(19)
(11) EP 1 010 019 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.10.2004 Bulletin 2004/41

(21) Application number: 98943879.1

(22) Date of filing: 30.07.1998
(51) International Patent Classification (IPC)7G01T 1/164, G01T 1/29
(86) International application number:
PCT/EP1998/004994
(87) International publication number:
WO 1999/009431 (25.02.1999 Gazette 1999/08)

(54)

METHOD OF IMAGING BY SPECT

BILDERZEUGUNGSSYSTEM FÜR SPECT

PROCEDE D'IMAGERIE PAR SPECT


(84) Designated Contracting States:
BE DE ES FR GB IT NL

(30) Priority: 19.08.1997 EP 97202538

(43) Date of publication of application:
21.06.2000 Bulletin 2000/25

(73) Proprietor: van Dulmen, Adrianus A.
1871 CZ Schoorl (NL)

(72) Inventors:
  • VAN DULMEN, Adrianus, A.
    NL-1871 CZ Schoorl (NL)
  • WALRAND, Stéphan
    B-5630 Silenrieux (BE)

(74) Representative: Swaters, Pieter D. 
Heiveen 5
9475 PH Midlaren
9475 PH Midlaren (NL)


(56) References cited: : 
WO-A-94/25879
US-A- 3 784 820
US-A- 4 774 410
FR-A- 2 697 918
US-A- 3 970 853
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a method of imaging a target organ in a patient by SPECT, by using a gamma camera having a gamma detector provided with a collimator, focusing to the target organ during acquisition of the images.

    [0002] The Single Photon Emission Computed Tomography (SPECT) is routinely used in clinical studies. SPECT is performed by using a gamma camera, comprising a collimator fixed on a gamma detector, which gamma camera follows a revolution orbit around the patient's body. The gamma rays, emitted by a radioactive tracer, accumulated in certain tissues or organs of the patient's body, are sorted by the collimator and recorded by the gamma detector under various angles around the body, the collimator always pointing to (facing) the rotation axis of the camera. From the acquired planar images the distribution of the activity inside the patient's body can be computed using certain reconstruction algorithms. Generally the so-called Expectation-Maximization of the Maximum-Likelihood (EM-ML) algorithm is used, as described by Shepp et al. (IEEE Trans. Med. Imaging 1982; 2:113-122) and by Lange et al. (J. Comput. Assist. Tomogr. 1984; 8:306-316). This iterative algorithm minimizes the effect of noise in SPECT images.

    [0003] The collimators nowadays in use are manufactured from a lead sheat perforated with a plurality of usually parallel holes. The collimator is the most problematic element of the SPECT device, with regard to its poor sensitivity (less than 0.01% of the gamma radiation passes the collimator and reaches the detector) and its poor spatial resolution, becoming increasingly worse with increasing distance between activity source (i.e. the organ or tissue wherein the radioactivity has been accumulated) and collimator. Improvement of one of these properties, e.g. by modifying the hole length or diameter of the collimator, is always to the detriment of the other one. Furthermore, the SPECT technique is inadequate in producing reliable images because of the fact that small fluctuations in the acquired data can involve significant variations in the reconstructed images. This is due to the geometry of the acquired data. The limited time available for obtaining the necessary information (because of the restricted fixation time of the patient and the decay time of the radioactive tracer) and the limited injected radioactivity dose (limited for health care reasons) lead to acquired images containing statistical noise. Indeed the measurement of a radioactive process follows the Poisson law, giving a signal to noise ratio proportional to the square root of the count rate. As a result, the reconstructed images are frequently corrupted by significant false positive information, so-called noise artefacts. Consequently, it is a major goal in SPECT imaging to increase the SPECT sensitivity without reduction of the spatial resolution in order to improve the acquired signal to noise ratio.

    [0004] In an attempt to improve the sensitivity-resolution couple of the collimator, fan-beam collimators, focusing to a focal line, have been developed recently: see e.g. the review articles by Moore et al. (Eur. J. Nucl. Med. 1992; 19:138-150) and by Rosenthal et al. (J. NucL Med. 1995; 36:1489-1513). These collimators, having holes converging in one dimension to a focal line, have an increasingly better sensitivity-resolution couple when the activity source approaches the collimator focal line. By using a fan-beam collimator in the SPECT imaging technique, acquiring the images along the classical revolution orbit, the focal line is parallel to the axis of rotation of the gamma camera on the other side of the patient and consequently parallel to the patient's body length (see the above publication by Rosenthal et aL, p.1495). Nevertheless, the activity source, i.e. the target organ, has only a restricted approaching range with regard to the collimator focal line, because said organ and an activity contained in the same transverse (i.e. perpendicular to the patient's length) slice must be kept within the collimator acceptance angle during the acquisition by the rotating camera. Otherwise, the reconstructed images are corrupted by significant truncature artefacts. This problem of image truncation by using fan-beam collimators is discussed in more detail by Manglos et al. (Phys. Med. BioL 1993; 38:1443-1457) and by Kadrmas et al (Phys. Me.BioL 1995; 40:1085-1101). The above requirement, viz. to keep all source activity, i.e. in fact the complete body diameter of the patient, within the collimator acceptance angle during the acquisition along a revolution orbit, limits the choice of fan-beam collimators to those having a relatively large focal length, viz. greater than approx 60 cm, giving results not very different from those obtained with a parallel collimator. Therefore, the target organ cannot be positioned close to the focal line of the collimator where its sensitivity and spatial resolution are optimal. As a consequence, the sensitivity improvement, obtained by this technique for similar resolution, is limited to a factor of approx. 1.5 at most. Also the target of interest must be smaller than the detector transverse slice (preferably approx. 1.4 times smaller).

