(19)
(11) EP 0 825 568 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.11.2003 Bulletin 2003/45

(21) Application number: 96308751.5

(22) Date of filing: 04.12.1996
(51) International Patent Classification (IPC)7G07C 5/08, G01P 1/16

(54)

Vehicle driving recorder, vehicle travel analyzer and storage medium

Aufzeichnungsgerät für die Fahrweise mit einem Fahrzeug, Analysator der Fahrtdaten eines Fahrzeuges und Speichermedium

Enregistreur de la conduite d'un véhicule, analyseur de la conduite d'un véhicule, et support de mémorisation


(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 19.08.1996 JP 21725296

(43) Date of publication of application:
25.02.1998 Bulletin 1998/09

(73) Proprietor: Data Tec Co., Ltd.
Tokyo 144 (JP)

(72) Inventor:
  • Tano, Michiyasu,c/o Data Tec Co., Ltd
    Tokyo 144 (JP)

(74) Representative: Read, Matthew Charles et al
Venner Shipley & Co. 20 Little Britain
London EC1A 7DH
London EC1A 7DH (GB)


(56) References cited: : 
EP-A- 0 508 213
EP-A- 0 621 564
FR-A- 2 574 928
US-A- 5 469 158
EP-A- 0 562 749
WO-A-84/03359
US-A- 5 297 028
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to a technique for analyzing, ex post facto, historical travel data representing travel attitude angles and velocities of a vehicle changing in time sequence, particularly, historical travel data around (before and after) an occurrence of an accident such as a collision or a crash, so as to achieve scientific elucidation of a cause of the accident.

    Description of the Prior Art



    [0002] Recently, many vehicles have been equipped with safety devices which are automatically operated so as to avoid danger upon detection of abnormality during traveling. However, to whatever extent the safety of the vehicle may be mechanically improved, driver's awareness or appreciation about the safety is essential for reducing the accidents on a substantial basis. For example, the driver runs the vehicle relying on his or her own sensibility or judgment, which, however, changes depending on an environmental situation. As appreciated, even while running the vehicle at the same speed, for example, at 100km/h, the driver senses it differently depending on whether traveling on an express highway or a general road. Thus, for ensuring the driving safety, it is necessary for the driver to recognize such ambiguousness of his or her own sensibility.

    [0003] On the other hand, the recent development of the vehicular safety devices tends to make it difficult to fully catch an actual state of the accident only from ex-post conditions upon inspection, thus leading to difficulty in achieving an objective judgment or elucidation of a cause of the accident. As a result, it is possible that an unfounded and unreasonable result of the inspection is given to a victim or an assaulter of the accident. Further, there has been available no way of scientific analysis for providing an effective accident preventive measure.

    [0004] EP 0621 564 A2 discloses a traffic accident data recorder, which includes an acceleration sensor and an angular velocity sensor, for recognising an accident occurrence time and storing acceleration data and angular velocity data from before and after that time in a memory.

    Summary of the invention



    [0005] It is an object of the present invention to provide an improved technique capable of giving a chance to a driver for enhancing his or her consciousness on safety driving, holding travel data of a vehicle which get to be a basis for an objective judgment or elucidation of a cause of an occurrence of an accident, and analysing such travel data of the vehicle.

    [0006] In accordance with the invention, there is provided a vehicle travel analyser according to claim 1, a vehicle driving recorder according to claim 12 and a computer readable storage medium according to claim 13.

    [0007] According to one aspect of the present invention, a vehicle driving recorder comprises a sensor section for, in time sequence measuring travel attitudes and accelerations of a vehicle relative to axes of a plurality of dimensions and outputting them as measured data; a memory for storing the measured data outputted from the sensor section; and memory control means for controlling storage and reading of the measured data into and from the memory, wherein the memory control means comprises a measured data storage processing section for sequentially storing the measured data into the memory to update the stored measured data in the memory; and a measured data output section for, upon detection of a command sent from an external device, transferring the measured data stored in the memory to the external device.

    [0008] It may be arranged that the memory control means further comprises a shock detecting section for analyzing the measured data to detect presence or absence of an occurrence of shock; and a storage regulating section for, upon detection of the occurrence of shock by the shock detecting section, regulating data updating performed by the measured data storage processing section so as to ensure the measured data for a first given time period across the occurrence of shock in the memory.

    [0009] It may be arranged that the storage regulating section regulates the data updating performed by the measured data storage processing section, by setting a second given time period for further data updating by the measured data storage processing section upon the detection of the occurrence of shock by the shock detecting section, so as to ensure the measured data for the first given time period across the occurrence of shock in the memory.

    [0010] It may be arranged that the sensor section comprises three angular speedometers arranged corresponding to the axes of a three-dimensional space and at least one accelerometer arranged corresponding to at least one of the axes of the three-dimensional space and that the sensor section outputs measured values of the angular speedometers and the at least one accelerometer in time sequence as the measured data.

    [0011] It may be arranged that the measured data contains data units each assigned time information representing a measurement time and that each data unit contains the measured values of the angular speedometers and the at least one accelerometer measured at the same measurement time.

    [0012] According to another aspect of the present invention, a vehicle travel analyzer comprises measured data acquiring means for acquiring angular velocity data and acceleration data measured in time sequence relative to axes of a plurality of dimensions at a given position in a vehicle; measured data correcting means for removing a drift component contained in the acquired angular velocity data; and historical data producing means for deriving travel attitude angles of the vehicle from the angular velocity data without the drift component, deriving velocities of the vehicle along the axes of the dimensions from the travel attitude angles and the acquired acceleration data, and producing historical data of the derived travel attitude angles and velocities of the vehicle.

    [0013] It may be arranged that means is further provided for detecting a time point of an occurrence of shock of the vehicle and a time point of a stop of the vehicle after the occurrence of shock and that the historical data producing means derives the travel attitude angles at the time point of the vehicle stop as initial values and further derives the travel attitude angles and the velocities before the vehicle stop using the initial values.

    [0014] It may be arranged that means is further provided for processing the travel attitude angles and velocities of the vehicle derived by the historical data producing means so as to visually express a travel history of the vehicle.

    [0015] It may be arranged that the processing means visually expresses the travel history of the vehicle for a given time period going back from the time point of the vehicle stop.

    [0016] It may be arranged that the processing means visually expresses the travel history of the vehicle for a given time period toward the time point of the vehicle stop.

    [0017] It may be arranged that the processing means is an external device.

    [0018] It may be arranged that the measured data correcting means compares an angular component derived by periodically integrating the acquired angular velocity data and an angular component derived from the acquired acceleration data in a stopped state of the vehicle so as to derive a rate of occurrence of drift contained in the angular velocity data, and that the measured data correcting means removes the drift component from the angular velocity data based on the drift occurrence rate.

