(19)
(11) EP 0 931 980 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
09.04.2003  Patentblatt  2003/15

(21) Anmeldenummer: 98810037.6

(22) Anmeldetag:  23.01.1998
(51) Internationale Patentklassifikation (IPC)7F23D 23/00, F23D 17/00, F23C 7/00, F23D 14/78

(54)

Brenner für den Betrieb eines Wärmeerzeugers

Burner for operating a heat generator

Brûleur pour la mise en oeuvre d'un générateur de chaleur


(84) Benannte Vertragsstaaten:
AT CH DE FR GB LI

(43) Veröffentlichungstag der Anmeldung:
28.07.1999  Patentblatt  1999/30

(73) Patentinhaber: ALSTOM (Switzerland) Ltd
5401 Baden (CH)

(72) Erfinder:
  • Jansohn, Peter, Dr.
    79790 Küssaberg (DE)
  • Köster, Dieter
    5301 Siggenthal-Station (CH)
  • Ruck, Thomas
    5507 Mellingen (CH)


(56) Entgegenhaltungen: : 
EP-A- 0 543 323
EP-A- 0 710 797
EP-A- 0 797 051
EP-A- 0 670 456
EP-A- 0 728 989
   
       
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung

    Technisches Gebiet



    [0001] Die Erfindung betrifft einen Brenner für den Betrieb eines Wärmeerzeugers gemäss Oberbegriff des Anspruchs 1.

    Stand der Technik



    [0002] Aus EP-0 797 051 A2 ist ein Brenner bekanntgeworden, der anströmungsseitig aus einem Drallerzeuger besteht, wobei die hierin gebildete Strömung nahtlos in eine Mischstrecke übergeführt wird. Dies geschieht anhand einer am Anfang der Mischstrecke zu diesem Zweck gebildeten Strömungssgeometrie, welche aus Uebergangskanälen besteht, die sektoriell, entsprechend der Zahl der wirkenden Teilkörper des Drallerzeugers, die Stirnfläche der Mischstrecke erfassen und in Strömungsrichtung drallförmig verlaufen. Abströmungsseitig dieser Uebergangskanäle weist die Mischstrecke eine Anzahl Filmlegungsbohrungen auf, welche eine Erhöhung der Strömungsgeschwindigkeit entlang der Rohrwand gewährleisten. Anschliessend folgt eine Brennkammer, wobei der Uebergang zwischen der Mischstrecke und der Brennkammer durch einen Querschnittssprung gebildet wird, in dessen Ebene sich eine Rückströmzone oder Rückströmblase bildet.

    [0003] Die Drallstärke im Drallerzeuger wird denmach so gewählt, dass das Aufplatzen des Wirbels nicht innerhalb der Mischstrecke, sondern weiter stromab erfolgt, wie oben ausgeführt, im Bereich des Querschnittssprunges. Die Länge der Mischstrecke ist so dimensioniert, dass eine ausreichende Mischungsgüte für alle Brennstoffarten gewährleistet ist.

    [0004] Obschon dieser Brenner gegenüber denjenigen aus dem vorangegangenen Stand der Technik eine signifikante Verbesserung hinsichtlich Stärkung der Flammenstabilität, tieferer Schadstoff-Emissionen, geringerer Pulsationen, vollständigen Ausbrandes, grossen Betriebsbereichs, guter Querzündung zwischen den verschiedenen Brennern, kompakter Bauweise, verbesserter Mischung, etc., gewährleistet, zeigt es sich, dass dieser Brenner keine autonome Vorkehrungen aufweist, um die Gasturbine insbesondere in ihren transienten Lastbereichen sicher fahren zu können. Beispielsweise im Teillastbereich muss der Brenner mit einer Stützflamme unterstützt werden. Dabei muss die Integrierung von solchen Vorkehrungen in den Brenner zu keinen zusätzlichen Schadstoff-Emissionen führen, welche die betrieblichen und emissionsmässigen Vorteile des zugrundegelegten Brenners in Frage stellen könnten.
    Hinzu kommt, dass herkömmlicherweise diese Brenner in Gasturbinen mittels eines speziellen Zünders gezündet werden. Diese Zünder funktioneren meist mit Hochspannung, die den Zündfunken liefert, der entweder bei grosser Leistung direkt als Zündquelle dient oder eine Zündfackel entzündet. Diese Zünder bedingen eine separate Durchführung und Abdichtung des Zünders und seiner Leitungen durch die Gehäuse der Gasturbine bis in die Brennkammer. Die bestehenden Zündersysteme haben aber folgende Nachteile:

    a) Kostenaufwendige separate Durchführung und Abdichtung des Zünders und seiner Leitungen durch die Gehäuse der Gasturbine bis in die Brennkammer,

    b) Querzündung innerhalb der Brennkammer aufgrund der geringen Zünderzahl (meist aus Kostengründen nur 1 Zünder);

    c) Thermische Belastung des Zünders durch die Positionierung in der Brennkammer, die z.B. Kühlung des Zünders erfordert, weshalb es durch mögliche Undichheiten zu Leckagen kommt;

    d) Hohe Anfälligkeit gegen Kondenswasser, wobei Kurzschlüsse den Zündfunken ableiten.