    [0005] Hawman (US-A-4849638) has disclosed a special collimator in the shape of a closed curve for use in tomography. Said collimator focuses, within each plane of interest, to one and only one focal point. Said collimator is dimensioned such that, in use, the focal point may be positioned inside the body organ to be imaged and is caused to densily trace over said body organ. One major advantage by using this system is, according to Hawman, that it is unnecessary to backproject the obtained images using a computer. Advantageously,according to Hawman, the camera head including the special collimator, is mounted so as to rotate and translate in a polar coordination ("is moved in a spiral"), but it may be caused to translate in two orthogonal directions (i.e. Cartesian motion; see Fig. 5), if desired.
    In US-A-4774410 (Hsieh) an improvement of the special collimator by Hawman is described, wherein the shape of said collimator is not circular or annular, but asymmetric.
    The tomographic scanning process described by Miraldi (US-A-3784820) relates to an improvement of the so-called longitudinal tomographic method. Because of its disadvantages, this method has been deleted at the end of the seventies to the benefit of the SPECT method.

    [0006] It is the objective of the present invention to provide a method of imaging by SPECT with a substantially improved sensitivity resolution couple. In other words, it is the aim of the present invention to provide a method of SPECT imaging which results in substantially improved reconstructed images.

    [0007] This objective can be achieved by a method of SPECT imaging a target organ in a patient, by using a gamma camera having a gamma detector provided with a collimator, focusing to inside the target organ during acquisition of the images, which method according to the present invention is characterized in that:

    a fan-beam collimator is used, focusing to a focal line parallel to the patient's body length, which focal line is made to travel at least once and up to four times through said target organ during the acquisition, and by computer reconstructing the distribution of the radioactivity inside the

    patient's body from the acquired planar images by using certain reconstruction algorithms, wherein during each travel of the local line:

    (i) the images are acquired along a linear path performed in a direction perpendicular to the patient's body length, and

    (ii) the collimator remains parallel to its initial position along said path.
    The method described by Hawman differs in various aspects from the method of the present invention. In the method of Hawman a special collimator in the shape of a closed curve (entirely surrounding the body organ) is used, focusing to one and only one focal point, whereas in the method of the present invention a conventionally shaped fan-beam collimator is employed, focusing to a focal line parallel to the patient's body length. Further, during image formation, it is necessary in the Hawman method that the focal point is caused to trace density over the organ of interest; therefore the collimator is moved relative to said organ in a spiral (Fig. 4) or in a Cartesian fashion (a succession of alternating vertical and horizontal movement steps; Fig. 5). In contrast, according to the method of the present invention, image acquisition is achieved merely by (virtually) traversing the target organ at least once by the collimator focal line, during which travel of the focal line the images are acquired along a linear path and the collimator remains parallel to its initial position along said path. In this method of the present invention a computer reconstruction is absolutely necessary to obtain an accurate backprojection relation between the acquired data and the activity distribution.
    It has surprisingly been found, that by applying the above method of the present invention, wherein the usable transverse size dimension of the SPECT device can now be fully used (i.e. the target organ size has now only to be equal at most to the detector transverse size, because the target organ has no longer to be kept within the collimator acceptance angle during the acquisition), the acquired set of planar images is complete (i.e. sufficient to reconstruct the activity distribution) and that considerable improvements with regard to the sensitivity-resolution couple can be obtained. The advantages will be evident. Better reconstructed images can be obtained by using the same acquisition time and the same dose of injected radioactivity. In this manner lesions or other malignancies in the body of a patient can be detected earlier, for example, metastasation of tumours in an early stage of development. At choice, however, the acquisition time can be reduced considerably to obtain, with the same dose of injected radioactivity, images suitable for routine investigations. This results in a reduction of the costs for the clinic or hospital Also at choice, as a third alternative the dose of injected radioactivity can be reduced in order to burden the patient to a lesser extent. Optionally these advantages can be reached in combination with each other, then, of course, to a somewhat lesser extent but nevertheless with sufficiently attractive prospects.
    Preferably, to reach superior results, the images are acquired by the method of the present invention along four linear paths, in directions perpendicular to the patient's body length and together essentially tracing a square surrounding the patient.
    It should be emphasized, that by the term "target organ" is meant the organ or tissue to be studied or investigated by using the method of the invention. The term ''target organ" obviously encompasses a plurality of organs to be studied simultaneously and also a part of the body, like the head, the chest or the abdomen, or even the complete body of the patient.
    It is further important to note, that the linear paths must not necessarily be straight lines, but also encompass slightly curved lines. The expression "at least substantially straight lines" may be satisfactory in this connection. The variations of the linear paths with respect to straight lines, however, must be small to meet the requirement, that the collimator focal line is made to travel throughout the target organ during the acquisition.
    It has been observed, that the quality of the reconstructed images is further improved, if during the acquisition the fan-beam collimator remains parallel to its initial position along each path. This can easily be reached by shifting the collimator during the acquisition accurately parallel to the patient's body, or vice versa.