    [0019] It may be arranged that the measured data correcting means accumulates the acquired angular velocity data measured in a stopped state of the vehicle so as to derive a tendency of occurrence of drift contained in the angular velocity data, and that the measured data correcting means removes the drift component from the angular velocity data based on the drift occurrence tendency.

    [0020] According to another aspect of the present invention, a storage medium is provided with a functional descriptive material which is readable and executable by a computer, and the functional descriptive material allows the computer to execute the steps of acquiring angular velocity data and acceleration data measured in time sequence relative to axes of a plurality of dimensions at a given position in a vehicle; removing a drift component contained in the acquired angular velocity data; and deriving travel attitude angles of the vehicle from the angular velocity data without the drift component and velocities of the vehicle along the axes of the dimensions from the travel attitude angles and the acquired acceleration data so as to produce historical data of the derived travel attitude angles and velocities of the vehicle.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] The present invention will be understood more fully from the detailed description given hereinbelow, taken in conjunction with the accompanying drawings.

    [0022] In the drawings:

    Fig. 1A is a diagram showing a vehicle driving recorder, installed in a vehicle, according to a preferred embodiment of the present invention;

    Fig. 1B is a diagram showing the driving recorder and a vehicle travel analyzer according to a preferred embodiment of the present invention, which are connected to each other via communication means to constitute a driving recorder system;

    Fig. 2 is a functional block diagram of the driving recorder;

    Fig. 3 is a flowchart showing a control routine of a memory control section provided in the driving recorder;

    Fig. 4 is a diagram for explaining a structure of data stored in a memory provided in the driving recorder;

    Fig. 5 is a functional block diagram of the travel analyzer;

    Fig. 6 is a flowchart showing a control routine of the travel analyzer;

    Fig. 7A is a flowchart representing a first method of drift correction;

    Fig. 7B is a flowchart representing a second method of drift correction;

    Figs. 8A and 8B are diagrams for explaining the principle of the first method of drift correction, wherein Fig. 8A shows a drift occurrence state, that is, attitude angles measured by an angular speedometer indicated by a dotted line and attitude angles measured by an accelerometer indicated by a solid line, and Fig. 8B shows drift amounts measured at given time intervals;

    Fig. 9 is a graph showing motion accelerations Gx and Gy along X- and Y-axes, respectively, derived through execution of the flowchart of Fig. 6; and

    Fig. 10 is a diagram showing one example of the result of image processing according to a preferred embodiment of the present invention.


    DESCRIPTION OF THE PREFERRED EMBODIMENT



    [0023] Now, a driving recorder system for a vehicle according to a preferred embodiment of the present invention will be described hereinbelow with reference to the accompanying drawings.

    [0024] The driving recorder system includes a vehicle driving recorder and a vehicle travel analyzer.

    [0025] As shown in Fig. 1A, a vehicle driving recorder 1 is detachably installed in a vehicle at a position where a change in attitude or posture of the vehicle can be monitored, for example, at a position under a seat around the center of the vehicle. As shown in Fig. 1B, a vehicle travel analyzer 2 is connected to the driving recorder 1 via communication means, such as the RS-232C, upon analysis.

    [0026] Hereinbelow, the driving recorder 1 will be first described in detail.

    [0027] As shown in Fig. 2, the driving recorder 1 includes a sensor section composed of three pairs of angular speedometers 10x, 10y, 10z and accelerometers 11x, 11y, 11z arranged along X-, Y- and Z-axes (pitch, roll, yaw), respectively. The driving recorder 1 further includes a nonvolatile memory 13 for storing data measured at the sensor section, and a memory control section 12 for controlling data storage into and data reading from the memory 13. The memory 13 is a backup memory capable of data backup for about three months even if detached from the vehicle or the power is off, and has a storage capacity capable of storing angular velocity data and acceleration data, for about 5 minutes, measured at the sensor section.

    [0028] The angular speedometers 10x, 10y, 10z are, for example, in the form of small-size gyroscopes for measuring rotational angular velocities relative to the X-, Y- and Z-axes, respectively. The measured values get to be, for example, text-type angular velocity data (vectors). On the other hand, the accelerometers 11x, 11y, 11z are, for example, in the form of G (gravitation) sensors each measuring the sum of gravitational acceleration and motion acceleration based on an inclination of the corresponding axis. The measured values get to be, for example, text-type acceleration data (vectors). The angular speedometers 10x, 10y, 10z are used for measuring turning angles and travel attitude angles of the vehicle, while the accelerometers 11x, 11y, 11z are used for measuring accelerations/decelerations of the vehicle and lateral accelerations of the vehicle caused by turning. The angular velocity data and the acceleration data are amplified through amplifiers (not shown), respectively, depending on necessity and outputted to the memory control section 12 in time sequence. In case of the gyroscope, a temperature variation may give an influence upon the measured values. Thus, when using it in a cold or hot district, it is preferable to provide correction means for correcting the measured value with a temperature coefficient.

    [0029] The memory control section 12 is realized by a programmed microprocessor unit (CPU) and functionally includes at least a measured data storage processing section 121, a shock detecting section 122, a storage regulating section 123, a timer section 124 and a measured data output section 125.

    [0030] The storage processing section 121 stores in sequence the angular velocity data and the acceleration data sent from the sensor section into the memory 13 and thus updates in sequence the data stored in the memory 13. The shock detecting section 122 detects presence or absence of an occurrence of shock. In this preferred embodiment, upon detection of an occurrence of deceleration greater than a preset threshold value by at least one of the accelerometers 11x, 11y, 11z, it is determined that shock due to a crash or the like has occurred. Various other methods may be considered for determining an occurrence of shock or crash.

    [0031] Upon detection of the occurrence of shock at the shock detecting section 122, the storage regulating section 123 regulates data updating, that is, regulating a time period of data updating, performed by the storage processing section 121 so as to hold the measured data for a given time period across (before and after) the occurrence of shock in the memory 13. The timer section 124 is operated for regulating or setting such a time period of data updating. The measured data output section 125 reads out the measured data stored in the memory 13 and transfers the read-out data to the travel analyzer 2 upon detection of a data collecting request sent from the travel analyzer 2.

    [0032] Fig. 3 is a flowchart showing a control routine of the memory control section 12.

