle est connectée sont tous égaux.
     
    4. Disposition d'une charpente de construction qui soutient la charge, comprenant :

    une multiplicité de charpentes (16) selon la revendication 1, chaque extrémité extérieure (14E) de chacune des barres (14) s'étendant vers l'extérieur étant connectée à trois autres extrémités extérieures (14E) des barres s'étendant vers l'extérieur, formant ainsi une structure (18) se composant de quatre barres.


     
    5. Disposition d'une charpente de construction qui soutient la charge, selon la revendication 4, comprenant :

    au moins six structures (18) espacées l'une de l'autre se composant de quatre barres, lesdites structures (18) présentant quatre barres soutenant la compression (14) qui partent d'une même origine, chacune desdites barres dans chacune des structures à quatre barres (18) présentant un point terminal,

    lesdits points terminaux des barres de huit structures adjacentes des structures (18) à quatre barres constituant un premier jeu de huit points, et il y a une pluralité de ces premiers jeux de huit points, et

    chaque premier jeu des huit points terminaux étant interconnecté par une structure prédéterminée soutenant la compression.


     
    6. Disposition d'une charpente de construction qui soutient la charge, selon la revendication 4, dans laquelle ladite structure prédéterminée qui relie est un jeu de barres qui interconnectent dont chacune relie des points terminaux (14E) de barres (14) de structures séparées parmi les structures (18) à quatre barres.
     
    7. Disposition d'une charpente de construction qui soutient la charge, selon la revendication 4, dans laquelle chaque barre (14) de cette structure (18) se composant de quatre barres s'étend pour l'essentiel à 109,47° par rapport à chacune des trois autres barres qui relient de ladite structure à quatre barres.
     
    8. Disposition d'une charpente de construction qui soutient la charge, selon la revendication 4, dans laquelle chaque barre (14) de la structure (18) à quatre barres présente pour l'essentiel la même longueur.
     
    9. Disposition d'une charpente de construction qui soutient la charge, selon la revendication 6, dans laquelle la structure prédéterminée qui soutient la compression et qui relie est la charpente cubique (16).
     
    10. Disposition d'une charpente de construction qui soutient la charge, selon l'une quelconque des revendications 4 à 9, comprenant :

    une multiplicité de structures (18) interconnectées présentant quatre barres et de charpentes cubiques (16), chaque structure à quatre barres (18) présentant quatre barres (14) qui soutiennent la compression et qui partent d'une même origine et chaque charpente cubique (16) présentant douze barres de coin (12), et toutes les barres desdites charpentes cubiques et des structures à quatre barres étant pour l'essentiel égales l'une à l'autre,

    les charpentes cubiques (16) et les structures à quatre barres (18) étant interconnectées de telle manière que l'extrémité extérieure de chaque barre (14) d'une structure (18) qui présente quatre barres est connectée à un coin (14C) d'une charpente cubique (16) et que le coin (14C) de chaque charpente cubique (16) est connecté à l'extrémité extérieure d'une barre (14) d'une structure à quatre barres (18),

    chaque barre d'une structure à quatre barres (18) partant du centre de chaque structure à quatre barres (18), et, excepté sur les extrémités extérieures de la structure, chaque barre d'une structure à quatre barres (18) partant du coin de chaque charpente cubique (16),

    le jeu des points déterminés par le centre de chaque charpente cubique est tel que chaque membre dudit jeu des points présente une distance égale de douze et seulement douze membres adjacents dudit jeu des points.


     
    11. Procédé de fabrication d'une disposition d'une charpente de construction qui soutient la charge, selon l'une quelconque des revendications 4 à 10, caractérisé par les étapes suivantes :

    choisir un jeu de barres (12, 14) soutenant la compression et présentant une stabilité appropriée ainsi qu'une grandeur pour l'essentiel égale,

    créer dudit jeu des barres un jeu de blocs de construction, chaque bloc ayant douze barres (12) définissant les coins d'un cube et huit barres diagonales (14) qui s'étendent vers l'extérieur à partir de chacun des huit coins des barres (12) définissant les coins du cube, et chacune des huit barres (14) qui s'étendent vers l'extérieur présentant une extrémité extérieure,

    assembler ledit jeu de blocs de construction en reliant les extrémités extérieures d'une barre s'étendant vers l'extérieur (14) de quatre blocs séparés de construction, de telle manière que la barre s'étendant vers l'extérieur, de chaque coin de chaque bloc de construction forme une barre d'une structure à quatre barres (18) avec trois barres s'étendant vers l'extérieur, de trois autres blocs adjacents de construction.


     
    12. Procédé de fabrication d'une disposition d'une charpente de construction qui soutient la charge, selon la revendication 11, caractérisé par
       connecter un premier jeu choisi de barres (12, 14) qui soutiennent la compression, pour obtenir un jeu de charpentes cubiques (16),
       connecter un deuxième jeu choisi de barres (12, 14) qui soutiennent la compression, pour obtenir un jeu de charpentes de structures à quatre barres, le nombre des structures à quatre barres (18) étant approximativement deux fois plus grand que le nombre des charpentes cubiques (16),
       connecter un point terminal de chaque barre de chaque structure à quatre barres (18) à un coin d'une charpente cubique (16) et connecter chaque coin d'une charpente cubique (16) à un point terminal d'une structure (18) ayant quatre barres.
     
    13. Procédé de fabrication d'une disposition d'une charpente de construction qui soutient la charge, selon les revendications 11 et 12, caractérisé par
       assembler un premier jeu desdites barres (12, 14) pour obtenir un jeu de structures à quatre barres (18),
       assembler un deuxième jeu desdites barres (12, 14) pour obtenir un deuxième jeu de structures prédéterminées, ayant huit points prédéterminés de coin, et
       connecter une extrémité d'une barre de huit structures séparées parmi les structures à quatre barres (18) aux huit points de coin de chacun dudit deuxième jeu de structures, ladite étape de connecter incluant le fait de connecter l'extrémité de barre de chaque structure à quatre barres (18) à un point de coin de l'un dudit deuxième jeu de structures.
     




    Drawing