(19)
(11) EP 1 173 666 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
02.06.2004 Bulletin 2004/23

(21) Application number: 00927945.6

(22) Date of filing: 27.04.2000
(51) International Patent Classification (IPC)7F02D 41/06, F02D 41/34
(86) International application number:
PCT/NL2000/000275
(87) International publication number:
WO 2000/065217 (02.11.2000 Gazette 2000/44)

(54)

METHOD AND SYSTEM FOR STARTING COMBUSTION ENGINES

VERFAHREN UND ANLAGE ZUM ANLASSEN VON BRENNKRAFTMASCHINEN

PROCEDE ET SYSTEME DE DEMARRAGE DE MOTEURS A COMBUSTION


(84) Designated Contracting States:
DE FR IT SE

(30) Priority: 27.04.1999 NL 1011907

(43) Date of publication of application:
23.01.2002 Bulletin 2002/04

(73) Proprietor: Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
2628 VK Delft (NL)

(72) Inventors:
  • BERENDSEN, Jan, Marten
    NL-3732 VM De Bilt (NL)
  • VOOGD DE, Adrianus
    6780 Messancy (BE)
  • NYTOMT, Jan
    S-662 31 Amal (SE)
  • RASK, Patrik
    S-662 36 Amal (SE)

(74) Representative: Prins, Adrianus Willem, Mr. Ir. 
Vereenigde, Nieuwe Parklaan 97
2587 BN Den Haag
2587 BN Den Haag (NL)


(56) References cited: : 
GB-A- 1 567 041
US-A- 5 605 138
US-A- 5 579 737
US-A- 5 690 073
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for starting combustion engines according to the preamble of claim 1, and a system used for the application of the present method.

    [0002] Such a method is known from British patent application GB-A-1 567 041, which discloses a method comprising the steps of providing fuel injectors for each of a plurality of combustion chambers and during the first full revolution of the engine during cranking, in which a first of the chambers is provided with a specific A/F mixture ratio A/F1 using a first fuel amount F1. The second, third, etc., chambers of the engine are supplied with reduced ratios A/F1, A/F2, etc., reduced stepwise by increasing the fuel amounts F2, F3, etc. stepwise.

    [0003] Furthermore, a method for starting combustion engines is known from US-A-5.605.138, in which a method for starting engines with another type of fuel is described, wherein the amount of fuel supplied is established from a basic value. Depending on the change of engine rotation speed during starting, it is determined whether or not a correction to the basic value of the amount of fuel supplied is necessary. For instance, the fuel amount supplied can be increased by some 20% after each 2nd revolution when no ignition occurs. This gradual increase is repeated until the engine catches up speed.

    [0004] In US-A-5.579.737 another method is shown, wherein a possible refuelling event is detected. If no refuelling event is detected, the fuel correction established in the latest driving cycle is used. If refuelling is detected then the fuel correction is reset to a default value.

    [0005] In US-A-3.982.519 yet another method for fuel enrichment during engine cranking is shown, wherein an under-stoichiometric amount of fuel for combustion is applied initially during starting. An incremental increase of the fuel amount is thereafter applied in parallel with the cranking process.

    [0006] A method of supplying fuel to an internal combustion engine during start-up with a monotonous increase of fuel during cranking is shown in US-A-4.438.748.

    [0007] In most combustion engines, which may run on either gasoline, diesel, LPG or natural gas, the fuel injection system adapts to the quality and properties of the fuel used. Starting engines with a different kind of fuel than the fuel used previously, could cause starting problems. In most cases the fuel system has been able to adapt to the fuel previously used, and has established some kind of correction or adaptation for the fuel supply.

    [0008] A different kind of fuel could correspond to either of different blends of natural gas having differing calorific values, or different mixtures of gasoline/methanol for flexible fuel engines, or different blends of gasoline or diesel having differing octane or cetane numbers respectively, or gasoline having differing volatility.

    [0009] Other solutions implemented in systems capable of being started with a different kind of fuel, have used some intermediate fuel tank. The intermediate fuel tank is isolated from the main fuel tank in a controlled manner. The purpose of such an intermediate fuel tank is to be able to start at the same kind of fuel as the fuel used previously, i.e. before shut-off. Even if the engine was run on pure gasoline before shut-off, and refuelled with methanol in the main fuel tank, the engine could be started successfully. Once the engine is started, the content of the intermediate tank will gradually assume the same quality as the fuel contained in the main fuel tank.

    [0010] Other solutions comprise a fuel-quality sensor, but these sensors have demonstrated a low degree of reliability, and will also increase the cost for the fuel system considerably.

    [0011] One problem with the prior art using incremental increase of fuel from a basic "lean" air-fuel mixture, is that a number of misfires occurs in all cylinders before the engine is started successfully. This is an unwanted situation with regard to environmental concerns as unburnt fuel will exit and the emission levels of hydrocarbons will increase. Also, the starting of the engine will take longer than necessary, leading to draining of the battery. A problem with solutions using intermediate fuel tanks is that a number of valves and fuel pumps must be implemented, increasing the cost of the system considerable.

    [0012] An object of the invention is to provide a method and system for controlling fuel supply during start-up, in which the aforementioned disadvantages of the prior art methods and systems are avoided.

    [0013] This object is achieved by a method according to the preamble of claim 1, having the characterising features of the characterising part of claim 1. With the inventive method, the proper air-fuel ratio for successful start of an engine can be found more quickly, by using different air-fuel ratios in each of the combustion chambers. Because of the quicker start-up of the engine, the possibility of draining the battery during the start attempts will decrease. Also, a quicker start-up of the engine will lead to a reduction of levels of hydrocarbons.

    [0014] The method also allows an even distribution of air-fuel ratios over the different combustion chambers, allowing a quicker detection of the proper air-fuel ratio needed for ignition. Preferably, the first predetermined amount is equal to the first air-fuel ratio minus a second air-fuel ratio, divided by the number of combustion chambers of the engine minus one. E.g., the first air-fuel ratio is the highest air-fuel ratio perceivable for the engine, and the second air-fuel ratio is the lowest air-fuel ratio perceivable for the engine. In this manner, the full range of possible air-fuel ratios is covered by all combustion chambers, and a successful ignition is likely to occur in one of the combustion chambers.

    [0015] In a further embodiment of the method according to the invention, the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber, is controlled to a second predetermined amount above the air-fuel ratio in the first combustion chamber during a predetermined number of cycles. This will realise a forced ventilation of the combustion chambers which initially received a too rich air-fuel mixture.

    [0016] In a still further embodiment, the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber, is controlled to a second predetermined amount below the air-fuel ratio in the first combustion chamber during a predetermined number of cycles, after detection of consecutive combustion and non-combustion in the first combustion chamber, in order to verify whether a slightly lower air-fuel ratio is needed for successful ignition. Detection of alternating combustion and non-combustion may be an indication that the air-fuel ratio in that combustion chamber is somewhat low for proper ignition, the alternating combustions being caused by recirculation of fuel from the previous cycle without combustion. This embodiment, therefore, provides a more reliable start-up of the engine. As an alternative, the second predetermined amount is determined by a recirculation model of residual fuel in said combustion chambers of the engine.