    The method according to the present invention is not restricted to the use of one gamma detector provided with a fan-beam collimator (detector-collimator combination, detector-fixed fan- beam collimator), but encompasses the use of up to four detector-collimator combinations, in particular of two and four combinations additionally. More gamma cameras can be used in that case or, if desired, a two-headed or four-headed camera, i.e. a camera with two or four detector-collimator combinations. Of course, all collimators should be of the fan-beam type, focusing to a focal line. If a second detector-collimator combination is applied, this combination is used, simultaneously with and positioned opposite to the first one, sandwiching the patient in between.


    If the use of four detector-collimator combinations is preferred, two couples of mutually opposite gamma detectors provided with fan-lieam collimators are used simultaneously and in mutually perpendicular position, both couples sandwiching the patient in between; the images are acquired by moving each of the detector-collimator combinations along a linear path.
    It has been observed, that by using a plurality of detector-collimator combinations, in particular two or four, according to the present invention, simultaneously Mowing the various linear paths, the sensitivity of the SPECT device can further be improved, resulting in still better reconstructed images.
    Due to the fact that in the method of the invention the collimator focal line is made to travel throughout the target organ, so remains within the patient's body during acquisition, a fan-beam collimator or a plurality of fan-beam collimators can be used with a considerably reduced focal length, more in particular a focal length of between approx. 12 and approx. 30 cm, preferably of approx. 25 cm. As a result, the patient to be examined and also the target organ or organs can now easily be positioned within the collimator focal line where both the sensitivity and the resolution are optimal. In this pre-eminently suitable method of the invention, wherein a considerably reduced collimator focal length is used, the sensitivity can in principle be improved with a factor of approximately 10 compared with the best actual system, ifa same spatial resolution is applied. This sensitivity even further increases when the size of the studied organ decreases. In addition, the reduction of the usable transverse slice size, needed to avoid image truncation, as observed in the usual SPECT technique using fan-beam collimators, is no longer present.
    To improve their results, gamma cameras for SPECT imaging are often adapted to the special organs to be studied (organ-dedicated), for example, head-dedicated equipment for specific study of the head (by using an annular camera), etc. If in the method of the invention head-dedicated cameras are preferred, such cameras have only to be be equipped with fan-beam collimators with a focal length of approx. 12 an The method of the present invention, however, gives so much better reconstructed images, that this method is well applicable for the whole body of a patient as well as for only a part of the body, e.g. the head, without adverse effects on the quality of these images.
    Therefore, the method of the invention can be considered as universally applicable or allround, in that fan-beam collimators with a focal length of approximately 25 cm can be used generatly, i.e. both for the whole body and for organ-dedicated SPECT imaging.
    In a favourable embodiment, the method of the present invention is performed by using at least one fan-beam collimator as disclosed in U.S. patent 5,198,680 (Kwakake et al.). Such a fan-beam collimator comprises first septa members arranged in a fan-shape pattern in which an the first septa members are oriented towards a common focal line; and second septa members arranged to be parallel to each other, which second septa members are perpendicularly crossing with the first septa members in a lattice shape such that holes with a longitudinal cross section are defined between each adjacent first septa members and each adjacent second septa members.
    It has Rather been found, that the distribution A(x,y,z) of the radioactivity in the patients body can be computed using the following new reconstruction algorithm (this is in fact the mathematical proof that the acquired set of planar images is complete, i.e. sufficient to reconstruct the distribution activity):



    wherein:

    x, y and z are the orthogonal coordinates along the horizontal transverse direction, the vertical transverse direction and the longitudinal direction, respectively;

    Pα(V,r,z) are the planar images pixels values, where r is the coordinate along the transverse direction of the detector and V is the detector position along the linear path α;

    left, under, right and over correspond to the collimator positions relative to the patient's bed.

    f is the fan-beam collimator focal length; and

    Uα is the shift Length of the fan-beam collimator focal line in the linear path α versus the origin of the axis coordinates (x=0,y=0), the said origin being located for x and y respectively at the middle of the two collimator positions in orbits left and right (under and over the radiation source, respectively).



    [0008] The possibility of using a different shot length Uα for each lineae path α allows to choose a special patient body region of interest, through which the collimator focal line travels during the said linear path α acquisition. This region can be the same for the four linear paths in order to have the optimal sensitivity-resolution couple in this region. Alternatively, the collimator focal line can travel through a different region of interest in each linear path to share a high sensitivity-resolution couple among a more extended region. Furthermore, each linear path can be repeated with various shift lengths Uα, reconstructed by using the algorithm disclosed hereinbefore, and then summarised to further extend the region which shares the maximum sensitivity-resolution couple.

    [0009] The limit [-f,f] in the integration dr shows that the transverse size of the detector must be greater than two times the collimator focal length, according to the above algorithm. It is also important to point out that Pα(V,r,z) vanishes when the target organ does no longer intersept the collimator acceptance angle, and thus the integration dV, and as a result also the acquisition path range can be reduced, allowing an increasing acquisition time per planar image, i.e. an increasing sensitivity, for a same total acquisition time. The above algorithm is the exact reconstruction of the acquired images under the assumption that the collimator resolution, the gamma attenuation and the gamma scatter can be neglected. If these effects should be taken into account, certain welt-known iterative algorithms, like EM-ML (see hereinbefore) can additionally be used for reconstruction purposes.