    [0033] In Fig. 3, first at step S101, the memory control section 12 receives the angular velocity data and the acceleration data sent from the sensor section. Then at step S102, time information (time stamp: measured time) is added to the received angular velocity data and acceleration data. Subsequently, at step S103, the data with the time information are sequentially stored into the memory 13. As described before, the memory 13 has the storage capacity for storing the data for about 5 minutes in this preferred embodiment. Thus, when an amount of the data exceeds the storage capacity, the data stored in the memory 13 is erased from the oldest data in sequence so as to update the data in the memory 13. Fig. 4 is a diagram showing a structure of the data stored in the memory 13, wherein data units each including a time stamp Tn (n= 1, 2, 3, ...), angular velocity data Xjn, Yjn, Zjn and acceleration data Xkn, Ykn, Zkn are arranged in time sequence. The processes at steps S101 to S103 are repeated until the occurrence of shock is detected at step S104.

    [0034] If the occurrence of shock is detected at step S104, a timer is set at step S105 and then steps S106 to S108 which are the same as the foregoing steps S101 to S103, respectively, are repeated until the set time is up at step S109. The time set at step S105 may be in the range of about 30 seconds to about 2 minutes. If the time is up as monitored at step S109, the routine proceeds to step S110 where data storage into the memory 13 is stopped to stop data updating in the memory 13. Through the foregoing processes, the memory 13 holds at least the angular velocity data and the acceleration data for the set time after detection of the occurrence of shock and for a given time before detection of the occurrence of shock. Then at step S111, the measured data output section 125 monitors whether the data collecting request (command) is received from the travel analyzer 2. Upon detection of the request, the routine proceeds to step S112 where the data stored in the memory 13 are read out and transferred to the travel analyzer 2.

    [0035] Now, the travel analyzer 2 will be described in detail.

    [0036] As shown in Fig. 5, the travel analyzer 2 includes an intelligent communication control section 21 working as measured data acquiring means, a drift correcting section 22 working as measured data correcting means, a historical travel data producing section 23 working as historical travel data producing means, a memory control section 24, a nonvolatile memory 25, an input/output control section 26 and an image processing section 27.

    [0037] The foregoing sections 21 to 24, 26 and 27 are normally realized through execution, by a CPU of a computer, of given processes according to a functional descriptive material (computer program and necessary data) stored in storing means such as a ROM. The functional descriptive material is not necessarily inseparable from the computer, and thus may be separable from the computer. However, in the latter case, it is necessary to physically substantiate the functional descriptive material on a flexible disk or a CD-ROM in such a manner that the computer can read and execute it.

    [0038] Hereinbelow, the sections 21 to 24, 26 and 27 will be described in detail.

    [0039] The communication control section 21 sends the data collecting request to the driving recorder 1 connected to the travel analyzer 2 via the RS-232C or the like, and then classifies or assorts the data received in response to the data collecting request into the angular velocity data and the acceleration data. The drift correcting section 22 receives the angular velocity data from the communication control section 21 and performs drift correction for the received angular velocity data. This function is essential when the gyroscopes are used as the angular speedometers 10x, 10y, 10z of the driving recorder 1. Details of the drift correction will be described later. The data producing section 23 receives the acceleration data from the communication control section 21 and the angular velocity data after the drift correction from the drift correcting section 22 and produces, based on the received data, historical travel data representing histories of travel attitude angles and velocities of the vehicle for sending to the memory control section 24.

    [0040] The memory control section 24 receives the historical travel data from the data producing section 23 and the raw data (angular velocity data and acceleration data) from the communication control section 21 and stores the received data into the memory 25. Further, the memory control section 24 reads out and transfers the data stored in the memory 25 based on a data transfer request received from an external device or the image processing section 27 via the input/output control section 26. The image processing section 27 is application executing means and reads out the foregoing historical travel data in sequence from the memory 25 for image processing thereof so as to visually express the travel history of the vehicle.

    [0041] The reason why the raw data are stored in addition to the historical travel data and transferred in response to the data transfer request, is to cope with data backup or unique travel analysis executed by another application program.

    [0042] It may be arranged that, instead of the memory 25, the input/output control section 26 and the image processing section 27, an external storage unit, such as a flexible-disk drive or a hard-disk drive, or interface means for an external device is provided so as to allow the memory control section 24 to write the historical travel data produced at the data producing section 23 into an external storage medium or transfer the historical travel data directly to the external device via the interface means.

    [0043] Now, the operation of the travel analyzer 2 will be described in detail with reference to Figs. 6 to 9.

    [0044] Fig. 6 is a flowchart showing a control routine of the travel analyzer 2. In the following description, it is assumed that the driving recorder 1 is connected to the travel analyzer 2 as shown in Fig. 1B.

    [0045] In Fig. 6, when a read command from an operator of the travel analyzer 2 is inputted at step S201, the routine proceeds to step S202 where the travel analyzer 2 sends out the data collecting request to the driving recorder 1 from the communication control section 21. When the angular velocity data and the acceleration data stored in the memory 13 are all inputted into the communication control section 21 at step S203, the drift correcting section 22 performs the drift correction at step S204. There are two methods available for this drift correction.

    [0046] The first method is as shown in Fig. 7A. Through steps S301 and S302, the angular velocity data are periodically integrated to derive attitude angles. On the other hand, through steps S301, S303 and S304, attitude angles are derived based on the acceleration data in a stopped or static state of the vehicle. Then, at step S305, the attitude angles derived at steps S302 and S304 are compared so as to derive the rate of occurrence of drift components contained in the angular velocity data measured in time sequence (angular data in motion), that is, the drift amount per unit time. Subsequently, at step S306, based on the derived rate of drift component occurrence, the drift components are removed from the angular velocity data measured just before the occurrence of shock and onward to a vehicle stop after the occurrence of shock, for correction of those angular velocity data.

    [0047] Figs. 8A and 8B are diagrams for explaining the principle of the foregoing drift correction, wherein Fig. 8A shows the drift occurrence state, that is, the attitude angles measured by the angular speedometer indicated by a dotted line and the attitude angles measured by the accelerometer indicated by a solid line, and Fig. 8B shows the drift amounts measured at given time intervals (per minute in Fig. 8B). Since the accelerometer in the form of the G sensor has no accumulation of the drift, the attitude angle represented by the acceleration data in the static state of the vehicle is accurate. On the other hand, the angular speedometer, particularly the gyroscope, is subjected to accumulation of the drift so that the attitude angle measured by the gyroscope contains a certain error. In view of this, by periodically comparing the attitude angles derived by the acceleration data and the angular velocity data measured at the same timings and deriving differences therebetween, the drift error can be quantified and removed from the angular velocity data. For example, in Fig. 8B, an error due to the drift is generated by 0.2 degrees per minute. Thus, by removing it from the angular velocity data (from the angle derived by the angular velocity data), the highly reliable angular data in motion can be obtained.