    [0017] In a further embodiment of the method according to the invention, the air-fuel ratio in all said combustion chambers is reduced by a third predetermined amount when no successful ignition has been detected during a predetermined number of cycles. In some internal combustion engines, specifically those using Natural Gas, the tolerance for the proper air-fuel ratio for ignition may be very narrow. It may, therefore, happen that none of the air-fuel ratios in the combustion chambers will lead to a successful ignition. By equally changing all air-fuel ratios by a third predetermined amount (reduction or increment) during a predetermined number of cycles, an air-fuel ratio leading to combustion in one of the combustion chambers may be found. Preferably, the predetermined number of cycles is in a range between 2 and 10, for example 4.

    [0018] In a preferred embodiment of the method according to the present invention, the method is only applied after detection or anticipation of a difficult starting condition, such as a refuelling event, a short operation of the engine, or a long period of non-operation of the engine. In these circumstances, a change of the quality or other properties of the fuel used may have occurred, necessitating the use of the method according to the invention. In other circumstances, the engine will probably start quickly with the present settings of the fuel system.

    [0019] A second aspect of the present invention relates to a system for controlling fuel supply to a combustion engine, according to claim 13.

    [0020] A third aspect of the present invention relates to a computer readable medium comprising a software program according to claim 25.

    [0021] In the following the present invention is described in more detail by describing exemplary embodiments of the invention. The description of embodiments is made by reference to the figures specified in the following list of figures.

    Fig. 1 shows schematically a combustion engine with starting and fuel supply systems;

    Fig. 2 shows a flow diagram of a control algorithm for the fuel supply;

    Fig. 3 shows how air-fuel ratio is changed between cylinders during cranking,

    Fig. 4 shows an alternative change of air-fuel ratio with incremental change of air-fuel ratio during cranking, and

    Fig. 5 shows an alternative change of air-fuel ratio according the inventive method with a forced ventilation of combustion chambers with indicated excessively rich air-fuel mixture.



    [0022] In Fig. 1 a combustion engine 1 is shown with four combustion chambers 4a...4d. The engine is equipped with an inlet manifold 2 and an exhaust manifold 3. Air for combustion is drawn into the combustion chambers via filter 20 and an air mass meter 22. The air mass meter 22 may be of the "hot-wire" type, by which the total mass drawn into the combustion chambers can be determined. Fuel is supplied to the individual cylinders 4a...4d from a main fuel tank 10, using a fuel pump 11 supplying fuel to the fuel rail 12 via fuel supply line 14. In Fig. 1 also an intermediate volume 17 is shown, which volume could visualise any intermediate volume between the main fuel tank 10 and the fuel rail 12. Such intermediate volumes could be formed by fuel feed lines, fuel filters and fuel pressure accumulators etc., and could add up to considerable volumes.

    [0023] In conventional fuel supply systems often a fuel return line 15 is installed between the fuel rail 12 and the fuel tank 10. The purpose of the return line 15 is to assure a certain continuous flow of fuel in the fuel rail 12, avoiding vapour lock problems caused by high engine temperatures. In other systems with no risk for vapour lock problems the fuel pump 11 could instead be controlled by a pressure sensor in the fuel rail 12, such that the pressure level is kept at an appropriate level. The fuel tank 10 is further provided with a fill opening 16 and a fuel quantity sensor 18.

    [0024] The amount of fuel being supplied to each individual cylinder 4a...4d is controlled by fuel injectors 13 (only the right hand injector for cylinder 4d indicated in Fig. 1). The duration of opening of the injectors is controlled by an Electronic Control Module ECM depending on detected engine operation parameters. By controlling the amount of fuel injected in each cylinder 4a...4d, the ECM actually controls the air-fuel ratio in each cylinder 4a...4d, as the air mass is known from the air mass meter 22. The ECM is provided with a memory module 21 for storing data.

    [0025] The ECM detects the prevailing operational parameters of the engine in a conventional manner by using a coolant temperature sensor 6, an engine speed sensor 5, an inlet manifold pressure sensor 23 and/or the air mass meter 22.

    [0026] From a lambda sensor 7 located in the exhaust manifold 3 also feed-back information relating to the air-fuel ratio can be obtained. The lambda sensor 7 is conventionally located in the exhaust stream before a catalytic converter 8. In some systems also a second lambda sensor could be used after the catalytic converter 8, mainly for diagnostic purposes of the converter 8. However, this information cannot be used when starting the engine 1, as the lambda sensor 7 does not function reliably when cold.

    [0027] With a starter motor 9 engaging cogs at the periphery of a flywheel (not shown), the engine can be started.

    [0028] In Fig. 2 a flow-chart is shown of a software program describing the method during starting of an engine of a type as shown in Fig. 1.

    [0029] The software is installed in the ECM. When a starting attempt is detected in decision block 40, which occurs simultaneously with or shortly before activation of the starter motor, then the program proceeds to program sequence 41, wherein a test is made whether or not a difficult starting condition is detected or anticipated. Otherwise, the procedure returns to its starting position. A difficult starting condition is any type of condition wherein the engine 1 is intended to be started with a different type of fuel quality than the fuel quality used before the shut-off, the latter fuel quality hereafter designated as old fuel. This can be the case after refuelling the fuel tank 10, after a relatively short drive, or after a long parking period.

    [0030] Combustion engines operating with natural gas could use fuel qualities with substantial difference in calorific value. Combustion engines operating with different mixtures of methanol and gasoline, i.e. all mixtures from 100% methanol to 100% gasoline, could also use fuel qualities with substantial difference in calorific value/octane numbers.

    [0031] Also combustion engines being operated at standard fuels such as diesel and gasoline, could use fuel qualities with different octane numbers and cetane values, respectively. Also, in the case of gasoline, the volatility of the fuel may be different.

    [0032] A different fuel could be supplied during starting if the main fuel tank 10 has been refuelled. A flexible fuel engine 1, operating on any mixtures of methanol and gasoline, could have been operated on pure gasoline before stopping for refuelling. If methanol is refuelled to the main tank, only having a small residual volume of gasoline in the order of some litres, then the overall mixture within the main fuel tank 10 would assume an almost pure methanol content.

    [0033] In most fuel systems, a remaining quantity of the old fuel is always present in the fuel system, and a starting attempt could in most cases be successful. However, the new fuel is immediately supplied by the pump 11, and the combustion chambers 4a...4d are subjected to a transient change from the old fuel to the new mixture in the main tank 10.

    [0034] If such transient change is made with a running engine 1, an adaptation to the new fuel quality could be made. Once the lambda sensor 7 reaches its operational temperature, a feedback signal is obtained from the combustion process indicative for the present air-fuel mixture. If the new fuel is of inferior quality a correction factor can be established, which correction factor will bring about an increase of fuel amount supplied, and hence a lower air-fuel ratio.

    [0035] Detection of a refuelling event could be made by using a fuel quantity sensor 18 in the fuel tank 10, as illustrated in Fig. 1. The signal from the level indicator 18 is sent to the ECM, and by comparison with a previous level value stored in a memory 21 of the ECM, a refuelling event can be distinguished. In the case of CNG (compressed natural gas) engines, refuelling can be detected by a pressure sensor in the gas fuel tank 10. Alternatively, a refuelling sensor in the fill opening 16 of the fuel tank 10 can be used.

    [0036] In an alternative embodiment, used in systems where a refuelling detector is not implemented, a difficult starting condition may instead be assumed or anticipated if the engine has been operated during a predetermined short time. The last time period for an uninterrupted operation of the engine could be stored in the memory 21 of the ECM. If the last time period is close to a time period equivalent to the time period needed to consume the old fuel remaining in the fuel system, then a difficult starting condition could be present and indicated.