    Darstellung der Erfindung



    [0005] Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, welche eine Stärkung der Flammenstabilität für einen stabilen Betrieb, insbesondere in den transienten Lastbereichen, gewährleisten, immer unter der weiteren Aufgabenstellung, dass die Schadstoff-Emissionen tief bleiben, gleichzeitig sollen bei diesen Vorkehrungen Massnahmen ergriffen werden, welche betreffend Zündsysteme die obengenannten nachteile zu beheben vermögen.

    [0006] Zu diesem Zweck wird der Brenner derart erweitert, dass im Bereich seines Ueberganges zum nachgeschalteten Brennraum ein ringförmiges System zur Bereitstellung eines Brennstoff/Luft-Gemisches vorgesehen wird, das allgemein als Pilotstufe fungiert. Durch eine Anzahl in Umfangsrichtung vorgehener Austrittsbohrungen in den Brennraum werden entsprechende Pilotbrenner geschaffen, welche aus Stabilitätsgründen im Diffusionsbetrieb betrieben werden und direkt in den Brennraum wirken.

    [0007] Die wesentlichen Vorteile des erfindungsgemässen Gegenstandes sind darin zu sehen, dass diese einzelnen Pilotbrenner mit einem geringen Gasanteil betrieben werden, so dass sich das dort eingebrachte Gas mit einem verhältnismässig kleinen Luftanteil vermischt und als vorgemischte Flamme mit minimierten Schadstoff-Emissionen brennt.

    [0008] Diese Luftmenge übernimmt zunächst anhand einer Prallkühlung die Kühlung der brennkammerabgewandten Seite, bevor sie sich dann mit dem Gas vermischt und anschliessend als vorgemischte Flamme mit minimierten Schadstoff-Emissionen die Pilotierung des Brennraumes aufrechterhält.

    [0009] Durch diese Prallkühlung ist die Oberfläche des Pilotgasringes vom heissen Gas und von der Flammenstrahlung aus dem Brennraum weitgehend isoliert, so dass die thermische Belastung in diesem Bereich wesentlich verringert wird.

    [0010] Auch bei 100% Pilotbetrieb brennen die einzelnen Pilotbrenner, aus Stabilitätsgründen im Diffusionsbetrieb, da hier der Anteil der Kühllluft gegenüber dem Gas sehr klein ist.

    [0011] Mit dem erfindungsgemässen Gegenstand wird auch erreicht, dass die minimierte Kühlmenge ebenfalls dem Brennprozess zugeführt werden kann.

    [0012] Die geleitete Heranführung der genannten Kühlluft wird gleichzeitig dazu verwendet, um eine dort integrierte Zündvorrichtung für den jeweiligen Pilotbrenner vorzusehen, womit diese integrierte Zündvorrichtung für den Pilotbrenner Bestandteil des Brennersystems wird, das auswechselbar in der Gasturbine montiert ist. Durch die Integration der Zündvorrichtung in den Brenner können mehrere oder alle Pilotbrenner mit einem Zünder ausgestattet werden, wodurch optimale Querzündungseigenschaften erzielt werden. Vorzugsweise geschieht die Zündung des Pilotbrenners mittels eines Glühzünstiftes oder mittels einer Zündkerze.

    [0013] Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.

    [0014] Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.

    Kurze Bezeichnung der Zeichnungen



    [0015] Es zeigt:
    Fig. 1
    einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers sowie mit Pilotbrennern,
    Fig. 2
    eine schematische Darstellung des Brenners gemäss Fig. 1 mit Disposition der zusätzlichen Brennstoff-Injektoren,
    Fig. 3
    einen aus mehreren Schalen bestehenden Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
    Fig. 4
    einen Querschnitt durch einen zweischaligen Drallerzeuger,
    Fig. 5
    einen Querschnitt durch einen vierschaligen Drallerzeuger,
    Fig. 6
    eine Ansicht durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
    Fig. 7
    eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
    Fig. 8
    eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.

    Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit



    [0016] Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 3-6 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Mischrohr 20 verlängert, wobei beide Teile die eigentliche Mischstrecke 220 bilden. Selbstverständlich kann die Mischstrecke 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und das Mischrohr 20 zu einem einzigen zusammenhängenden Gebilde verschmelzen, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Mischrohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Mischrohres 20 befindet sich der eigentliche Brennraum 30 einer Brennkammer, welche hier lediglich durch ein Flammrohr versinnbildlicht ist. Die Mischstrecke 220 erfüllt weitgehend die Aufgabe, dass stromab des Drallerzeugers 100 eine definierte Strecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt werden kann. Diese Mischstrecke, also vordergründig das Mischrohr 20, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone oder Rückströmblase bilden kann, womit über die Länge der Mischstrecke 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Diese Mischstrecke 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass in ihr selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 20 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilter Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 20 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Durchfluss-Geschwindigkeit induzieren. Diese Bohrungen 21 können auch so ausgelegt werden, dass sich an der Innenwand des Mischrohres 20 mindestens zusätzlich noch eine Effusionskühlung einstellt. Eine andere Möglichkeit eine Erhöhung der Geschwindigkeit des Gemisches innerhalb des Mischrohres 20 zu erzielen, besteht darin, dass dessen Durchflussquerschnitt abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 20 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 20. Die genannten Uebergangskanäle 201 überbrükken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 20 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende dieses Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 20 schliesst sich sodann eine Brennkammer 30 (Brennraum) an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Brennerfront 70 gebildeter Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Flammenfront mit einer Rückströmzone 50, welche gegenüber der Flammenfront die Eigenschaften eines körperlosen Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Brennerfront 70 am Ende des Mischrohres 20 zur Stabilisierung der Rückströmzone oder Rückströmblase 50 betrifft, wird auf die Beschreibung unter Fig. 8 verwiesen.
    Konzentrisch zum Mischrohr 20, im Bereich seines Auslaufes, wird ein Pilotbrennersystem 300 vorgesehen. Dieses besteht aus einer inneren Ringkammer 301, in welche ein Brennstoff, vorzugsweise ein gasförmiger Brennstoff 303 einströmt. Nebengeordnet zu dieser inneren Ringkammer 301 ist eine zweite Ringkammer 302 disponiert, in welche eine Luftmenge 304 einströmt. Beide Ringkammem 301, 302 weisen individuell gestaltete Durchgangsöffnungen auf, dergestalt, dass die einzelnen Medien 303, 304 funktionsbedingt in eine gemeinsame nachgeschaltete Ringkammer 308 strömen. Die Ueberleitung des gasförmigen Brennstoffes 303 von der Ringkammer 301 in die nachgeschaltete Ringkammer 308 wird durch eine Anzahl in Umfangsrichtung angeordneter Oeffnungen 309 bewerkstelligt. Die Durchgangsgeometrie dieser Oeffnungen 309 ist so gestaltet, dass der gasförmige Brennstoff 303 mit einem grossen Vermischungspotential in die nachgeschaltete Ringkammer 308 einströmt. Die andere Ringkammer 302 schliesst mit einer gelochten Platte 305 ab, wobei die hier vorgesehenen Bohrungen 310 so gestaltet sind, dass die dort durchströmende Luftmenge 304 eine Prallkühlung auf die Bodenplatte 307 der nachgeschalteten Ringkammer 308. Diese Bodenplatte hat die Funktion eines Hitzeschutzbleches gegenüber der kalorischen Belastung aus dem Brennraum 30, so dass diese Prallkühlung hier äusserst effizient ausfallen muss. Diese Luft vermischt sich nach vollzogener Kühlung innerhalb dieser Ringkammer 308 mit dem hinzuströmenden gasförmigen Brennstoff 303 aus den Oeffnungen 309 der stromauf angeordneten Ringkammer 301, bevor dieses Gemisch dann durch eine Anzahl brennraumseitig angeordneter Bohrungen 306 in den Brennraum 30 abströmt. Das hier ausströmende Gemisch brennt als vorgemischte Diffusionsflamme mit minimierten Schadstoff-Emissionenen und bildet sonach je Bohrung 306 einen in den Brennraum 30 wirkenden Pilotbrenner, welcher einen stabilen Betrieb gewährleistet.