    [0048] The second method is as shown in Fig. 7B, wherein an error caused by the drift can be quantified more easily. First at step S401, the angular velocity data in the stopped state of the vehicle are accumulated. Then at step S402, a tendency of occurrence of the drift components is detected based on the accumulated result. Although it is not questioned whether the collection of the angular velocity data in the vehicle stopped state is performed at regular time intervals or not, it is necessary that the time intervals themselves are known. Ideally, the angular velocity data measured in plural times in the vehicle stopped state coincide with each other. Accordingly, if a deviation is caused as a result of the accumulation at step S401, it means an occurrence of the drift. In view of this, at step S403, based on the drift occurrence tendency derived at step S402, the drift components are removed from the angular velocity data measured just before the occurrence of shock and onward to the vehicle stop after the occurrence of shock, for correction of those angular velocity data.

    [0049] Although not shown in Fig. 7A or 7B, during execution of step S204 in Fig. 6, a time point of the occurrence of shock is detected in the same manner as in the shock detecting section 122 of the driving recorder 1 and a time point of the vehicle stop after the occurrence of shock is detected by monitoring a variation of the acceleration data.

    [0050] Referring back to Fig. 6, after execution of step S204, the data producing section 23 produces the historical travel data. Specifically, at step S205, an absolute attitude (travel attitude angles) of the vehicle at the time point of the vehicle stop after the occurrence of shock is derived by integrating the angular velocity data corrected at step S306 or S403 and set as initial values. Subsequently, at step S206, travel attitude angles before the vehicle stop are derived using the corresponding corrected angular velocity data and the initial values set at step S205, that is, for example, by subtracting the corresponding angles from the initial values, respectively. For achieving the angle derivation efficiently and easily, it is preferable to perform Eulerian coordinate transformation of the three-dimensional angular velocity data (vectors) and derive the travel attitude angles on the Eulerial coordinate system.

    [0051] Thereafter, at step S207, motion accelerations along the X-, Y-and Z-axes are derived based on the travel attitude angles, respectively.

    [0052] Specifically, the acceleration data g relative to each axis measured during the vehicle traveling is the sum of gravitational acceleration g1 and motion acceleration g2 caused by the inclination of the vehicle. The gravitational acceleration g1 can be derived by an equation g1=G•sinθ, wherein G represents the gravity and θ represents the travel attitude angle relative to each axis. Accordingly, by subtracting the gravitational acceleration g1 from the acceleration data g, the motion acceleration g2 can be derived. Further, by representing the motion acceleration g2 on the Eulerial coordinate system, centripetal accelerations in lateral directions of the vehicle can be derived. The foregoing calculations are performed three-dimenslonally, that is, relative to the X-, Y- and Z-axes. On the other hand, in practice, the motion accelerations along the X- and Y-axes (pitch angle, roll angle) are important so that the motion acceleration along the Z-axis (yaw angle) is not necessarily required. Fig. 9 is a graph showing motion accelerations Gx and Gy along the X- and Y-axes, respectively, derived through execution of step S207.

    [0053] Subsequent to execution of step S207, the routine proceeds to step S208 where forward and lateral velocities are derived by integrating the motion accelerations. The forward velocities mainly represent the travel speeds of the vehicle and a variation thereof represents an accelerator operation and a brake operation. On the other hand, the lateral velocities represent a steering operation, a road condition and a following rolling state during-the vehicle running.

    [0054] Then at step S209, the data produced at the data producing section 23, that is, the data derived at steps S205 to S208, are stored into the memory 25.

    [0055] The execution of steps S206 to S209 is repeated until all the angular velocity data corrected at step S306 or S403 and the corresponding acceleration data are processed. On the other hand, it may be arranged that the execution of steps S206 to S209 is repeated until all the data inputted into the communication control section 21 are processed. As appreciated, the term "just before the occurrence of shock and onward to a vehicle stop after the occurrence of shock" used at step S306 or S403 represents a time period which requires precise data for analyzing a cause of the accident, that is, a cause of the occurrence of shock, and may be determined also in view of throughput of the computer of the travel analyzer 2 since the drift correction requires much loads on the computer.

    [0056] Subsequently, through steps S210 and S211, if the data transfer request is received from the image processing section 27 or the external device via the input/output control section 26, the memory control section 24 reads out the data stored in the memory 25 and transfers the read-out data via the input/output control section 26.

    [0057] Specifically, in case the foregoing historical travel data stored in the memory 25 are analyzed within the travel analyzer 2, the image processing section 27 is activated to send the data transfer request to the memory control section 24 so as to obtain the stored data from the memory 25. Then, the image processing section 27 performs image processing based on the obtained data and, for example, forms a traveling image of the vehicle for a given time period retroactively or going back from the time point of the vehicle stop after the occurrence of shock. It may also be arranged that the traveling image is formed for the given time period toward the time point of the vehicle stop after the occurrence of shock. On the other hand, in case the data stored in the memory 25 are analyzed by the external device, the stored data in the memory 25 are transferred to the external device using a portable memory medium or certain communication means so that the external device performs image processing based on the transferred data.

    [0058] Fig. 10 is a diagram showing one example of the result of the image processing according to this preferred embodiment. In Fig. 10, the travel history is displayed going back from the time point of the vehicle stop after the occurrence of shock. The forward velocities represent distances between adjacent vehicle symbols and the lateral velocities represent a rolling state of the vehicle around the occurrence of shock. By observing the displayed image, even a person other than an expert of the vehicle travel analysis can objectively judge a traveling state of the vehicle, a cause of the accident and the like.

    [0059] As described above, in the driving recorder system according to the foregoing preferred embodiment, the angular velocity data and the acceleration data are sequentially stored in the driving recorder 1, and the travel analyzer 2 is connected to the driving recorder 1 upon analyzing the stored data so as to reproduce the travel history of the vehicle. Thus, upon inspection of the accident, an objective judgment or elucidation of a cause of the accident is facilitated. Further, since the traveling state of the vehicle can be quantified, the limitation of a turning angle at a particular speed, that is, the safety operation range of a steering wheel, may be notified to the driver, or an occurrence of a dangerous state is displayed on a screen in advance along with map data in the recently widespread car navigation system. Thus, a proper accident preventive measure, which is scientifically evidenced, can be easily achieved. Further, the driver's consciousness on safety driving can be enhanced since the driver's vehicle operation is constantly monitored.