    [0037] Another difficult starting condition could correspond to a relatively long parking period. Especially if the fuel supply system is of a kind wherein a rather small volume of fuel is retained in the system between the tank 10 and the injectors 13, and/or if the fuel retained in the system between the tank 10 and the injectors 13 is easily drained back to the tank 10.

    [0038] If either of above conditions indicative for a difficult starting condition is detected or anticipated, the program proceeds to program sequence 42 wherein the correction factor established during the latest engine operation period is reset, e.g to 1.0. I.e. any offset of fuel amount determined to be necessary in order to obtain proper operation of the engine, is reset to a zero value.

    [0039] In the next program sequence 43 the necessary fuel amount to be injected by each individual fuel injector 13 of cylinders 4a...4d (FCYL1-FCYL4) is determined from the map stored in the memory 21 and a correction of the fuel amount for individual cylinders 4a...4d according to the present method. As noted earlier, controlling the amount of fuel to be injected by each individual fuel injector 13 also controls the air-fuel ratio in each cylinder 4a...4d.

    [0040] The map is empirically determined, and for each combination of at least speed, load and temperature of the engine 1 a fuel amount is given by said map. In this example it is assumed that the map is determined for the best possible fuel perceivable by the engine 1. I.e. for each operation condition a rather small fuel volume is needed for proper combustion, and any correction of that basic fuel volume would cause a change in fuel volume. In practice the map would contain an average opening duration for the injectors 13.

    [0041] Program sequence 43 is explained also by reference to Fig. 3. The fuel volume selected for cylinder 4a, FCYL1, could be given by the amount indicated by the map, i.e. MAP_FUEL, and the correction factor CF. If the above assumption that the map is obtained for the best available fuel quality is correct, the amount of fuel injected to FCYL1 would correspond to the volume given by the map. The relative air-fuel ratio obtained in cylinder 4a is shown in Fig. 3 by the dotted line starting at A/F1 at the vertical A/F axis, e.g. at the leanest possible A/F-ratio perceivable by the engine 1.

    [0042] The fuel volume for cylinder 4b, FCYL2, could be given by the same amount as selected for cylinder 4a with a small additional amount Δf. The additional amount Δf is selected such that the air-fuel ratio obtained in the cylinders 4a...4d by the injected volume would differ by a fraction 1/X, where X is the number of cylinders of the engine, and within the range from the substantially leanest possible to the substantially richest possible air-fuel mixture perceivable by said engine 1. The fuel amount selected for cylinder 4b in a four cylinder engine could thus be expressed as;



    [0043] The relative air-fuel ratio obtained in cylinder 4b is shown in Fig. 3 by the hashed line starting below A/F1 at the vertical A/F axis, i.e. below the dotted line initially corresponding to the leanest possible A/F-ratio perceivable by the engine 1 as injected in cylinder 4a.

    [0044] In a similar manner the fuel amount is selected for cylinder 4c such that the air-fuel ratio obtained in the cylinder 4c is increased by a further amount Δf; i.e. expressed as;



    [0045] The relative air-fuel ratio obtained in cylinder 4c is shown in Fig. 3 by the dash-dot line.

    [0046] For the last and "richest" cylinder 4d the air-fuel ratio obtained in the cylinder 4d would be increased by a further amount; i.e. expressed as;



    [0047] The relative air-fuel ratio obtained in cylinder 4d is shown in Fig. 3 by the dash-double-dot line.

    [0048] As could be seen in Fig. 3 this is the "richest" condition obtained initially in cylinder 4d at a distance Δf from the richest possible condition perceivable by the engine, i.e. indicated by A/F2 at the vertical axis A/F.

    [0049] The leanest and richest possible conditions perceivable by the engine correspond in practice to the shortest and longest opening time for the injector, with the fuel qualities commercially available. The limits A/F1 and A/F2 could be adjusted if any extreme type of fuel quality should be obtained.

    [0050] When the engine 1 is cranked by the starter motor, cylinders 4a...4d are given different air-fuel ratios for each cylinder. The actual air-fuel ratio for each cylinder is maintained in Fig. 3 for the first three cycles. In the figure, it is indicated that a successful ignition is obtained in cylinder 4c for the 2nd and 3rd cycle. In this example a successful ignition is considered to be established if two consecutive combustions have been obtained in one individual cylinder 4a...4d. If the successful ignition is detected in program sequence 44 (see Fig. 2), then the program proceeds to sequence 47.

    [0051] If no combustion has been detected the other cylinders 4a, 4b and 4d, during the 2nd and 3rd cycle, the fuel amount for at least cylinders 4a and 4b is changed immediately to the same fuel amount used for cylinder 4c wherein a successful ignition has occurred.

    [0052] However, cylinders wherein the air-fuel mixture is somewhat richer than the air fuel mixture of cylinders experiencing successful combustion, may require an alternative approach. For a cylinder with richer than optimal mixture, such as cylinder 4d in Fig. 3 it could be advantageous to subject the cylinder 4d to some forced ventilation. By a control of the fuel supply for a rather limited number of cycles, such that a fuel supply normally would cause a leaner than optimum air-fuel mixture, a ventilation effect can be obtained. This somewhat leaner than optimum control is indicated in Fig. 3 for cylinder 4d from cycle 3 to cycle 5, with an amount of ΔfCORR less fuel than the optimal air-fuel ratio A/Fideal.

    [0053] In Fig. 4 an alternative approach is shown, which method advantageously could be implemented in applications where a relatively narrow air-fuel ratio is requested in order to obtain a successful ignition. Such applications could be found with engines 1 being operated on fuel exhibiting a rather wide range of fuel qualities. Even though the injectors 13 are configured initially during cranking such that the air-fuel ratios obtained are evenly distributed within the perceivable range of the engine 1, a starting problem may occur, i.e. no combustion occurs in any cylinder 4a...4d.

    [0054] In such circumstances it becomes necessary to implement additional routines to overcome this problem. These routines are indicated in blocks 45 and 46 of the flow diagram of Fig. 2. If no ignition occurs the flow diagram continues from decision block 44 to block 45. If the engine refuses to start for a predetermined number of cycles, e.g. 6 cycles in Fig. 4, which is detected in block 46 of Fig. 2, then the fuel amount to each individual injector is increased by predetermined amount ΔfSTEP, leading to lower air-fuel ratios A/F. This can for example be implemented by increasing the correction factor CF in block 46 of Fig. 2, after which the flow diagram continues with block 43 for determining the air-fuel ratio to be supplied to each cylinder 4a...4d.

    [0055] The predetermined amount ΔfSTEP by which the fuel amount is increased is only a fraction of the difference in fuel volume Δf supplied to another combustion chamber 4a...4d obtaining the closest but different air-fuel ratio A/F.

    [0056] An additional incremental increase is initiated in an individual combustion chamber when a number of compression strokes in that combustion chamber have passed a number within a range of 2-10 compression strokes, preferably 4.

    [0057] If no successful combustion is obtained, then any further incremental increase is interrupted when the increased air-fuel ratio for one cylinder 4a...4d is approaching the air-fuel ratio initially used in the next "richer" cylinder 4a...4d. In this case, the first and second predetermined amounts Δf, ΔfSTEP may be made smaller, and the method is again applied.