    [0017] Durch die luftdurchströmte nebengeordnete Ringkammer 302 wird eine Zündvorrichtung 311 durchgeleitet, welche in der nachgeschalteten Ringkammer 308 die Zündung des sich dort bildenden Gemisches bewerkstelligt. Zum einen braucht es für diese Durchleitung der Zündvorrichtung 311 keine weiteren konstruktiven Massnahmen, und zum anderen wird diese Zündvorrichtung 311 ständig durch die dort ohnehin strömende Luft 304 gekühlt. Dies ist sehr wichtig, da beim Einsatz eines Glühzündstiftes an der Spitze Temperaturen von ca. 1000°C erreicht werden. Da aber für den hier vorgeschlagene Betrieb nur eine geringe Spannung, dafür hoher Strom erforderlich ist, entfällt mithin die Anfälligkeit der Zündvorrichtung gegen Kondenwasseraussscheidungen. Durch die Anordnung des Glühzündstiftes, wobei der Einsatz einer Zündkerze ebenfalls möglich ist, innerhalb des Brenners ist die jeweilige Zündvorrichtung 311 thermisch gering belastet, womit keiner zusätzlichen Kühlung bedarf und Leckagen werden dadurch auch vermieden.

    [0018] Fig. 2 zeigt eine schematische Ansicht des Brenners gemäss Fig. 1, wobei hier insbesondere auf die Umspülung einer zentral angeordneten Brennstoffdüse 103 und auf die Wirkung von Brennstoff-Injektoren 170 hingewiesen wird. Die Wirkungsweise der restlichen Hauptbestandteile des Brenners, nämlich Drallerzeuger 100 und Uebergangsstück 200 werden unter den nachfolgenden Figuren näher beschrieben. Die Brennstoffdüse 103 wird mit einem beabstandeten Ring 190 ummantelt, in welchem eine Anzahl in Umfangsrichtung disponierter Bohrungen 161 gelegt sind, durch welche eine Luftmenge 160 in eine ringförmige Kammer 180 strömt und dort die Umspülung der Brennstofflanze vornimmt. Diese Bohrungen 161 sind schräg nach vorne angelegt, dergestalt, dass eine angemessene axiale Komponente auf der Brennerachse 60 entsteht. In Wirkverbindung mit diesen Bohrungen 161 sind zusätzliche Brennstoff-Injektoren 170 vorgesehen, welche eine bestimmte Menge vorzugsweise eines gasförmigen Brennstoffes in die jeweilige Luftmenge 160 eingeben, dergestalt, dass sich im Mischrohr 20 eine gleichmässige Brennstoffkonzentration 150 über den Strömungsquerschnitt einstellt, wie die Darstellung in der Figur versinnbildlichen will. Genau diese gleichmässige Brennstoffkonzentration 150, insbesondere die starke Konzentration auf der Brennerachse 60 sorgt dafür, dass sich eine Stabilisierung der Flammenfront am Ausgangs des Brenners einstellt, womit aufkommende Brennkammerpulsationen vermieden werden.

    [0019] Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 3 mindestens Fig. 4 herangezogen wird. Im folgenden wird bei der Beschreibung von Fig. 3 nach Bedarf auf die übrigen Figuren hingewiesen.

    [0020] Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 3 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpem 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 5 und 6 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betriebsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b (Vgl. Fig. 4) der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Vgl. Fig. 4), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen ringförmigen Anfangsteil 101a auf. Im Bereich dieses zylindrischen Anfangsteils ist die bereits unter Fig. 2 erwähnte Brennstoffdüse 103 untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 112 betrieben wird. Die Eindüsung 104 dieses Brennstoffes 112 fällt in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammen. Die Eindüsungskapazität und die Art dieser Brennstoffdüse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, angeordnet, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Brennstoffdüse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium, beispielsweise mit einem rückgeführten Rauchgas, ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem vorzugsweise sehr spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Brennstoffdüse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen und abgebaut wird. In axialer Richtung wird sodann die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt, hier in das Uebergangsstück 200 (Vgl. Fig. 1 und 7). Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende unter Fig. 2 (Pos. 160) näher beschriebene Zuführung einer Luftmenge erhöhen bzw. stabilisieren. Eine entsprechende Drallerzeugung in Wirkverbindung mit dem nachgeschalteten Uebergangsstück 200 (Vgl. Fig. 1 und 7) verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.

    [0021] Aus Fig. 4 geht unter anderen die geometrische Konfiguration von wahlweise vorzusehenden Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion. wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll, beispielsweise um eine Aenderung der geschwindigkeit der Verbrennungsluft 115 zu erreichen. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden.

    [0022] Fig. 5 zeigt gegenüber Fig. 4, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.

    [0023] Fig. 6 unterscheidet sich gegenüber Fig. 5 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.

    [0024] Fig. 7 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 5 oder 6, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Mischrohres schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 3 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.