    [0060] In the foregoing preferred embodiment, the angular speedometers 10x, 10y, 10z and the accelerometers 11x, 11y, 11z are provided in three pairs. However, the number of them may be changed depending on necessity as long as the data representing the attitude angles and velocities of the vehicle in plural dimensions can be produced in time sequence. Particularly, although it is preferable to set the number of the accelerometers equal to the number of the angular speedometers, the gravitational acceleration and the motion acceleration can be measured if at least one accelerometer is provided. Accordingly, in the foregoing preferred embodiment, at least one accelerometer may be provided other than three.

    [0061] Further, in the foregoing preferred embodiment, the driving recorder 1 is arranged to store the raw data measured at the sensor section. However, it may be arranged that the driving recorder 1 is provided with functions of the drift correcting section 22 and the data producing section 23 so that the historical travel data are produced in the driving recorder 1 and stored in the memory 13.

    [0062] As appreciated from the foregoing description, the shock is not limited to that caused by collision or crash. The foregoing historical travel data can be produced in the same manner in response to any possible desired shock. Further, if the historical travel data are stored only for the purpose of reproducing the travel history, it is possible to arrange the system without questioning presence or absence of the shock.

    [0063] Further, the driving recorder 1 and the travel analyzer 2 are not necessarily provided in pair, but may be separately provided as independent devices.

    [0064] While the present invention has been described in terms of the preferred embodiments, the invention is not to be limited thereto, but can be embodied in various ways without departing from the principle of the invention as defined in the appended claims.


    Claims

    1. A vehicle travel analyser (2) comprising:

    measured data acquiring means (21) for acquiring angular velocity data and acceleration data measured in a time sequence relative to axes defining a two or three dimensional space;

    measured data correcting means (22) for removing a drift component contained in the acquired angular velocity data; and

    historical data producing means (23) for deriving travel attitude angles of the vehicle from the angular velocity data without said drift component, deriving velocities of the vehicle along the axes of said two or three dimensional space from said travel attitude angles and said acquired acceleration data, and producing historical data of said derived travel attitude angles and velocities of the vehicle, wherein said measured data correcting means compares an angular component derived by periodically integrating said acquired angular velocity data and an angular component derived from said acquired acceleration data when the vehicle is stationary so as to derive a rate of occurrence of drift contained in said angular velocity data, and wherein said measured data correcting means removes said drift component from said angular velocity data based on said drift occurrence rate.


     
    2. A vehicle travel analyser according to claim 1, further comprising means for detecting a time point of an occurrence of shock to the vehicle and a time point at which the vehicle stops after the occurrence of the shock, wherein said historical data producing means (23) is arranged to derive the travel attitude angles at the time point at which the vehicle stops as initial values and further to derive the travel attitude angles and the velocities before the vehicle stops using said initial values.
     
    3. A vehicle travel analyser according to claim 2, further comprising means for processing (27) said travel attitude angles and velocities of the vehicle derived by said historical data producing means so as to visually express a travel history of the vehicle.
     
    4. A vehicle travel analyser according to claim 3, wherein said processing means is arranged to visually express the travel history of the vehicle for a given time period going back from the time point at which the vehicle stops.
     
    5. A vehicle travel analyser according to claim 3, wherein said processing means is arranged to visually express the travel history of the vehicle for a given time towards the time point at which the vehicle stops.
     
    6. A vehicle travel analyser according to claim 3, 4 or 5, wherein said processing means is an external device.
     
    7. A vehicle travel recording and analysis system comprising a vehicle travel analyser (2) according to any one of the preceding claims and a vehicle driving recorder (1) for measuring angular velocity data and acceleration data for input into the vehicle travel analyser, said vehicle driving recorder comprising:

    a sensor section (10x, y, z; 11x, y, z)for detecting the angular velocity data and the acceleration data in a time sequence relative to axes defining a two or three dimensional space;

    a nonvolatile memory (13) for storing the angular velocity data and the acceleration data for a given time period; and

    memory control means (12) for sequentially storing sets of the angular velocity data and the acceleration data, each with a corresponding measurement time, into said memory so as to update the angular velocity data and the acceleration data stored in said memory and for reading the angular velocity data and the acceleration data stored in said memory and transferring them to said vehicle travel analyser, upon detection of a command input from said vehicle travel analyser.


     
    8. A system according to claim 7, wherein said memory control means further comprises:

    a shock detecting section (122) for analysing said measured data to detect the presence or absence of an occurrence of shock; and

    a storage regulating section (123) for regulating data updating performed by a measured data storage processing section (121), upon detection of the occurrence of shock by said shock detecting section, so as to ensure the holding of the measured data for a first given time period before and after the occurrence of the shock in said memory.


     
    9. A system according to claim 8, wherein said storage regulating section is arranged to regulate the data updating performed by said measured data storage processing section, by setting a second given time period for further data updating by said measured data storage processing section upon said detection of the occurrence of shock by said shock detecting section, so as to ensure the holding of the measured data for said first given time period before and after the occurrence of the shock, in said memory.
     
    10. A system according to claim 7, 8 or 9, wherein said sensor section comprises three angular speedometers (10x, y, z) arranged corresponding to the axes of a three-dimensional space and at least one accelerometer (11x, y, z) arranged corresponding to at least one of the axes of the three-dimensional space and wherein said sensor section is arranged to output a sequence of measured values of said angular speedometers and said at least one accelerometer as said measured data.
     
    11. A system according to claim 10, wherein said measured data contains data units each assigned time information representing a measurement time and wherein each data unit contains the measured values of said angular speedometers and said at least one accelerometer measured at the same measurement time.
     
    12. A vehicle driving recorder (1) comprising:

    a sensor section (10x, y, z; 11x, y, z) for measuring angular velocity data and acceleration data in a time sequence relative to axes defining a two or three dimensional space;

    measured data correcting means (22) for comparing an angular component derived by periodically integrating measured angular velocity data and an angular component derived from the measured acceleration data when the vehicle is stationary so as to derive a rate of occurrence of drift contained in the measured angular velocity data, and for removing a drift component from the measured angular velocity data based on said drift occurrence rate;

    a nonvolatile memory (13); and

    memory control means (12) for sequentially storing measured data including the angular velocity data free of said drift component and the acceleration data into said memory so as to update the measured data stored in said memory and which is arranged, upon detection of a command input from an external device, to read the measured data stored in said memory and transfer them to said external device.


     
    13. A computer-readable storage medium storing a computer program; said program causing a computer to execute the steps of:

    acquiring angular velocity data and acceleration data measured in time sequence relative to axes defining a two or three dimensional space;

    comparing an angular component derived by periodically integrating the acquired angular velocity and an angular component derived from the acquired acceleration data when the vehicle is stationary so as to derive a rate of occurrence of drift contained in the acquired angular velocity data;

    removing a drift component from the acquired angular velocity data based on said drift occurrence rate; and

    deriving travel attitude angles of the vehicle from the angular velocity data free of said drift component and velocities of the vehicle along the axes of the two or three dimensional space from said travel attitude angles and said acquired acceleration data so as to produce historical data of said derived travel attitude angles and velocities of the vehicle.