    [0010] In case of radioactive sources inside a homogeneous attenuation medium, the so-called Bellini method (IEEE Trans Signal Proc. 1979; 27(3): 213-218) is applicable, and bads to a projection free of attenuation P°(α), using the following substitution in the fourier space of the above formula I:

    wherein µ is the attenuation coefficient.

    [0011] The invention also relates to an equipment for performing the above method of SPEGT imaging according to the invention, comprising at least one gamma camera with at least one detector-fixed fan-beam collimator, and a bed far a patient to be examined in such a relative position, that the bed is surrounded by four collimator positions, essentially situated at the angular points of a square, viz. opposing positions a/b and c/d respectively, which positions can be occupied by said at least one collimator focusing to a focal line parallel to the bed length. The usual equipment for imaging a patient by SPECT comprises a gamma camera with one or two (two-headed) detector-fixed collimators, which follow a revolution orbit around the patient's body. The patient to be examined is fixedly positioned on a bed. During the revolution the collimator continuously points to (faces) the body of the patient and occupies successively all collimator positions of the revolution orbit, so including the above-defined four collimator positions. If a fan-beam collimator is used in this traditional revolution orbit technique, said collimator focuses in each of these positions to a focal fine parallel to the axis of rotation of the gamma camera on the other side of the patient and consequently parallel to the patient's body (see hereinbefore).

    [0012] According to the present invention, the equipment for performing the above method of imaging by SPECT is characterized in that:
    • the bed is positionable at such a distance from the collimator positions, that in each position the collimator focal line is inside the patient's body on the bed; and
    • the bed is adapted to allow movements vis-a-vis said at least one collimator in two perpendicular directions, both transverse to the bed length, e.g., a sideward movement at position a/b and an up-/downward movement at position c/d or, alternatively, said at least one collimator is adapted to allow movements vis-à-vis the bed in perpendicular directions, all transverse to the bed length, e.g. substantially parallel to the bed surface in positions a/b and substantially perpendicular to the bed surface in the positions c/d. By positioning the bed at such a distance from the fan-beam collimator positions (this positioning can be adjusted by a computer, preferably by the acquisition computer), that in each of these positions the collimator focal line is inside the patient's body on the bed, the collimator focal line travels through the patient's body or the target organ therein during the acquisition by the gamma camera along linear paths. By adapting the bed or the fan-beam collimator in such manner that it allows relative perpendicularly directed movements, as described above, images can be acquired by the gamma camera along four linear paths performed in mutually transverse directions perpendicular to the patient's body.


    [0013] The range of the relative movements of the bed vis-à-vis the collimator or collimators should preferably be at least equal to two times the transverse size of the detector or collimator, and should preferably amount to approximately 100 cm. As is already explained hereinbefore, the fan-beam collimator(s) forming part of the equipment of the invention has (have) advantageously a focal length of between approx 12 and approx 30 cm. If allround, i.e. not dedicated to the imaging of certain target organs or parts ofthe body like the head, the focal length is preferably approx 25 cm.

    [0014] It should be emphasized that by the expression "at least one" should be understood: one up to four; more in particular: one, two or four.

    [0015] So the equipment according to the present invention may conveniently comprise one gamma detector provided with a fan-beam collimator. Such a detector-collimator combination is equipped in such manner that it can be moved from the above-defined position a to positions c, b and d, successively, and vice versa.

    [0016] It may be of advantage, however, to include a second gamma detector provided with a fan-beam collimator into the equipment of the present invention. In that case the two detector-collimator combinations are positioned opposite to each other, sandwiching bed plus patient in between, both equipped in such manner that they can be moved from position a to position c, and from position b to position d, respectively, and vice versa.

    [0017] In case one or two detector-collimator combinations are present in the equipment of the invention, the equipment is preferably so adapted that the bed is movable vis-à-vis the collimator by means of a system of motive members, preferably a combination of a horizontally shifting mobile member at the foot of the bed and a jack for moving the bed into a vertical direction. This system of motive members is explained in more detail hereinafter.

    [0018] In an equally advantageous embodiment the equipment of the present invention comprises four gamma detectors with fan-beam collimators, which detector-collimator combinations are so positioned that they occupy positions a, b, c and d, respectively, thereby sandwiching bed plus patient in between.

    [0019] In this embodiment the four detector-collimator combinations are preferably movable vis-à-vis the bed by means of a motive system, preferably a rigid frame of four mutually perpendicular rails, positioned transversally to the bed length, along which the detector-collimator combinations can slide. This motive system is also explained in the Examples.

    [0020] An equipment including from conventional camera heads in a square arrangement is known from FR-A-2 697 918.

    [0021] It is another merit of the present invention that the relative movements of the bed vis-à-vis the detector-collimator combination(s) are computer controlled (cybernation) by the gamma camera. This advanced system of computer-driven detector-collimator combination(s) relative to the patient's bed, in which the above-defined new algorithm is conveniently used, enables the user of the system, i.e. the personnel of the clinic or hospital to investigate the patient full-automatically by the improved SPECT imaging technique of the invention.