    [0058] In Fig. 4 it is shown that two incremental increase steps ΔfSTEP have been initiated before a first successful combustion is detected, followed by a detected missing combustion and thereafter a detected second successful combustion. Such a combustion sequence with alternating combustion and non-combustion, is a typical behaviour if the air fuel mixture is somewhat lean, and the residual amount of fuel from a preceding non-combustion event is sufficient to cause the right air-fuel mixture for successful ignition of the air-fuel mixture.

    [0059] In this case, all combustion chambers 4a...4d with a leaner air-fuel ratios A/F are changed to the same air-fuel ratio as the combustion chamber 4a...4d in which the first successful combustion was detected. The fuel supplied to the combustion chamber or chambers, here cylinder 4d, with richer air-fuel mixture is thereafter decreased in steps. After yet another third incremental increase step ΔfSTEP has been initiated to the fuel supply of cylinders 4a, 4b and 4c, a reliable combustion is detected at each ignition event in cylinders 4a...4c.

    [0060] An advantage with such an approach is that at least three cylinders 4a...4c could be controlled such that a successful combustion is obtained rapidly in each of the three cylinders 4a...4c, and the fourth remaining combustion chamber is only gradually changed in order to be able to determine if a somewhat richer air-fuel mixture is needed.

    [0061] In Fig. 5 an alternative approach is shown, which method advantageously could be implemented in applications where wall-wetting problems occur or if large amounts of residual fuel could be contained within a combustion chamber 4a...4d after a misfire. In this embodiment an extended forced ventilation is initiated in those combustion chambers 4a...4d found to have been supplied with an excessively rich mixture. When the "ideal" (indicated at the vertical axis) air-fuel mixture A/Fideal is found for cylinders 4a-4c, causing a successful combustion in each cylinder, an excessive lean-out control is implemented for the richer than ideal combustion chamber 4d. In this embodiment, the fuel amount to be injected is altered to the same amount as supplied initially to the cylinder 4c having a next leaner to the ideal air-fuel mixture A/Fideal. In this case, the fuel amount for cylinder 4d is altered to the same amount as initially supplied to cylinder 4c.

    [0062] After this alteration the fuel amount is increased by a small incremental amount, ΔfCORR; for a predetermined number of cycles at a time, and at least until the same fuel amount is supplied to cylinder 4d as to the remaining cylinders 4a..4c.

    [0063] In the embodiments shown, the combustion chamber numbers, i.e. 4a...4d, may correspond to the order of the cylinders in the engine block, as counted from the front end of the engine. In Fig. 1, cylinders 4a, 4b, 4c and 4d would then correspond to cylinders 4a, 4b, 4c and 4d in Fig. 3-5, respectively. Cylinders 4a to 4d as indicated in Fig. 3-5 could also correspond to the ignition order.

    [0064] Alternative modes of implementation could be made. If a different air-fuel ratio A/F is obtained in at least two combustion chambers 4a...4d, and a successful combustion is detected in each 2nd ignition event in any specific cylinder, it could be assumed that natural recirculation of residual fuel could cause the successful combustion. If the engine has a predictable behaviour model as concerns the amount of recirculation of residual fuel from an ignition event without combustion, this model could be used to increase fuel with a step rate ΔfCORR as a function of the model.

    [0065] Even after having controlled the air-fuel ratio A/F such that a successful combustion occurs at each ignition event, a further stepwise change of fuel can be implemented. Such a stepwise change of the fuel amount supplied, could be controlled in a closed-loop manner in a fuel increase as well as fuel decrease direction. Such closed loop information could be obtained in a number of ways. One method is to observe the momentary acceleration of the crankshaft, i.e. by using the rpm-sensor 5. Such an rpm-sensor 5 could be of the 72-x type, with 72 cogs arranged at the periphery of the flywheel and detected by said rpm-sensor. By measuring the time between two cogs passing the sensor, the momentary acceleration can be detected. A successful combustion could be detected when the acceleration value is above a certain threshold. An improved combustion could also be detected by an increase of the momentary acceleration value.

    [0066] Another method for detecting a successful combustion could use sensors mounted in the combustion chamber, detecting the actual combustion. Such sensors could be ionisation sensors, pressure-sensors or light-sensors, which detects ionisation, pressure increase or the intensity of light respectively. The invention is not restricted to the kind of combustion detection means.

    [0067] Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specification disclosure herein, but only by the appended claims.


    Claims

    1. Method for controlling fuel supply during start-up of a combustion engine having at least two combustion chambers, in which the air-fuel ratio (A/F) in each of said combustion chambers (4a...4d) is controlled in such a manner that the air-fuel ratio (A/F) obtained is different for each of said combustion chambers (4a...4d), the air-fuel ratio (A/F) in a first of said combustion chambers (4a...4d) is controlled to a first air-fuel ratio (A/F1), and in that the air-fuel ratio (A/F) for each of the other of said combustion chambers (4a...4d) is reduced from the first air-fuel ratio (A/F1) by respective steps of a first predetermined amount (Δf), and in which after detection of a successful ignition in a first of said combustion chambers (4a...4d), the air-fuel ratio (A/F) in at least one of the other of said combustion chambers (4a...4d) is controlled to be substantially equal to the air-fuel ratio of the first combustion chamber (A/Fideal), characterized in that a successful ignition is detected when a predetermined number of consecutive combustions is detected in one of the combustion chambers (4a...4d).
     
    2. Method according to claim 1, in which the first predetermined amount (Δf) is equal to the first air-fuel ratio (A/F1) minus a second air-fuel ratio (A/F2) divided by the number of combustion chambers (4a...4d) of the engine (1) minus one.
     
    3. Method according to claim 1, in which the first air-fuel ratio (A/F1) is the highest air-fuel ratio (A/Fmax) perceivable for the engine (1), and the second air-fuel ratio (A/F2) is the lowest air-fuel ratio (A/Fmin) perceivable for the engine (1).
     
    4. Method according to claim 1, in which the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber, is controlled to a second predetermined amount (ΔFCORR) above the air-fuel ratio in the first combustion chamber (A/Fideal) during a predetermined number of cycles.
     
    5. Method according to claim 1, in which, after detection of consecutive combustion and non-combustion in the first combustion chamber, the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber, is controlled to a second predetermined amount (ΔfCORR) below the air-fuel ratio in the first combustion chamber (A/Fideal) during a predetermined number of cycles, in order to verify whether a slightly lower air-fuel ratio is needed for successful ignition.
     
    6. Method according to claim 5, in which the second predetermined amount (ΔfCORR) is determined by a recirculation model modelling the recirculation of residual fuel in said combustion chambers (4a...4d) of the engine (1), which is not ignited.
     
    7. Method according to claim 4, in which the second predetermined amount (ΔfCORR) is reduced stepwise until the air-fuel ratio in the second combustion chamber is substantially equal to the air-fuel ratio in the first combustion chamber (A/Fideal).
     
    8. Method according to claim 5, in which the second predetermined amount (ΔfCORR) is reduced stepwise until the air-fuel ratio in the second combustion chamber is substantially equal to the air-fuel ratio in the first combustion chamber (A/Fideal).
     
    9. Method according to claim 1, in which when no successful ignition has been detected during a predetermined number of cycles, the air-fuel ratio (A/F) in all said combustion chambers (4a...4d) is changed by a third predetermined amount (Δfstep).
     
    10. Method according to claim 9, in which the predetermined number of cycles is in a range between 2 and 10, for example 4.
     