     


    Ansprüche

    1. Fahrzeugbewegungsanalysator (2), der umfaßt:

    eine Meßdatenerfassungseinrichtung (21) zum Erfassen von Winkelgeschwindigkeitsdaten und von Beschleunigungsdaten, die in einer Zeitfolge in bezug auf Achsen, die einen zwei- oder dreidimensionalen Raum definieren, gemessen werden;

    eine Meßdaten-Korrektureinrichtung (22) zum Entfernen einer Abweichungskomponente, die in den erfaßten Winkelgeschwindigkeitsdaten enthalten ist; und

    eine Historiendaten-Erzeugungseinrichtung (23) zum Ableiten von Fahrlagenwinkeln des Fahrzeugs aus den Winkelgeschwindigkeitsdaten ohne die Abweichungskomponente, zum Ableiten von Geschwindigkeiten des Fahrzeugs längs der Achsen des zwei- oder dreidimensionalen Raums aus den Fahrlagenwinkeln und den erfaßten Beschleunigungsdaten und zum Erzeugen von Historiendaten der abgeleiteten Fahrlagenwinkel und Geschwindigkeiten des Fahrzeugs, wobei die Meßdaten-Korrektureinrichtung eine Winkelkomponente, die durch periodisches Integrieren der erfaßten Winkelgeschwindigkeitsdaten abgeleitet wird, und eine Winkelkomponente, die aus den erfaßten Beschleunigungsdaten abgeleitet wird, wenn das Fahrzeug in Ruhe ist, vergleicht, um so eine Rate, in der die in den Winkelgeschwindigkeitsdaten enthaltene Abweichung auftritt, abzuleiten, und wobei die Meßdaten-Korrektureinrichtung die Abweichungskomponente aus den Winkelgeschwindigkeitsdaten anhand der Abweichungsauftrittsrate entfernt.


     
    2. Fahrzeugbewegungsanalysator nach Anspruch 1, der ferner eine Einrichtung zum Erfassen eines Zeitpunkts des Auftretens eines Stoßes auf das Fahrzeug und eines Zeitpunkts, bei dem das Fahrzeug anhält, nachdem der Stoß aufgetreten ist, umfaßt, wobei die Historiendaten-Erzeugungseinrichtung (23) so beschaffen ist, daß sie die Fahrlagenwinkel zu dem Zeitpunkt, zu dem das Fahrzeug anhält, als Anfangswerte ableitet und ferner die Fahrlagenwinkel und die Geschwindigkeiten vor dem Anhalten des Fahrzeugs unter Verwendung dieser Anfangswerte ableitet.
     
    3. Fahrzeugbewegungsanalysator nach Anspruch 2, die ferner eine Einrichtung zum Verarbeiten (27) der Fahrlagenwinkel und der Geschwindigkeiten des Fahrzeugs, die von der Historiendaten-Erzeugungseinrichtung abgeleitet werden, umfaßt, um so eine Bewegungshistorie des Fahrzeugs visuell darzustellen.
     
    4. Fahrzeugbewegungsanalysator nach Anspruch 3, bei dem die Verarbeitungseinrichtung so beschaffen ist, daß sie die Bewegungshistorie des Fahrzeugs für eine gegebene Zeitspanne, die sich von dem Zeitpunkt, zu dem das Fahrzeug anhält, nach rückwärts erstreckt, visuell darstellt.
     
    5. Fahrzeugbewegungsanalysator nach Anspruch 3, bei dem die Verarbeitungseinrichtung so beschaffen ist, daß sie die Bewegungshistorie des Fahrzeugs für eine gegebene Zeitspanne bis zu dem Zeitpunkt, zu dem das Fahrzeug anhält, visuell darstellt.
     
    6. Fahrzeugbewegungsanalysator nach Anspruch 3, 4 oder 5, bei dem die Verarbeitungseinrichtung eine externe Vorrichtung ist.
     
    7. Fahrzeugbewegungsaufzeichnungs- und -analysesystem, das einen Fahrzeugbewegungsanalysator (2) nach einem der vorhergehenden Ansprüche sowie einen Fahrzeugfahrtenrecorder (1) zum Messen von Winkelgeschwindigkeitsdaten und von Beschleunigungsdaten für die Eingabe in den Fahrzeugbewegungsanalysator umfaßt, wobei der Fahrzeugfahrtenrecorder umfaßt:

    einen Sensorabschnitt (10x, y, z; 11x, y, z) zum Erfassen der Winkelgeschwindigkeitsdaten und der Beschleunigungsdaten in einer Zeitfolge in bezug auf Achsen, die einen zwei- oder dreidimensionalen Raum definieren;

    einen nichtflüchtigen Speicher (13) zum Speichern der Winkelgeschwindigkeitsdaten und der Beschleunigungsdaten für eine gegebene Zeitspanne; und

    eine Speichersteuereinrichtung (12) zum sequentiellen Speichern von Sätzen der Winkelgeschwindigkeitsdaten und der Beschleunigungsdaten, jede zusammen mit einer entsprechenden Meßzeit, in dem Speicher, um so die Winkelgeschwindigkeitsdaten und die Beschleunigungsdaten, die in dem Speicher gespeichert sind, zu aktualisieren, und zum Lesen der Winkelgeschwindigkeitsdaten und der Beschleunigungsdaten, die in dem Speicher gespeichert sind, und zum Übertragen dieser Daten an den Fahrzeugbewegungsanalysator, wenn ein von dem Fahrzeugbewegungsanalysator eingegebener Befehl erfaßt wird.


     
    8. System nach Anspruch 7, bei dem die Speichersteuereinrichtung ferner umfaßt:

    einen Stoßerfassungsabschnitt (122) zum Analysieren der Meßdaten, um das Vorhandensein oder Fehlen eines Auftretens eines Stoßes zu erfassen; und

    einen Speicherregulierungsabschnitt (123) zum Regulieren der Datenaktualisierung, die durch einen Meßdatenspeicher-Verarbeitungsabschnitt (121) ausgeführt wird, wenn das Auftreten eines Stoßes durch den Stoßerfassungsabschnitt erfaßt wird, um so das Halten der Meßdaten für eine erste gegebene Zeitspanne vor und nach dem Auftreten des Stoßes im Speicher sicherzustellen.