    [0022] The invention is described hereinafter with reference to joint Figures, and to the detailed description of the drawings and of model experiments.

    Brief description of the drawings.



    [0023] The invention will now be described in greater detail with reference to the accompanying drawings, wherein:

    Figures 1 and 2 are schematic representations of the equipment according to the present invention in a suitable embodiment, Fig. 1 viewed in the longitudinal direction of the bed and Fig. 2 viewed in a direction transverse to the bed;

    Figure 3 is also a schematic representation of the equipment of the present invention, now in another suitable embodiment, viewed in the longitudinal direction of the bed, as in Fig.1; and

    Figures 4 and 5 show SPECT spatial revolution images, obtained by performing model experiments.


    Detailed description of the drawing.



    [0024] Figures 1 and 2 show a gamma detector 1 equipped with a fan-beam collimator 2 and movably attached to a circular rail 3 held by two pylons 9. The detector 1 can move along the rail, the collimator 2 always pointing to the rotation axis 8. Using a magnetic brake, the detector 1 can be positioned over, under, left and right the bed 4: positions a, b, c and d, respectively (the collimator centres are situated at the angular points of a square). A motor attached to the detector 1 and drawing an endless screw acting on a circular rack attached along the rail 3 can be used to move the detector-collimator combination from one position into another. The bed 4 can vertically move thanks to the jacks 5, which can be constituted by a motorized endless screw acting on a rack. A crenelated plate drawing by the endless screw and inserted in an optical switch can be used to adjust the vertical position of the bed 4. This bed can also move along the left - right direction of Figure 1 (horizontal transverse direction) thanks to the mobile element 7 which can be a trolley rolling along a rail on the floor. Again a motorized endless screw acting on a rack and drawing a crenelated plate inserted in an optical switch can be used to move and adjust the transverse horizontal bed 4 position. The vertical and horizontal positioning range of the bed 4 the rotation axis 8 is at least equal to two times the transverse size 6 of the detector 1. The collimator 2 focal line is paraliel to the bed 4 length and goes essentially throughout the rotation axis 8. The transverse size 6 of the detector 1 is at least equal to two times the collimator focal length. The planar images are digitally acquired along four linear paths the bed 4 is moved into the various successive vertical positions, when the detector 1 is unmoved left or right the bed 4 (in positions c or d, respectively); the bed is moved into the various successive transverse horizontal positions, when the detector 1 is unmoved over or under the bed 4 (in positions a or 4 respectively). During acquisition, the digital planar images and the vertical and horizontal digital bed 4 positions are sent to the treatment computer. The distribution of the radioactivity over the patient's body A(x,y,z), wherein x,y and z are the orthogonal coordinates along the horizontal transverse direction, the vertical direction and the longitudinal direction, respectively, can be computed using the new reconstruction algorithm as disclosed hereinbefore.

    [0025] A second detector - fan-beam collimator combination may be present in position b of the above equipment, movable along the rail 3 from position b to position d and vice versa, whereas the first combination is then movable from position a to position c and vice versa.

    [0026] The embodiment shown in Figure 3 comprises four gamma detectors 11a, 11b, 11c and 11d, provided with Fan-beam collimators 12a, 12b, 12c and 12d, situated over, under, left and right the bed 14 (positions a, b, c and d, respectively). Each detector can be moved along a rail (13a, 13b, 13c and 13d), perpendicular to the bed 14 length; the rails are attached to each other to constitute a rigid frame.

    [0027] During the acquisition the detector-collnmator combinations move along their rails, the bed being unmoved.

    Description of model experiments.



    [0028] To acquire real acquisition data, model experiments have been carried out. In such experiments the following requirements as to the equipment should be met:

    (a) camera plus suitable fan-beam collimator;

    (b) suitable radiation source; and

    (c) camera plus collimator should be movable vis-a-vis the radiation source or vice versa.

    Ad (a). A suitable fan-beam collimator, meeting the requirements of the present invention, in particular a collimator having a suitable focal length, is not commercially available. Therefore one has resorted to the use of a home-made collimator. This fan-beam collimator, having a hole length of 25 mm and a hole diameter of 1.5 mm, is deficient in various respects, viz.

    (i) the shaped holes are not correctly dimensioned, giving a focal band instead of a focal line at the desired focal distance;

    (ii) the number of holes is insufficient, leading to an insufficient measured radioactivity; and

    (iii) the focal length increases as the holes are situated at a greater distance from the centre of the collimator.

    These defects will have an unfavourable influence on the results obtained, in particular on the spatial resolution and/or the sensitivity.

    Ad (b). As the radiation source is used a so-called Jaszczak's de luxe phantom, well-known in the art of performing radioactive experiments.

    Ad (c). The radiation source is movable relative to the collimator in such manner that it enables the acquisition of images along linear paths performed in two directions x and y (honzontal and vertical), perpendicular to the SPECT camera rotation axis z.



    [0029] In the above arrangement, the method of the present invention is performed with the radiation source centre situated at a distance of approx 20 cm from the fan-beam collimator. After an acquisition time of 90 minutes, the SPECT spatial resolution of Figure 4A is obtained; the total number of counts is measured and amounts to 52 Mc.