    [0025] Fig. 8 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Die Vorteile dieser Ausbildung dieser Abrisskante gehen aus EP-0 780 629 A2 unter Dem Kapitel "Darstellung der Erfindung" hervor. Eine weitere Ausgestaltung der Abrisskante zum selben Zweck lässt sich mit brennkammerseitigen torusähnlichen Einkerbungen erreichen. Diese Druckschrift ist einschliessend des dortigen Schutzumfanges was die Abrisskante betrifft ein integrierender Bestandteil vorliegender Beschreibung.

    Bezugszeichenliste



    [0026] 
    10
    Buchsenring
    20
    Mischrohr, Teil der Mischstrecke 220
    21
    Bohrungen, Oeffnungen
    30
    Brennkammer, Brennraum
    40
    Strömung, Rohrströmung im Mischrohr, Hauptströmung
    50
    Rückströmzone, Rückströmblase
    60
    Brennerachse
    100
    Drallerzeuger
    101, 102
    Kegelförmige Teilkörper
    101 a
    Ringförmiger Anfangsteil
    101b, 102b
    Längssymmetrieachsen
    103
    Brennstoffdüse
    104
    Brennstoffeindüsung
    105
    Brennstoffspray (Brennstoffeindüsungsprofil)
    108, 109
    Brennstoffleitungen
    112
    Flüssiger Brennstoff
    113
    Gasförmiger Brennstoff
    114
    Kegethohlraum
    115
    Verbrennungsluft (Verbrennungsluftstrom)
    116
    Brennstoff-Eindüsung aus den Leitungen 108, 109
    117
    Brennstoffdüsen
    119, 120
    Tangentiale Lufteintrittsschlitze
    121a, 121b
    Leitbleche
    123
    Drehpunkt der Leitbleche
    130, 131, 132, 133
    Teilkörper
    131a, 131a, 132a, 133a
    Längssymmetrieachsen
    140, 141, 142, 143
    Schaufelprofilförmige Teilkörper
    140a, 141a, 142a, 143a
    Längssymmetrieachsen
    150
    Brennstoffkonzentration
    160
    Luftmenge, Mischluft
    161
    Bohrungen, Oeffnungen
    170
    Brennstoff-Injektoren
    180
    Ringförmige Luftkammer
    190
    Ring
    200
    Uebergangsstück, Teil der Mischstrecke 220
    201
    Uebergangskanäle
    220
    Mischstrecke
    300
    Pilotbrennersystem
    301
    Innere Ringkammer
    302
    Nebengeordnete Ringkammer
    303
    Gasförmiger Brennstoff
    304
    Luftmenge
    305
    Gelochte Platte
    306
    Bohrungen in den Brennraum, Pilotbrenner
    307
    Hitzeschutzblech
    308
    Nachgeschaltete Ringkammer
    309
    Oeffnungen der inneren Ringkammer
    310
    Löcher für Prallkühlung des Hitzeschutzbleches
    311
    Zündvorrichtung



    Ansprüche

    1. Brenner zum Betrieb eines Wärmeerzeugers, wobei der Brenner im wesentlichen aus einem Drallerzeuger (100) für einen Verbrennungsluftstrom, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in den Verbrennungsluftstrom besteht, wobei stromab des Drallerzeugers eine Mischstrecke (220) angeordnet ist, welche innerhalb eines ersten Streckenteils in Strömungsrichtung eine Anzahl Uebergangskanäle (201) zur Ueberführung einer im Drallerzeuger gebildeten Strömung in ein stromab dieser Uebergangskanäle nachgeschaltetes Mischrohr (20) aufweist, dadurch gekennzeichnet, dass im unteren Bereich des Mischrohres (20) mit Wirkung in einen dem Mischrohr (20) nachgeschalteten Brennraum (30) ein gekühltes Pilotbrennersystem (300) angeordnet ist, und dass in das Pilotbrennersystem (300) mindestens eine Zündvorrichtung (311) integriert ist.
     
    2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das Pilotbrennersystem (300) aus mindestens zwei medienführenden Kammern (301, 302) und aus einer weiteren gemeinsamen nachgeschalteten Kammer (308) besteht, dass in dieser nachgeschalteten Kammer (308) die Medien (303, 304) aus den beiden anderen Kammern (301, 302) mischbar sind, und dass die nachgeschaltete Kammer (308) Mittel zur Bildung von in den Brennraum (30) wirkenden vom Gemisch der beiden Medien (303, 304) betreibbaren Pilotbrennern (306) aufweist.
     