    11. Method according to claim 1, in which a successful ignition in a combustion chamber (4a...4d) is detected by detection of acceleration of the crankshaft of the engine (1), ionisation in a combustion chamber (4a..4d), pressure increase in a combustion chamber (4a...4d) or a change in light intensity in a combustion chamber (4a...4d).
     
    12. Method according to claim 1, in which the method is only applied after detection or anticipation of a difficult starting condition, such as a refuelling event, a short operation of the engine (1), or a long period of non-operation of the engine (1).
     
    13. System for controlling fuel supply to a combustion engine, in which the combustion engine comprises at least two combustion chambers and at least one individual injector for supplying fuel to each individual combustion chamber, the system comprising:

    - memory means for storing:

    - a predetermined amount of fuel to be supplied dependent of operating conditions of the combustion engine, and

    - correction values established during operation of the engine and needed in order to obtain optimum efficiency from the combustion engine by correcting the predetermined amount of fuel to be supplied dependent of operating conditions of the combustion engine;

    - combustion detection means for detecting a combustion in any of said combustion chambers,

    - processor means which are arranged for controlling the air-fuel ratio (A/F) in each of said combustion chambers (4a...4d) in such a manner that the air-fuel ratio (A/F) obtained is different for each of said combustion chambers (4a...4d), for controlling the air-fuel ratio (A/F) in a first of said combustion chambers (4a...4d) to a first air-fuel ratio (A/F1), and for reducing the air-fuel ratio (A/F) for each of the other of said combustion chambers (4a...4d) from the first air-fuel ratio (A/F1) by respective steps of a first predetermined amount (Δf), and for controlling, after detection of a successful ignition in a first of said combustion chambers (4a...4d), the air-fuel ratio (A/F) in at least one of the other of said combustion chambers (4a...4d) to be substantially equal to the air-fuel ratio of the first combustion chamber (A/Fideal), characterized in that the processing means are further arranged to detect a successful ignition when a predetermined number of consecutive combustions is detected in one of the combustion chambers (4a...4d).


     
    14. System according to claim 13, in which the first predetermined amount (Δf) is equal to the first air-fuel ratio (A/F1) minus a second air-fuel ratio (A/F2) divided by the number of combustion chambers (4a...4d) of the engine (1) minus one.
     
    15. System according to claim 13, in which the first air-fuel ratio (A/F1) is the highest air-fuel ratio (A/Fmax) perceivable for the engine (1), and the second air-fuel ratio (A/F2) is the lowest air-fuel ratio (A/Fmin) perceivable for the engine (1).
     
    16. System according to claim 13, in which the processing means are arranged for controlling the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber, to a second predetermined amount (ΔfCORR) above the air-fuel ratio in the first combustion chamber (A/Fideal) during a predetermined number of cycles.
     
    17. System according to claim 13, in which the processing means are arranged for controlling, after detection of consecutive combustion and non-combustion in the first combustion chamber, the air-fuel ratio of a second combustion chamber with a lower air-fuel ratio than the air-fuel ratio in the first combustion chamber to a second predetermined amount (ΔfCORR) below the air-fuel ratio in the first combustion chamber (A/Fideal) during a predetermined number of cycles, in order to verify whether a slightly lower air-fuel ratio is needed for successful ignition.
     
    18. System according to claim 17, in which the processing means are arranged for determining the second predetermined amount (ΔfCORR) using a recirculation model modelling the recirculation of residual fuel in said combustion chambers (4a...4d) of the engine (I), which is not ignited.
     
    19. System according to claim 16, in which the processing means are arranged for reducing the second predetermined amount (ΔfCORR) stepwise until the air-fuel ratio in the second combustion chamber is substantially equal to the air-fuel ratio in the first combustion chamber (A/Fideal).
     
    20. System according to claim 17, in which the processing means are arranged for reducing the second predetermined amount (ΔfCORR) stepwise until the air-fuel ratio in the second combustion chamber is substantially equal to the air-fuel ratio in the first combustion chamber (A/Fideal).
     
    21. System according to claim 13, in which the processing means are arranged for changing the air-fuel ratio (A/F) in all said combustion chambers (4a...4d) by a third predetermined amount (Δfstep) when no successful ignition has been detected during a predetermined number of cycles.
     
    22. System according to claim 21, in which the predetermined number of cycles is in a range between 2 and 10, for example 4.
     
    23. System according to claim 13, in which the processing means are arranged to detect a successful ignition in a combustion chamber (4a...4d) by detection of acceleration of the crankshaft of the engine (1), ionisation in a combustion chamber (4a..4d), pressure increase in a combustion chamber (4a...4d) or a change in light intensity in a combustion chamber (4a...4d).
     
    24. System according to claim 13, in which the processing means are arranged to be operative only after detection or anticipation of a difficult starting condition, such as a refuelling event, a short operation of the engine (1), or a long period of non-operation of the engine (1).
     
    25. Computer readable medium comprising a software program, which, after downloading of the program in a motor management system (ECM) provided with interface means for controlling a fuel supply system which provides fuel to at least one combustion chamber (4a...4d) of a combustion engine (1) and combustion detection means for detecting a combustion in the at least one combustion chamber, provides the motor management system with the functionality of the method according to one of the claims 1 through 12.
     


    Ansprüche

    1. Verfahren zur Steuerung der Brennstoffzufuhr beim Anlassen eines Verbrennungsmotors mit mindestens zwei Verbrennungskammern, bei dem das Luft-Brennstoff-Verhältnis (A/F) in jeder der verbrennungskammern (4a...4d) auf eine solche weise gesteuert wird, dass das erhaltene Luft-Brennstoff-verhältnis (A/F) für jede der Verbrennungskammern (4a...4d) verschieden ist, das Luft-Brennstoff-Verhältnis (A/F) in einer ersten der verbrennungskammern (4a...4d) auf ein erstes Luft-Brennstoff-Verhältnis (A/F1) gesteuert wird und bei dem das Luft-Brennstoff-Verhältnis (A/F) für jede der anderen der Verbrennungskammern (4a...4d) von dem ersten Luft-Brennstoff-Verhältnis (A/F1) um jeweilige Schritte einer vorgegebenen Menge (Δf) vermindert wird und bei dem nach Nachweisen einer erfolgreichen Zündung in einer ersten der Verbrennungskammern (4a...4d) das Luft-Brennstoff-Verhältnis (A/F) in mindestens einer der anderen der Verbrennungskammern (4a...4d) so gesteuert wird, dass es im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis der ersten verbrennungskammer (A/Fideal) ist, dadurch gekennzeichnet, dass eine erfolgreiche Zündung nachgewiesen ist, wenn eine festgelegte Anzahl von aufeinanderfolgenden Verbrennungen in einer der verbrennungskammern (4a...4d) nachgewiesen wird.
     
    2. Verfahren nach Anspruch 1, bei dem die erste vorgegebene Menge (Δf) gleich dem ersten Luft-Brennstoff-Verhältnis (A/F1) minus einem zweiten Luft-Brennstoff-Verhältnis (A/F2) , geteilt durch die Anzahl von verbrennungskammern (4a...4d) des Motors (1) minus Eins ist.
     
    3. Verfahren nach Anspruch 1, bei dem das erste Luft-Brennstoff-Verhältnis (A/F1) das höchste für den Motor (1) wahrnehmbare Luft-Brennstoff-Verhältnis (A/Fmax) ist und das zweite Luft-Brennstoff-Verhältnis (A/F2) das niedrigste bei dem Motor (1) wahrnehmbare Luft-Brennstoff-Verhältnis (A/Fmin) ist.
     