    [0030] In comparison, two commercially available parallel-hole collimators, viz. a low energy high resolution collimator (LEHR; hole length 40 mm, hole diameter 1.8 mm) and a low energy ultra high resolution collimator (LEUHR; hole length 45 mm, hole diameter 1.8 mm) are used in the prior art SPECT method, viz. with a gamma camera following a revolution orbit around the radiation source. After an acquisition time of 90 minutes, the SPECT spatial resolutions are shown in Figures 4B and 4C, respectively; the measured numbers of counts are 27 Mc and 22 Mc, respectively.

    [0031] From the Figures it can be concluded, that the spatial resolution obtained according to the method of the invention is considerably better than by using the LEHR collimator and also still better than with the LEUHR one. In comparison with the LEUHR collimator, the sensitivity improvement obtained is 2.36 (52/22) with simultaneously a significant improvement of the spatial resolution (approx. 1.5). Such an improvement is beyond expectation in view of the deficiency of the home-made fan-beam collimator used, as explained above.

    [0032] In the same manner acquisition data are obtained by using a thyroid phantom as the radiation source. By using in the method of the present invention again the above home-made fan-beam collimator, the SPECT spatial resolution of Figure 5A is obtained after an acquisition time of 90 minutes. By using in the prior art SPECT method the above-described parallel-hole LEHR collimator, an approximately equal spatial resolution is obtained after the same acquisition time: Figure 5B. By using the commercial parallel-hole collimator, a total number of counts of 3.1 Mc is measured, whereas, by using a collimator according to the method of the invention, on the other hand, a total number of counts of 16.1 Mc is monitored, ie. a sensitivity improvement of approximately 5.


    Claims

    1. A method of imaging a target organ in a patient by SPECT, by using a gamma camera having a gamma detector provided with a collimator, focusing to inside the target organ during acquisition of the images, said method being characterized in that:

    a fan-beam collimator is used, focusing to a focal line parallel to the patient's body length, which focal line is made to travel at least once and up to four times through said target organ during the acquisition, and by computer reconstructing the distribution of the radioactivity inside the patient's body from the acquired planar images by using certain reconstruction algorithms, wherein during each travel of the focal line:

    (i) the images are acquired along a linear path performed in a direction perpendicular to the patient's body length, and

    (ii) the collimator remains parallel to its initial position along said path.


     
    2. Method as claimed in claim 1, characterized in that the images are acquired along four linear paths, in directions perpendicular to the patient's body length and together essentially tracing a square surrounding the patient.
     
    3. Method as claimed in any of the preceding claims, characterized in that a second gamma detector provided with a fan-beam collimator is used simultaneously with and in a position opposite to the first one, sandwiching the patient in between.
     
    4. Method as claimed in claim 3, characterized in that an additional couple of mutually opposite gamma detectors provided with fan-beam collimators is used simultaneously with and in a position perpendicular to the couple of claim 3, equally sandwiching the patient in between, and that the images are acquired by moving each of the detector-collimator combinations along a linear path.
     
    5. Method as claimed in any of the preceding claims, characterized in that one or more gamma detectors are used provided with one or more fan-beam collimators having a considerably reduced focal length, more in particular a focal length of between approx 12 and approx. 30 cm, preferably of approx. 25 cm.
     
    6. Method as claimed in claim 5, characterized in that said fan-beam collimator used comprises first septa members arranged in a fan-shape pattern in which all the first septa members are oriented towards a common focal line; and second septa members arranged to be parallel to each other, which second septa members are perpendicularly crossing with the first septa members in a lattice shape such that boles with a longitudinal cross section are defined between each adjacent first septa members and each adjacent second septa members.
     
    7. A method as claimed in any of the preceding claims 2-6, characterized in that, optionally in addition to certain known iterative algorithms, the following reconstruction algorithm is used:



    wherein:

    x, y and z are the orthogonal coordinates along the horizontal transverse direction, the vertical transverse direction and the longitudinal direction, respectively;

    Pα(V,r,z) are the planar images pixels values, where r is the coordinate along the transverse direction ofthe detector and V is the detector position along the linear path α;

    left, under, right and over correspond to the collimator positions relative to the patient's bed;

    f is the fan-beam collimator focal length; and

    Uα is the shift length of the fan-beam collimator focal line in the linear path α versus the origin of the axis coordinates (x=0,y=0).


     
    8. An equipment for performing the method as claimed in any of the preceding claims, comprising at least one gamma camera with at least one detector-fixed fan-beam collimator, and a bed for a patient to be examined in such a relative position, that the bed is surrounded by four collimator positions, essentially situated at the angular points of a square, viz. opposing positions a/b and c/d, respectively, which positions can be occupied by said at least one collimator focusing to a focal line parallel to the bed length;
    said equipment being characterized in that:

    - the bed is positionable at such a distance from the collimator positions, that in each position the collimator focal line is inside the patient's body on the bed; and

    - the bed is adapted to allow movements vis-à-vis said at least one collimator in two perpendicular directions, both transverse to the bed length, e.g. a sideward movement at position a/b and an up-/downward movement at position c/d.