    3. Brenner nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass durch die medienführenden Kammern (301, 303) ringförmig und nebengeordnet ausgebildet sind, dass durch die erste Ringkammer (301) ein gasförmiger Brennstoff (303) und durch die zweite Ringkammer (302) eine Luftmenge (304) strömen, dass in der zweiten Ringkammer (302) Mittel (305) eingebaut sind, durch welche die dort strömende Luft (304) eine Prallkühlung auf ein endseitig des Pilotbrennersystems (300) angeordnetes Hitzeschutzblech (307) bewerkstelligt, und dass die Zündvorrichtung (311) durch die zweite Ringkammer (302) herangeleitet ist.
     
    4. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass das Mittel zur Bildung der Prallkühlung eine in der nebengeordneten Ringkammer (302) bodenbildende gelochte Platte (305) ist.
     
    5. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel aus einem kopfseitig des Drallerzeugers (100) und in Wirkverbindung mit einer Brennstoffdüse (103) angeordneten Ring (190) besteht, dass dier Ring (190) eine Anzahl in Umfangsrichtung angeordneter Bohrungen (161) aufweist, und dass in eine durch die Bohrungen (161) strömende Luftmenge (160) ein Brennstoff (170) eindüsbar ist.
     
    6. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass die Bohrungen (161) schräg nach vorne gerichtet sind.
     
    7. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass die Brennstoffdüse (103) von einer rinförmiger Luftkammer (180) umgeben ist.
     
    8. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Brennerfront des Mischrohres (20) zur nachgeschalteten Brennraum (30) mit einer Abrisskante (A) ausgebildet ist.
     
    9. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
     
    10. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das den Uebergangskanälen (201) nachgeschaltete Mischrohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Mischrohres (20) versehen ist.
     
    11. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Oeffnungen (21) unter einem spitzen Winkel gegenüber der Brennerachse (60) des Mischrohres (20) verlaufen.
     
    12. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Mischrohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100, 100a) gebildeten Strömung (40) ist.
     
    13. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) eine Brennkammer (30) angeordnet ist, dass zwischen der Mischstrecke (220) und der Brennkammer (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer (30) induziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.
     
    14. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromauf der Brennerfront (70) ein Diffusor und/oder eine Venturistrecke vorhanden ist.
     
    15. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpem gebildeten Innenraum (114) mindestens eine Brennstoffdüse (103 wirkbar ist.
     
    16. Brenner nach Anspruch 15, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
     
    17. Brenner nach Anspruch 15, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
     
    18. Brenner nach Anspruch 15, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
     
    19. Brenner nach Anspruch 15, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
     
    20. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Zündvorrichtung (311) ein Glühzündstift oder eine Zündkerze ist
     


    Claims

    1. Burner for operating a heat generator, the burner essentially comprising a swirl generator (100) for a combustion-air flow and means for injecting at least one fuel into the combustion-air flow, a mixing section (220) being arranged downstream of the swirl generator and having, inside a first part of the section in the direction of flow, a number of transition passages (201) for passing a flow formed in the swirl generator into a mixing tube (20) arranged downstream of these transition passages, characterized in that a cooled pilot-burner system (300) is arranged in the lower region of the mixing tube (20) in such a way as to act in a combustion space (30) arranged downstream of the mixing tube (20), and in that at least one ignition device (311) is integrated in the pilot-burner system (300).
     
    2. Burner according to Claim 1, characterized in that the pilot-burner system (300) comprises at least two media-carrying chambers (301, 302) and a further common chamber (308) arranged downstream, in that the media (303, 304) from the other two chambers (301, 302) can be mixed in this chamber (308) arranged downstream, and in that the chamber (308) arranged downstream has means for forming pilot burners (306) which act in the combustion space (30) and can be operated by the mixture of the two media (303, 304).
     
    3. Burner according to Claims 1 and 2, characterized in that the media-carrying chambers (301, 303) are of annular and juxtaposed design, in that a gaseous fuel (303) flows through the first annular chamber (301) and an air quantity (304) flows through the second annular chamber (302), in that fitted in the second annular chamber (302) are means (305) which enable the air (304) flowing there to bring about impingement cooling on a heat-shield plate (307) arranged at the end of the pilot-burner system (300), and in that the ignition device (311) is directed into position through the second annular chamber (302).
     
    4. Burner according to Claim 3, characterized in that the means for forming the impingement cooling is a perforated plate (305) forming a base in the juxtaposed annular chamber (302).
     
    5. Burner according to Claim 1, characterized in that the means comprise a ring (190) arranged on the head side of the swirl generator (100) and in interaction with a fuel nozzle (103), in that this ring (190) has a number of bores (161) arranged in the peripheral direction, and in that a fuel (170) can be injected into an air quantity (160) flowing through the bores (161).
     