     
    9. System nach Anspruch 8, bei dem der Speicherregulierungsabschnitt so beschaffen ist, daß er die Datenaktualisierung reguliert, die von dem Meßdatenspeicher-Verarbeitungsabschnitt ausgeführt wird, indem er eine zweite gegebene Zeitspanne für eine weitere Datenaktualisierung durch den Meßdatenspeicher-Verarbeitungsabschnitt bei der Erfassung des Auftretens eines Stoßes durch den Stoßerfassungsabschnitt setzt, um so das Halten der Meßdaten für die erste gegebene Zeitspanne vor und nach dem Auftreten des Stoßes im Speicher sicherzustellen.
     
    10. System nach Anspruch 7, 8 oder 9, bei dem der Sensorabschnitt drei Winkel-Geschwindigkeitsmesser (10x, y, z), die entsprechend den Achsen eines dreidimensionalen Raums angeordnet sind, und wenigstens einen Beschleunigungsmesser (11x, y, z), der entsprechend wenigstens einer der Achsen des dreidimensionalen Raums angeordnet ist, umfaßt und bei dem der Sensorabschnitt so beschaffen ist, daß er eine Folge von Meßwerten der Winkel-Geschwindigkeitsmesser und des wenigstens einen Beschleunigungsmessers als die Meßdaten ausgibt.
     
    11. System nach Anspruch 10, bei dem die Meßdaten Dateneinheiten enthalten, wovon jeder Zeitinformationen zugeordnet sind, die eine Meßzeit repräsentieren, und bei dem jede Dateneinheit die Meßwerte der Winkel-Geschwindigkeitsmesser und des wenigstens einen Beschleunigungsmessers, die zum gleichen Meßzeitpunkt gemessen wurden, enthält.
     
    12. Fahrzeug-Fahrtenrecorder (1), der umfaßt:

    einen Sensorabschnitt (10x, y, z; 11x, y, z) zum Messen von Winkelgeschwindigkeitsdaten und von Beschleunigungsdaten in einer Zeitfolge in bezug auf Achsen, die einen zwei- oder dreidimensionalen Raum definieren;

    eine Meßdaten-Korrektureinrichtung (22) zum Vergleichen einer Winkelkomponente, die durch periodisches Integrieren von gemessenen Winkelgeschwindigkeitsdaten abgeleitet wird, mit einer Winkelkomponente, die aus den gemessenen Beschleunigungsdaten abgeleitet wird, wenn das Fahrzeug in Ruhe ist, um so eine Rate des Auftretens einer Abweichung, die in den gemessenen Winkelgeschwindigkeitsdaten enthalten ist, abzuleiten und um eine Abweichungskomponente aus den gemessenen Winkelgeschwindigkeitsdaten anhand der Abweichungsauftrittsrate zu entfernen;

    einen nichtflüchtigen Speicher (13); und

    eine Speichersteuereinrichtung (12) zum sequentiellen Speichern von Meßdaten, die die Winkelgeschwindigkeitsdaten, die frei von der Abweichungskomponente sind, und die Beschleunigungsdaten enthalten, in dem Speicher, um so die in dem Speicher gespeicherten Meßdaten zu aktualisieren, wobei die Speichersteuereinrichtung (12) so beschaffen ist, daß sie bei Erfassung eines von einer externen Vorrichtung eingegebenen Befehls die in dem Speicher gespeicherten Meßdaten liest und sie an die externe Vorrichtung überträgt.


     
    13. Computerlesbares Speichermedium, das ein Computerprogramm speichert, das einen Computer dazu veranlaßt, die folgenden Schritte auszuführen:

    Erfassen von Winkelgeschwindigkeitsdaten und von Beschleunigungsdaten, die in einer Zeitfolge in bezug auf Achsen, die einen zwei- oder dreidimensionalen Raum definieren, gemessen werden;

    Vergleichen einer Winkelkomponente, die durch periodisches Integrieren der erfaßten Winkelgeschwindigkeit abgeleitet wird, und einer Winkelkomponente, die aus den erfaßten Beschleunigungsdaten abgeleitet wird, wenn das Fahrzeug in Ruhe ist, um so eine Rate des Auftretens einer Abweichung, die in den erfaßten Winkelgeschwindigkeitsdaten enthalten ist, abzuleiten;

    Entfernen einer Abweichungskomponente aus den erfaßten Winkelgeschwindigkeitsdaten anhand der Abweichungsauftrittsrate; und

    Ableiten von Fahrlagenwinkeln des Fahrzeugs aus den Winkelgeschwindigkeitsdaten, die frei von der Abweichungskomponente sind, und von Geschwindigkeiten des Fahrzeugs längs der Achsen des zwei- oder dreidimensionalen Raums aus den Fahrlagenwinkeln und den erfaßten Beschleunigungsdaten, um so Historiendaten der abgeleiteten Fahrlagenwinkel und der Geschwindigkeiten des Fahrzeugs zu erzeugen.


     


    Revendications

    1. Analyseur de déplacement de véhicule (2) comprenant :

    un moyen d'acquisition de données mesurées (21) pour acquérir des données de vitesse angulaire et des données d'accélération mesurées dans une séquence de temps par rapport à des axes définissant un espace à deux ou trois dimensions ;

    un moyen de correction des données mesurées (22) pour éliminer une composante de dérive contenue dans les données de vitesse angulaire acquises ; et

    un moyen de production de données historiques (23) pour déduire des angles d'attitude de déplacement du véhicule à partir des données de vitesse angulaire sans ladite composante de dérive, déduire des vitesses du véhicule le long des axes dudit espace à deux ou trois dimensions à partir desdits angles d'attitude de déplacement et desdites données d'accélération acquises et produire des données historiques desdits angles d'attitude de déplacement déduits et des vitesses du véhicule, dans lequel ledit moyen de correction de données mesurées compare un composant angulaire déduit par intégration périodique desdites données de vitesse angulaire acquises et un composant angulaire déduit desdites données d'accélération acquises quand le véhicule est immobile de manière à déduire un taux d'occurrence de dérive contenue dans lesdites données de vitesse angulaire, et dans lequel ledit moyen de correction de données mesurées élimine ladite composante de dérive desdites données de vitesse angulaire sur la base dudit taux d'occurrence de dérive.


     
    2. Analyseur de déplacement de véhicule selon la revendication 1, comprenant de plus un moyen de détection d'un instant d'occurrence d'un choc sur le véhicule et d'un instant auquel le véhicule stoppe après l'occurrence du choc, dans lequel ledit moyen de production de données historiques (23) est configuré pour déduire les angles d'attitude de déplacement au moment où le véhicule stoppe comme valeurs initiales et pour déduire ensuite les angles d'attitude de déplacement et les vitesses avant que le véhicule ne stoppe en utilisant lesdites valeurs initiales.
     