     
    9. Equipment for performing the method as claimed in any of claims 1-7, comprising at least one gamma camera with at least one detector-fixed fan-beam collimator, and a bed for a patient to be examined in such a relative position, that the bed is surrounded by four collimator positions, essentially situated at the angular points of a square, viz. opposing positions a/b and c/d, respectively, which positions can be occupied by said at least one collimator focusing to a focal line parallel to the bed length;
    said equipment being characterized in that:

    - the bed is positionable at such a distance from the collimator positions, that in each position the collimator focal line is inside the patient's body on the bed; and

    - said at least one collimator is adapted to allow movements vis-à-vis the bed in perpendicular directions, all transverse to the bed length, e.g. substantially parallel to the bed surface in position a/b and substantially perpendicular to the bed surface in position c/d.


     
    10. Equipment as claimed in claim 8 or 9, characterized in that the range of the relative movements of the bed vis-à-vis said at least one collimator is at least equal to two times the transverse size of said detector or collimator.
     
    11. Equipment as claimed in claim 10, characterized in that the range of the relative movements of the bed vis-à-vis said at least one collimator is approximately 100 cm.
     
    12. Equipment as claimed in any of claims 8-11, characterized in that said at least one collimator has a focal length of between approx. 12 and approx. 30 cm, preferably of approx 25 cm.
     
    13. Equipment as claimed in any of claims 8-12, characterized in that the equipment comprises one gamma detector provided with a fan-beam collimator, which detector-collimator combination is equipped in such manner that it can be moved from position a to positions c, b and d, successively.
     
    14. Equipment as claimed in any of claims 8-12, characterized in that the equiment comprises two gamma detectors provided with fan-beam collimators, which detector-collimator combinations are positioned opposite to each other, sandwiching bed plus patient in between, both equipped in such manner that they can be moved from position a to position c, and from position b to position d, respectively.
     
    15. Equipment as claimed in any of claims 8 and 10-14, characterized in that the bed is movable vis-à-vis the collimator by means of a system of motive members, preferably a combination of a horizontally shifting mobile member at the foot of the bed and a jack for moving the bed into a vertical direction.
     
    16. Equipment as claimed in any of claims 8-12, characterized in that the equipment comprises four gamma detectors with fan-beam collimators, which detector-collimator combinations are so positioned that they occupy positions a, b, c and d, respectively, thereby sandwiching bed plus patient in between.
     
    17. Equipment as claimed in claim 16, characterized in that the detector-collimator combinations are movable vis-à-vis the bed by means of a motive system, preferably a rigid frame of four mutually perpendicular rails, positioned transversally to the bed length, along which the detector-collimator combinations can slide.
     
    18. Equipment as claimed in any of claims 8-17, characterized in that the relative movements of the bed vis-à-vis the detector-collimator combination(s) are computer controlled (cybernation) by the gamma camera.
     


    Ansprüche

    1. Bildgebungsverfahren zur Abbildung eines Zielorgans eines Patienten mittels SPECT unter Verwendung einer Gammakamera mit einem Gammadetektor, der mit einem Kollimator ausgestattet ist, welcher während der Bildaufnahme auf das Zielorgan fokussiert wird, dadurch gekennzeichnet, dass
    ein Fächerstrahl-Kollimator verwendet wird, der auf eine parallel zur Patientenlängsachse verlaufende Brennlinie fokussiert wird, wobei die Brennlinie während der Bildaufnahme mindestens einmal und bis zu viermal durch das Zielorgan bewegt wird, und durch computergestützte Rekonstruktion der Radioaktivitätsverteilung im Körper des Patient anhand der aufgenommenen planaren Bilder unter Verwendung bestimmten Rekonstruktionsalgorithmen, wobei bei jeder Bewegung der Brennlinie

    (i) die Bilder entlang einer im rechten Winkel zur Patientenlängsachse verlaufenden linearen Strecke aufgenommen werden und

    (ii) der Kollimator entlang dieser Strecke parallel zu seiner Ausgangsposition bleibt.


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bilder entlang vier linearen Strecken senkrecht zur Patientenlängsachse aufgenommen werden, wobei diese Strecken zusammen im Wesentlichen ein den Patienten umgebendes Viereck bilden.
     
    3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter mit einem Fächerstrahl-Kollimator ausgerüsteter Gammadetektor dem ersten gegenüberliegt und gleichzeitig mit diesem verwendet wird, so dass die beiden den Patienten zwischen sich einschließen.
     
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein weiteres ebenfalls den Patienten zwischen sich einschließendes Paar einander gegenüberliegender, mit Fächerstrahl-Kollimatoren ausgerüsteter Gammadetektoren gleichzeitig mit dem in Anspruch 3 genannten Paar, zu dem es im rechten Winkel steht, verwendet wird, und dass die Bildaufnahme dadurch erfolgt, dass jede Detektor/Kollimator-Kombination entlang einer linearen Strecke verfahren wird.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein oder mehr mit einem oder mehreren Fächerstrahl-Kollimatoren ausgerüstete Gammadetektoren verwendet werden, wobei die Kollimatoren eine deutlich reduzierte Brennweite, insbesondere eine Brennweite im Bereich zwischen etwa 12 und etwa 30 cm, vorzugsweise von etwa 25 cm, aufweisen.
     