    4. Verfahren nach Anspruch 1, bei dem während einer vorgegebenen Anzahl von Zyklen das Luft-Brennstoff-Verhältnis einer zweiten Verbrennungskammer mit einem niedrigeren Luft-Brennstoff-Verhältnis als das Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer auf eine zweite vorgegebene Menge (ΔfCORR) oberhalb des ersten Luft-Brennstoff-Verhäztnisses in der ersten Verbrennungskammer (A/Fideal) gesteuert wird.
     
    5. Verfahren nach Anspruch 1, bei dem während einer vorgegebenen Anzahl von Zyklen nach Nachweisen von fortlaufender Verbrennung und Nicht-Verbrennung in der ersten Verbrennungskammer das Luft-Brennstoff-Verhältnis einer zweiten Verbrennungskammer mit einem niedrigeren Luft-Brennstoff-Verhältnis als das Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer auf eine zweite vorgegebene Menge (ΔfCORR) unterhalb des Luft-Brennstoff-verhältnisses in der ersten Verbrennungskammer (A/Fideal) gesteuert wird, um zu überprüfen, ob ein etwas niedrigeres Luft-Brennstoff-Verhältnis, für eine erfolgreiche Zündung notwendig ist.
     
    6. Verfahren nach Anspruch 5, bei dem die zweite vorgegebene Menge (ΔfCORR) durch ein Kreislaufmodell bestimmt wird, das den Kreislauf von restlichem Brennstoff in den Verbrennungskammern (4a...4d) des Motors (1) , der nicht gezündet hat, modelliert.
     
    7. Verfahren nach Anspruch 4, bei dem die zweite vorgegebene Menge (ΔfCORR) schrittweise vermindert wird, bis das Luft-Brennstoff-Verhältnis in der zweiten Verbrennungskammer im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer (A/Fideal) ist.
     
    8. Verfahren nach Anspruch 5, bei dem die zweite vorgegebene Menge (ΔfCORR) schrittweise vermindert wird, bis das Luft-Brennstoff-Verhältnis in der zweiten Verbrennungskammer im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer (A/Fideal) ist.
     
    9. Verfahren nach Anspruch 1, bei dem, wenn während einer vorgegebenen Anzahl von Zyklen keine erfolgreiche Zündung nachgewiesen wird, das Luft-Brennstoff-Verhältnis (A/F) in allen verbrennungskammern (4a...4d) um eine dritte vorgegebene Menge (Δfstep) geändert wird.
     
    10. Verfahren nach Anspruch 9, bei dem die vorgegebene Anzahl von Zyklen im Bereich von 2 bis 10 liegt, zum Beispiel 4 beträgt.
     
    11. Verfahren nach Anspruch 1, bei dem eine erfolgreiche Zündung in einer Verbrennungskammer (4a...4d) durch Nachweisen von Beschleunigung der Kurbelwelle des Motors (1), Ionisierung in einer Verbrennungskammer (4a...4d), Druckerhöhung in einer Verbrennungskammer (4a...4d) oder eine veränderung der Lichtintensität in einer Verbrennungskammer (4a...4d) nachgewiesen wird.
     
    12. Verfahren nach Anspruch 1, bei dem das Verfahren nur nach Nachweisen oder Erwarten einer schwierigen Startbedingung, wie einem Nachtankereignis, einem kurzen Betrieb des Motors (1) oder einer langen Standzeit des Motors (1), angewendet wird.
     
    13. System zur Steuerung der Brennstoffzufuhr zu einem Verbrennungsmotor, bei dem der Verbrennungsmotor mindestens zwei Verbrennungskammern und mindestens einen Einzelinjektor zur Zuführung von Brennstoff zu jeder einzelnen Verbrennungskammer umfasst, wobei das System umfasst:

    - Speichermittel zum Speichern:

    - einer vorgegebenen Menge von in Abhängigkeit von Betriebsbedingungen des Verbrennungsmotors zuzuführendem Brennstoff und

    - von Korrekturwerten, die beim Betrieb des Motors bestimmt wurden und notwendig sind, um aus dem Verbrennungsmotor einen optimalen Wirkungsgrad zu erhalten, indem die vorgegebene Menge von in Abhängigkeit von Betriebsbedingungen des Verbrennungsmotors zuzuführendem Brennstoff korrigiert wird,

    - Verbrennungsnachweismittel zum Nachweisen von Verbrennung in irgendeiner der Verbrennungskammern,

    - Prozessormittel, die angeordnet sind, um das Luft-Brennstoff-Verhältnis (A/F) in jeder der Verbrennungskammern (4a...4d) auf solche Weise zu steuern, dass das erhaltene. Luft-Brennstöff-Verhältnis (A/F) für jede der Verbrennungskammern (4a...4d) verschieden ist, um das Luft-Brennstoff-Verhältnis (A/F) in einer ersten der verbrennungskammern (4a...4d) auf ein erstes Luft-Brennstoff-Verhältnis (A/F1) zu steuern und um das Luft-Brennstoff-Verhältnis (A/F) für jede der anderen der verbrennungskammern (4a...4d) von dem ersten Luft-Brennstoff-Verhältnis (A/F2) durch jeweilige Schritte einer ersten festgelegten Menge (Δf) zu vermindern und um nach Nachweisen einer erfolgreichen Zündung in einer ersten der Verbrennungskammern (4a...4d) das Luft-Brennstoff-Verhältnis (A/F) in mindestens einer der anderen der Verbrennungskammern (4a...4d) so zu steuern, dass es im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis der ersten Verbrennungskammer (A/Fideal) ist, dadurch gekennzeichnet, dass die Prozessormittel ferner angeordnet sind, um eine erfolgreiche zündung nachzuweisen, wenn in einer der Verbrennungskammern (4a...4d) eine vorgegebene Anzahl von fortlaufenden Verbrennungen festgestellt wird.


     
    14. System nach Anspruch 13, bei dem die erste vorgegebene Menge (Δf) gleich dem ersten Luft-Brennstoff-Verhältnis (A/F1) minus einem zweiten Luft-Brennstoff-verhältnis (A/F2) , geteilt durch die Anzahl von Verbrennungskammern (4a...4d) des Motors (1) minus Eins ist.
     
    15. System nach Anspruch 13, bei dem das erste Luft-Brennstoff-Verhältnis (A/F1) das höchste für den Motor (1) wahrnehmbare Luft-Brennstoff-Verhältnis (A/Fmax) ist und das zweite Luft-Brennstoff-Verhältnis (A/F2) das niedrigste für den Motor (1) wahrnehmbare Luft-Brennstoff-Verhältnis (A/Fmin) ist.
     
    16. System nach Anspruch 13, bei dem die Prozessormittel angeordnet sind, um das Luft-Brennstoff-Verhältnis einer zweiten verbrennungskammer mit einer niedrigeren Luft-Brennstoff-Verhältnis als das Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer während einer vorgegebenen Anzahl von Zyklen auf eine zweite vorgegebene Menge (ΔfCORR) oberhalb des Luft-Brennstoff-Verhältnisses in der ersten Verbrennungskammer (A/Fideal) zu steuern.
     