    3. Analyseur de déplacement de véhicule selon la revendication 2, comprenant de plus un moyen de traitement (27) desdits angles d'attitude de déplacement et vitesses du véhicule déduits par ledit moyen de production de données historiques de manière à exprimer visuellement un historique de déplacement du véhicule.
     
    4. Analyseur de déplacement de véhicule selon la revendication 3, dans lequel ledit moyen de traitement est configuré pour exprimer visuellement l'historique de déplacement du véhicule pendant un temps donné en remontant le temps à partir du moment où le véhicule a stoppé.
     
    5. Analyseur de déplacement de véhicule selon la revendication 3, dans lequel ledit moyen de traitement est configuré pour exprimer visuellement l'historique de déplacement du véhicule pendant un temps donné en allant vers l'instant où le véhicule a stoppé.
     
    6. Analyseur de déplacement de véhicule selon les revendications 3, 4 ou 5, dans lequel ledit moyen de traitement est un dispositif extérieur.
     
    7. Système d'enregistrement et d'analyse de déplacement de véhicule comprenant un analyseur de déplacement de véhicule (2) selon l'une quelconque des revendications précédentes et un enregistreur de conduite de véhicule (1) pour mesurer les données de vitesse angulaire et les données d'accélération afin de les passer en entrée à l'analyseur de déplacement de véhicule, ledit enregistreur de conduite de véhicule comprenant :

    une section capteur (10x, y, z ; 11x, y, z) pour détecter les données de vitesse angulaire et les données d'accélération, dans une séquence de temps, par rapport aux axes définissant un espace à deux ou trois dimensions ;

    une mémoire non volatile (13) pour stocker les données de vitesse angulaire et les données d'accélération pendant une période de temps donnée ; et

    un moyen de contrôle mémoire (12) pour stocker séquenciellement des ensembles des données de vitesse angulaire et des données d'accélération, chacune avec un temps de mesure correspondant, dans ladite mémoire de manière à mettre à jour les données de vitesse angulaire et les données d'accélération stockées dans ladite mémoire, et pour lire les données de vitesse angulaire et les données d'accélération stockées dans ladite mémoire et les transférer audit analyseur de déplacement de véhicule, sur détection d'une entrée d'ordre venant dudit analyseur de déplacement de véhicule.


     
    8. Système selon la revendication 7, dans lequel ledit moyen de contrôle mémoire comprend de plus :

    une section de détection de choc (122) pour analyser lesdites données mesurées pour détecter la présence ou l'absence de l'occurrence d'un choc ; et

    une section de régulation de stockage (123) pour réguler la mise à jour de données réalisée par une section de traitement de stockage des données mesurées (121), sur détection de l'occurrence d'un choc par ladite section de détection de choc, de manière à assurer la rétention des données mesurées pendant une première période de temps donnée avant et après l'occurrence du choc dans ladite mémoire.


     
    9. Système selon la revendication 8, dans lequel ladite section de régulation de stockage est configurée pour réguler la mise à jour des données réalisée par ladite section de traitement de stockage de données mesurées, en fixant une seconde période de temps donnée pour la mise à jour supplémentaire de données par ladite section de traitement de stockage des données mesurées, sur ladite détection de l'occurrence d'un choc par ladite section de détection de choc, de manière à assurer la rétention des données mesurées pendant ladite première période de temps donnée avant et après l'occurrence du choc, dans ladite mémoire.
     
    10. Système selon les revendications 7, 8 ou 9, dans lequel ladite section de capteur comprend trois tachymètres angulaires (10x, y, z) configurés pour correspondre aux axes d'un espace à trois dimensions et au moins un accéléromètre (11x, y, z) configuré pour correspondre à au moins un des axes de l'espace à trois dimensions et dans lequel ladite section de capteur est configurée pour sortir une séquence de valeurs mesurées desdits tachymètres angulaires et dudit au moins un accéléromètre comme dite donnée mesurée.
     
    11. Système selon la revendication 10, dans lequel lesdites données mesurées contiennent des unités de données, chacune assignée à une information de temps représentant un temps de mesure et dans lequel chaque unité de donnée contient les valeurs mesurées desdits tachymètres angulaires et dudit au moins un accéléromètre mesurées au même instant de mesure.
     
    12. Enregistreur de conduite de véhicule (1) comprenant :

    une section de capteur (10x, y, z ; 11x, y, z) pour mesurer des données de vitesse angulaire et des données d'accélération, dans une séquence de temps, par rapport à des axes définissant un espace à deux ou trois dimensions ;

    un moyen de correction de données mesurées (22) pour comparer un composant angulaire déduit par intégration périodique des données de vitesse angulaire mesurées et un composant angulaire déduit des données d'accélération mesurées quand le véhicule est immobile de manière à déduire un taux d'occurrence de dérive contenu dans les données de vitesse angulaire mesurées, et pour éliminer une composante de dérive des données de vitesse angulaire mesurées sur la base dudit taux d'occurrence de dérive ;

    une mémoire non volatile (13) ; et

    un moyen de contrôle mémoire (12) pour stocker séquentiellement des données mesurées comprenant les données de vitesse angulaire corrigées de ladite composante de dérive et les données d'accélération dans ladite mémoire de manière à mettre à jour les données mesurées stockées dans ladite mémoire, et qui est configuré, sur détection d'une entrée d'ordre provenant d'un dispositif extérieur, pour lire les données mesurées stockées dans ladite mémoire et les transférer vers le dispositif externe.


     
    13. Médium de stockage lisible par ordinateur stockant un programme d'ordinateur, ledit programme provoquant l'exécution par un ordinateur des étapes suivantes :

    l'acquisition de données de vitesse angulaire et de données d'accélération, mesurées dans une séquence de temps, par rapport à des axes définissant un espace à deux ou trois dimensions ;

    la comparaison d'un composant angulaire déduit par intégration périodique de la vitesse angulaire acquise et d'un composant angulaire déduit des données d'accélération acquises quand le véhicule est immobile de manière à déduire un taux d'occurrence de dérive contenu dans les données de vitesse angulaire acquises ;

    l'élimination d'une composante de dérive des données de vitesse angulaire acquises sur la base dudit taux d'occurrence de dérive ; et

    la déduction des angles d'attitude de déplacement du véhicule à partir des données de vitesse angulaire corrigées de ladite composante de dérive et des vitesses du véhicule le long des axes de l'espace à deux ou trois dimensions à partir desdits angles d'attitude de déplacement et desdites données d'accélération acquises de manière à produire des données historiques desdits angles d'attitude de déplacement déduits et des vitesses du véhicule.


     




    Drawing