    6. Burner according to Claim 5, characterized in that the bores (161) are directed so as to slant forwards.
     
    7. Burner according to Claim 5, characterized in that the fuel nozzle (103) is surrounded by an annular air chamber (180).
     
    8. Burner according to Claim 1, characterized in that the burner front of the mixing tube (20) towards the combustion space (30) arranged downstream is formed with a breakaway edge (A).
     
    9. Burner according to Claim 1, characterized in that the number of transition passages (201) in the mixing section (220) corresponds to the number of partial flows formed by the swirl generator (100).
     
    10. Burner according to Claim 1, characterized in that the mixing tube (20) arranged downstream of the transition passages (201) is provided with openings (21) in the direction of flow and in the peripheral direction for injecting an air flow into the interior of the mixing tube (20).
     
    11. Burner according to Claim 10, characterized in that the openings (21) run at an acute angle relative to the burner axis (60) of the mixing tube (20).
     
    12. Burner according to Claim 1, characterized in that the cross section of flow of the mixing tube (20) downstream of the transition passages (201) is less than, equal to or greater than the cross section of the flow (40) formed in the swirl generator (100, 100a).
     
    13. Burner according to Claim 1, characterized in that a combustion chamber (30) is arranged downstream of the mixing section (220), in that there is a jump in cross section between the mixing section (220) and the combustion chamber (30), which jump in cross section induces the initial cross section of flow of the combustion chamber (30), and in that a backflow zone (50) can take effect in the region of this jump in cross section.
     
    14. Burner according to Claim 1, characterized in that there is a diffuser and/or a venturi section upstream of the burner front (70).
     
    15. Burner according to Claim 1, characterized in that the swirl generator (100) consists of at least two hollow, conical sectional bodies (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) which are nested one inside the other in the direction of flow, in that the respective longitudinal symmetry axes (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) of these sectional bodies run mutually offset in such a way that the adjacent walls of the sectional bodies form ducts (119, 120), tangential in their longitudinal extent, for a combustion-air flow (115), and in that at least one fuel nozzle (103 [lacuna] can take effect in the interior space (114) formed by the sectional bodies.
     
    16. Burner according to claim 15, characterized in that further fuel nozzles (117) are arranged in the region of the tangential ducts (119, 120) in their longitudinal extent.
     
    17. Burner according to Claim 15, characterized in that the sectional bodies (140, 141, 142, 143) have a blade-shaped profile in cross section.
     
    18. Burner according to Claim 15, characterized in that the sectional bodies have a fixed cone angle, increasing conicity, or decreasing conicity in the direction of flow.
     
    19. Burner according to Claim 15, characterized in that the sectional bodies are nested spirally one inside the other.
     
    20. Burner according to Claim 1, characterized in that the ignition device (311) is an incandescent ignition pin or a spark plug.
     


    Revendications

    1. Brûleur destiné à faire fonctionner un générateur de chaleur, le brûleur se composant essentiellement d'une chambre de turbulence (100) pour un écoulement d'air de combustion, de moyens pour l'injection d'au moins un combustible dans l'écoulement d'air de combustion, dans lequel, en aval de la chambre de turbulence se trouve une section de mélange (220) laquelle présente, à l'intérieur d'une première partie de la section dans le sens de l'écoulement, un certain nombre de canaux de transfert (201) servant à transférer un écoulement formé dans la chambre de turbulence dans un tube de mélange (20) raccordé en aval de ces canaux de transfert, caractérisé en ce que, dans la partie inférieure du tube de mélange (20), avec action dans une zone de combustion (30) placée en aval du tube de mélange (20), un système à brûleurs pilotes (300) est présent et en ce qu'au moins un dispositif d'allumage (311) est intégré dans le système à brûleurs pilotes (300).
     
    2. Brûleur selon la revendication 1, caractérisé en ce que le système à brûleurs pilotes (300) se compose d'au moins deux chambres d'amenée de fluide (301, 302) et d'une autre chambre commune raccordée en aval (308), en ce que, dans cette chambre raccordée en aval (308), les fluides (303, 304) provenant des deux autres chambres (301, 302) sont miscibles et que la chambre aval (308) présente un moyen de former des brûleurs pilotes (306) agissant dans la zone . de combustion (30) à partir du mélange des deux fluides (303, 304).
     
    3. Brûleur selon les revendications 1 et 2, caractérisé en ce que les chambres d'amenée des fluides (301, 303) sont réalisées sous forme annulaire et juxtaposées, en ce qu'un combustible gazeux (303) traverse la première chambre annulaire (301) et qu'un débit d'air (304) traverse la deuxième chambre annulaire (302), en ce que, dans la deuxième chambre annulaire (302), on a installé des moyens (305) par lesquels l'air y circulant (304) opère un refroidissement par impact sur une tôle pare-chaleur (307) disposée à l'extrémité du système à brûleurs pilotes (300) et en ce que le dispositif d'allumage (311) est introduit à travers la deuxième chambre annulaire (302).
     