    17. System nach Anspruch 13, bei dem die Prozessormittel angeordnet sind, um nach Nachweisen von fortlaufender Verbrennung und Nicht-Verbrennung in der ersten Verbrennungskammer das Luft-Brennstoff-Verhältnis einer zweiten Verbrennungskammer mit einem niedrigeren Luft-Brennstoff-Verhältnis als das Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer während einer vorgegebenen Anzahl von Zyklen auf eine zweite vorgegebene Menge (ΔfCORR) unterhalb des Luft-Brennstoff-Verhältnisses in der ersten Verbrennungskammer (Δ/Fideal) Zu steuern, um zu überprüfen, ob ein etwas niedrigeres Luft-Brennstoff-Verhältnis für eine erfolgreiche Zündung notwendig ist.
     
    18. System nach Anspruch 17, bei dem die Prozessormittel angeordnet sind, um die zweite vorgegebene Menge (ΔfCORR) unter Verwendung eines Kreislaufmodells zu bestimmen, das den Kreislauf von restlichem Brennstoff in den Verbrennungskammern (4a...4d) des Motors (1) der nicht gezündet hat, modelliert.
     
    19. System nach Anspruch 16, bei dem die Prozessormittel angeordnet sind, um die zweite vorgegebene Menge (ΔfCORR) schrittweise zu vermindern, bis das Luft-Brennstoff-Verhältnis in der zweiten Verbrennungskammer im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer (A/Fideal) ist.
     
    20. System nach Anspruch 17, bei dem die Prozessormittel angeordnet sind, um die zweite vorgegebene Menge (ΔfCORR) schrittweise zu vermindern, bis das Luft-Brennstoff-Verhältnis in der zweiten Verbrennungskammer im Wesentlichen gleich dem Luft-Brennstoff-Verhältnis in der ersten Verbrennungskammer (A/Fideal) ist.
     
    21. System nach Anspruch 13, bei dem die Prozessormittel angeordnet sind, um das Luft-Brennstoff-Verhältnis (A/F) in allen Verbrennungskammern (4a...4d) um eine dritte vorgegebene Menge (Δfstep) zu verändern, wenn während einer vorgegebenen Anzahl von Zyklen keine erfolgreiche Zündung nachgewiesen wird.
     
    22. System nach Anspruch 21, bei dem die vorgegebene Anzahl von Zyklen im Bereich von 2 bis 10 liegt, zum Beispiel 4 beträgt.
     
    23. System nach Anspruch 13, bei dem die Prozessormittel angeordnet sind, um eine erfolgreiche Zündung in einer Verbrennungskammer (4a...4d) nachzuweisen, indem eine Beschleunigung der Kurbelwelle des Motors (1) , Ionisierung in einer Verbrennungskammer (4a...4d), Druckerhöhung in einer Verbrennungskammer (4a...4d) oder einer Veränderung der Lichtintensität in einer Verbrennungskammer (4a...4d) nachgewiesen wird.
     
    24. System nach Anspruch 13, bei dem die Prozessormittel angeordnet sind, um nur nach Nachweisen oder Erwarten einer schwierigen Startbedingung, wie einem Nachtankereignis, einem kurzem Betrieb des Motors (1) oder einer langen Standzeit des Motors (1), betrieben zu werden.
     
    25. Computerlesbares Medium, das ein Softwareprogramm umfasst, das nach Herunterladen des Programms in ein Motormanagementsystem (ECM), das mit Schnittstellenmitteln zur Steuerung eines Brennstoffzufuhrsystems, das mindestens einer Verbrennungskammer (4a...4d) eines Verbrennungsmotors (1) Brennstoff zuführt, und Verbrennungsnachweismitteln zum Nachweisen einer Verbrennung in der mindestens einer Verbrennungskammer versehen ist, das Motormanagement mit der Funktionalität des Verfahrens gemäß einem der Ansprüche 1 bis 12 versieht.
     


    Revendications

    1. Procédé de commande de l'alimentation en carburant pendant un démarrage de moteur à combustion ayant au moins deux chambres de combustion, dans lequel le rapport air-carburant (A/F) dans chacune desdites chambres de combustion (4a ... 4d) est commandé de manière telle que le rapport air-carburant (A/F) obtenu est différent pour chacune desdites chambres de combustion (4a ... 4d), le rapport air-carburant (A/F) dans une première desdites chambres de combustion (4a ... 4d) est commandé vers un premier rapport air-carburant (A/F1), et en ce que le rapport air-carburant (A/F) pour chacune des autres dites chambres de combustion (4a ... 4d) est réduit à partir du premier rapport air-carburant (A/F1) par des étapes respectives d'une première quantité prédéterminée (Δf), et dans lequel après détection d'un allumage avec succès dans une première desdites chambres de combustion (4a ... 4d), le rapport air-carburant (A/F) dans au moins une des autres dites chambres de combustion (4a ... 4d) est commandé pour être sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal), caractérisé en ce qu'un allumage avec succès est détecté lorsque un nombre prédéterminé de combustions consécutives est détecté dans l'une des chambres de combustion (4a ... 4d).
     
    2. Procédé selon la revendication 1, dans lequel la première quantité prédéterminée (Δf) est égale au premier rapport air-carburant (A/F1) moins un second rapport air-carburant (A/F2), divisée par le nombre de chambres de combustion (4a ... 4d) du moteur (1) moins un.
     
    3. Procédé selon la revendication 1, dans lequel le premier rapport air-carburant (A/F1) est le rapport air-carburant le plus haut (A/Fmax) perceptible pour le moteur (1), et le second rapport air-carburant (A/F2) est le rapport air-carburant le plus bas (A/Fmin) perceptible pour le moteur (1).
     
    4. Procédé selon la revendication 1, dans lequel le rapport air-carburant d'une seconde chambre de combustion ayant un rapport air-carburant plus faible que le rapport air-carburant de la première chambre de combustion, est commandé vers une seconde quantité prédéterminée (ΔfCORR) au-dessus du rapport air-carburant de la première chambre de combustion (A/Fidéal) pendant un nombre prédéterminé de cycles.
     
    5. Procédé selon la revendication 1, dans lequel, après détection d'une combustion et d'une non-combustion consécutives de la première chambre de combustion, le rapport air-carburant d'une seconde chambre de combustion ayant un rapport air-carburant plus faible que le rapport air-carburant de la première chambre de combustion, est commandé vers une seconde quantité prédéterminée (ΔfCORR) en dessous du rapport air-carburant de la première chambre de combustion (A/Fidéal) pendant un nombre prédéterminé de cycles, afin de vérifier qu'un rapport air-carburant légèrement plus faible est nécessaire pour un allumage avec succès.
     
    6. Procédé selon la revendication 5, dans lequel la seconde quantité prédéterminée (ΔfCORR) est déterminée par un modèle de remise en circulation modélisant la remise en circulation d'un carburant résiduel dans lesdites chambres de combustion (4a ... 4d) du moteur (1), qui n'est pas allumé.
     
    7. Procédé selon la revendication 4, dans lequel la seconde quantité prédéterminée (ΔFCORR) est réduite pas-à-pas jusqu'à ce que le rapport air-carburant de la seconde chambre de combustion soit sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal).
     
    8. Procédé selon la revendication 5, dans lequel la seconde quantité prédéterminée (ΔFCORR) est réduite pas-à-pas jusqu'à ce que le rapport air-carburant de la seconde chambre de combustion soit sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal).
     
    9. Procédé selon la revendication 5, dans lequel lorsqu'aucun allumage avec succès a été détecté pendant un nombre de cycles prédéterminé, le rapport air-carburant (A/F) dans toutes lesdites chambres de combustion (4a ... 4d) est modifié d'une troisième quantité prédéterminée (Δfstep).
     
    10. Procédé selon la revendication 9, dans lequel le nombre de cycles prédéterminé est situé dans une plage entre 2 et 10, par exemple 4.
     
    11. Procédé selon la revendication 1, dans lequel un allumage avec succès dans une chambre de combustion (4a ... 4d) est détecté par détection d'une accélération du vilebrequin du moteur (1), d'une ionisation dans une chambre de combustion (4a ... 4d), d'une augmentation de pression dans une chambre de combustion (4a ... 4d) ou d'un changement d'intensité lumineuse dans une chambre de combustion (4a ... 4d).
     
    12. Procédé selon la revendication 1, dans lequel le procédé est uniquement appliqué après détection ou anticipation d'un état de démarrage difficile, tel qu'un cas de ravitaillement en carburant, un court fonctionnement du moteur (1), ou une longue période de non-fonctionnement du moteur (1).
     
    13. Système de commande d'une alimentation en carburant d'un moteur à combustion, dans lequel le moteur à combustion comporte au moins deux chambres de combustion et au moins un injecteur individuel pour alimenter du carburant vers chaque chambre de combustion individuelle, le système comportant :

    - des moyens formant mémoire pour mémoriser :

    - une quantité de carburant à alimenter en fonction des conditions de fonctionnement du moteur à combustion, et

    - des valeurs de correction établies pendant le fonctionnement du moteur et nécessaires afin d'obtenir une efficacité optimale du moteur à combustion interne en corrigeant la quantité prédéterminée de carburant à alimenter en fonction des conditions de fonctionnement du moteur à combustion, et

    - des moyens de détection de combustion pour détecter une combustion dans l'une quelconque desdites chambres de combustion,

    - des moyens formant processeur, qui sont agencés pour commander le rapport air-carburant (A/F) dans chacune desdites chambres de combustion (4a ... 4d) de manière telle que le rapport air-carburant (A/F) obtenu soit différent pour chacune desdites chambres de combustion (4a ... 4d), pour commander le rapport air-carburant (A/F) dans une première desdites chambres de combustion (4a ... 4d) vers un premier rapport air-carburant (A/F1), et pour réduire le rapport air-carburant (A/F) pour chacune des autres dites chambres de combustion (4a ... 4d) à partir du premier rapport air-carburant (A/F1) par des étapes respectives constituées d'une première quantité prédéterminée (Δf), et pour commander, après un allumage avec succès dans une première desdites chambres de combustion (4a ... 4d), le rapport air-carburant (A/F) dans au moins une des autres dites chambres de combustion (4a ... 4d) pour qu'il soit sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal), caractérisé en ce que les moyens de traitement sont en outre agencés pour détecter un allumage avec succès lorsqu'un nombre de combustions consécutives prédéterminé est détecté dans l'une des chambres de combustion (4a ... 4d).


     
    14. Système selon la revendication 13, dans lequel la première quantité prédéterminée (Δf) est égale au premier rapport air-carburant (A/F1) moins un second rapport air-carburant (A/F2), divisée par le nombre de chambres de combustion (4a ... 4d) du moteur (1) moins un.
     
    15. Système selon la revendication 13, dans lequel le premier rapport air-carburant (A/F1) est le rapport air-carburant le plus haut (A/Fmax) perceptible pour le moteur (1), et le second rapport air-carburant (A/F2) est le rapport air-carburant le plus bas (A/Fmin) perceptible pour le moteur (1).
     
    16. Système selon la revendication 13, dans lequel les moyens de traitement sont agencés pour commander le rapport air-carburant d'une seconde chambre de combustion ayant un rapport air-carburant plus faible que le rapport air-carburant de la première chambre de combustion, vers une seconde quantité prédéterminée (ΔFCORR) au-dessus du rapport air-carburant de la première chambre de combustion (A/Fidéal) pendant un nombre prédéterminé de cycles.
     
    17. Système selon la revendication 13, dans lequel les moyens de traitement sont agencés pour commander, après détection d'une combustion et d'une non-combustion consécutives de la première chambre de combustion, le rapport air-carburant d'une seconde chambre de combustion ayant un rapport air-carburant plus faible que le rapport air-carburant de la première chambre de combustion vers une seconde quantité prédéterminée (ΔfCORR) en dessous du rapport air-carburant de la première chambre de combustion (A/Fidéal) pendant un nombre prédéterminé de cycles, afin de vérifier qu'un rapport air-carburant légèrement inférieur est nécessaire pour un allumage avec succès.
     
    18. Système selon la revendication 17, dans lequel les moyens de traitement sont agencés pour déterminer la seconde quantité prédéterminée (ΔfCORR) en utilisant un modèle de remise en circulation modélisant la remise en circulation d'un carburant résiduel dans lesdites chambres de combustion (4a ... 4d) du moteur (1), qui n'est pas allumé.
     
    19. Système selon la revendication 16, dans lequel les moyens de traitement sont agencés pour réduire la seconde quantité prédéterminée (ΔfCORR) pas-à-pas jusqu'à ce que le rapport air-carburant de la seconde chambre de combustion soit sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal
     
    20. Système selon la revendication 17, dans lequel les moyens de traitement sont agencés pour réduire la seconde quantité prédéterminée (ΔfCORR) pas-à-pas jusqu'à ce que le rapport air-carburant de la seconde chambre de combustion soit sensiblement égal au rapport air-carburant de la première chambre de combustion (A/Fidéal).
     
    21. Système selon la revendication 13, dans lequel les moyens de traitement sont agencés pour changer le rapport air-carburant (A/F) de toutes lesdites chambres de combustion (4a ... 4d) d'une troisième quantité prédéterminée (Δfstep) lorsqu'aucun allumage avec succès n'a été détecté pendant un nombre de cycles prédéterminé.
     
    22. Système selon la revendication 21, dans lequel le nombre de cycles prédéterminé est situé dans une plage entre 2 et 10, par exemple 4.
     
    23. Système selon la revendication 13, dans lequel les moyens de traitement sont agencés pour détecter un allumage avec succès dans une chambre de combustion (4a ... 4d) par détection d'une accélération du vilebrequin du moteur (1), d'une ionisation dans une chambre de combustion (4a ... 4d), d'une augmentation de pression dans une chambre de combustion (4a ... 4d) ou d'un changement d'intensité lumineuse dans une chambre de combustion (4a ... 4d).
     
    24. Système selon la revendication 13, dans lequel les moyens de traitement sont agencés pour être opérationnels uniquement après détection ou anticipation d'un état de démarrage difficile, tel qu'un cas de ravitaillement en carburant, un court fonctionnement du moteur (1), ou une longue période de non-fonctionnement du moteur (1).
     
    25. Support pouvant être lu par ordinateur comportant un programme logiciel, qui, après téléchargement du programme dans un système de gestion de moteur (ECM) muni de moyens d'interface pour commander un système d'alimentation à carburant qui fournit du carburant à au moins une chambre de combustion (4a ... 4d) d'un moteur à combustion (1) et des moyens de détection de combustion pour détecter une combustion dans la au moins une chambre de combustion, donne au système de gestion de moteur la fonctionnalité du procédé selon l'une quelconque des revendications 1 à 12.
     




    Drawing