    4. Brûleur selon la revendication 3, caractérisé en ce que le moyen d'opérer le refroidissement par impact est une plaque perforée (305) constituant le fond de la chambre annulaire (302) juxtaposée.
     
    5. Brûleur selon la revendication 1, caractérisé en ce que le moyen se compose, d'une bague (190) disposée côté tête de la chambre de turbulence (100) et en liaison active avec une buse d'injection de combustible (103), en ce que cette bague (190) présente un certain nombre d'orifices (161) disposés selon la circonférence et en ce qu'un combustible (170) peut être injecté dans le débit d'air (160) s'écoulant à travers les orifices (161).
     
    6. Brûleur selon la revendication 5, caractérisé en ce que les orifices (161) sont orientés en oblique vers l'avant.
     
    7. Brûleur selon la revendication 5, caractérisé en ce que la buse d'injection de combustible (103) est entourée d'une chambre d'air annulaire (180).
     
    8. Brûleur selon la revendication 1, caractérisé en ce que le front de brûleur du tube de mélange (20) présente une arête de décollement (A) vers la zone de combustion (30) raccordée en aval.
     
    9. Brûleur selon la revendication 1, caractérisé en ce que le nombre de canaux de transfert (201) dans la section de mélange (220) correspond au nombre de flux partiels formés dans la chambre de turbulence (100).
     
    10. Brûleur selon la revendication 1, caractérisé en ce que le tube de mélange (20) raccordé en aval des canaux de transfert (201) est pourvu, dans le sens de l'écoulement et selon la circonférence, d'orifices (21) pour l'injection d'un flux d'air à l'intérieur du tube de mélange (20).
     
    11. Brûleur selon la revendication 10, caractérisé en ce que les ouvertures (21) s'étendent sous un angle aigu par rapport à l'axe du brûleur (60), du tube de mélange (20).
     
    12. Brûleur selon la revendication 1, caractérisé en ce que la section transversale de passage du tube de mélange (20), en aval des canaux de transfert (201), est plus petite, égale ou plus grande que la section transversale de l'écoulement (40) formé dans la chambre de turbulence (100, 100a).
     
    13. Brûleur selon la revendication 1, caractérisé en ce qu'en aval de la section de mélange (220) est disposée une chambre de combustion (30), en ce qu'entre la section de mélange (220) et la chambre de combustion (30) s'opère un brusque ' changement de section transversale qui induit la section d'écoulement initiale de la chambre de combustion (30) et en ce que, dans la zone de ce brusque changement de section, une zone d'écoulement de retour (50) peut être active.
     
    14. Brûleur selon la revendication 1, caractérisé en ce qu'en amont du front du brûleur (70) se trouve un diffuseur et/ou une section à venturi.
     
    15. Brûleur selon la revendication 1, caractérisé en ce que la chambre de turbulence (100) se compose d'au moins deux corps' partiels creux, coniques, imbriqués l'un dans l'autre dans le sens de l'écoulement (101, 102 ; 130, 131, 132, 133 ; 140, 141, 142, 143), en ce que les axes de symétrie longitudinaux respectifs (101b, 102b ; 130a, 131a, 132a, 133a ; 140a, 141a, 142a, 143a) de ces corps partiels s'étendent avec un décalage des uns par rapport aux autres, de telle manière que les parois voisines des corps, dans leur extension longitudinale, forment des canaux tangentiels (119, 120) pour un écoulement de l'air de combustion (115) et que, dans l'espace intérieur (114) formé par les corps partiels au moins une buse d'injection de combustible (103) puisse être active.
     
    16. Brûleur selon la revendication 15, caractérisé en ce que, d'autres buses d'injection de combustible (117) sont disposées dans la zone des canaux tangentiels (119, 120), dans leur extension longitudinale.
     
    17. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels (140, 141, 142, 143) présentent, en section transversale, un profil ayant la forme d'une aube.
     
    18. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels présentent, dans le sens de l'écoulement, un angle d'ouverture de. cône fixe ou une inclinaison de cône croissante ou encore une inclinaison de cône décroissante.
     
    19. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels sont imbriqués les uns dans les autres en forme de spirale.
     
    20. Brûleur selon la revendication 1, caractérisé en ce que le dispositif d'allumage (311) est un igniteur à incandescence ou une bougie d'allumage.
     




    Zeichnung