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der verwendete Fächerstrahl-Kollimator fächerförmig angeordnete erste Septenelemente aufweist, wobei alle ersten Septenelemente auf eine gemeinsame Brennlinie ausgerichtet sind; und zweite Septenelemente aufweist, welche parallel zueinander angeordnet sind, wobei die zweiten Septenelemente die ersten Septenelemente im rechten Winkel gitterartig kreuzen, so dass die jeweiligen angrenzenden ersten Septenelemente und die jeweiligen angrenzenden zweiten Septenelemente zwischen sich Löcher mit einem Längsquerschnitt begrenzen.
     
    7. Verfahren nach einem der vorstehenden Ansprüche 2-6, dadurch gekennzeichnet, dass, wahlweise zusätzlich zu bestimmten bekannten iterativen Algorithmen, der folgende Rekonstruktionsalgorithmus verwendet wird:



    worin:

    x, y und z jeweils die rechtwinkligen Koordinaten entlang der waagerechten Querrichtung, der senkrechten Querrichtung bzw. der Längsrichtung sind;

    Pα(V,r,z) die Pixelwerte der planaren Bilder sind, worin r die Koordinate entlang der Querrichtung des Detektors und V die Detektorposition entlang der linearen Strecke α ist;

    wobei links, unter, rechts und über den Kollimatorpositionen im Verhältnis zum Bett des Patienten entsprechen;
    f die Brennweite des Fächerstrahl-Kollimators ist und Uα die Verschiebungslänge der Brennlinie des Fächerstrahl-Kollimators in der linearen Strecke α versus der Ursprung der Koordinatenachsen (x = 0, y = 0) ist.
     
    8. Gerät zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche, umfassend mindestens eine Gammakamera mit mindestens einem am Detektor befestigten Fächerstrahl-Kollimator und ein Bett für einen Patienten, der in einer derartigen relativen Position zu untersuchen ist, dass das Bett von vier Kollimatorpositionen umgeben ist, welche sich im Wesentlichen an den Eckpunkten eines Vierecks befinden, d.h. von einander jeweils gegenüberliegenden Positionen a/b bzw. c/d, umgeben ist, wobei die Positionen von dem mindestens einen auf eine parallel zur Bettlängsachse verlaufende Brennlinie fokussierenden Kollimator eingenommen werden können;
    dadurch gekennzeichnet, dass

    - das Bett in einer Entfernung von den Kollimatorpositionen derart positionierbar ist, dass die Brennlinie des Kollimators in jeder Position innerhalb des Körpers des auf dem Bett liegenden Patienten liegt; und

    - das Bett dazu ausgebildet ist, Bewegungen dem mindestens einen Kollimator gegenüber in zwei im rechten Winkel zueinander stehenden Richtungen, sowohl quer zur Bettlängsachse, d.h. eine seitliche Bewegung in Position a/b, als auch eine Auf und Ab Bewegung in der Position c/d zu erlauben.


     
    9. Gerät zur Durchführung des Verfahrens nach einem der Ansprüche 1-7, umfassend mindestens eine Gammakamera mit mindestens einem am Detektor befestigten Fächerstrahl-Kollimator und ein Bett für einen Patienten, der in einer derartigen relativen Position zu untersuchen ist, dass das Bett von vier Kollimatorpositionen umgeben ist, welche sich im Wesentlichen an den Eckpunkten eines Vierecks befinden, d.h. von einander jeweils gegenüberliegenden Positionen a/b bzw. c/d, umgeben ist, wobei die Positionen von dem mindestens einen auf eine parallel zur Bettlängsachse verlaufende Brennlinie fokussierenden Kollimator eingenommen werden können;
    dadurch gekennzeichnet, dass

    - das Bett in einer Entfernung von den Kollimatorpositionen derart positionierbar ist, dass die Brennlinie des Kollimators in jeder Position innerhalb des Körpers des auf dem Bett liegenden Patienten liegt; und

    - der mindestens eine Kollimator dazu ausgebildet ist, Bewegungen dem Bett gegenüber in im rechten Winkel zueinander stehenden Richtungen, die alle quer zur Bettlängsachse verlaufen, d.h. im Wesentlichen parallel zur Bettoberfläche in der Position a/b, und im Wesentlichen senkrecht zur Bettoberfläche in der Position c/d, zu erlauben.


     
    10. Gerät nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Bewegungsbereich des Betts gegenüber dem mindestens einen Kollimator mindestens zweimal der Querabmessung des Detektors oder Kollimators entspricht.
     
    11. Gerät nach Anspruch 10, dadurch gekennzeichnet, dass der Bewegungsbereich des Betts gegenüber dem mindestens einen Kollimator etwa 100 cm beträgt.
     
    12. Gerät nach einem der Ansprüche 8-11, dadurch gekennzeichnet, dass der mindestens eine Kollimator eine Brennweite im Bereich zwischen etwa 12 und etwa 30 cm, vorzugsweise von etwa 25 cm, aufweist.
     
    13. Gerät nach einem der Ansprüche 8-12, dadurch gekennzeichnet, dass das Gerät einen mit einem Fächerstrahl-Kollimator versehenen Gammadetektor aufweist, wobei die Detektor/Kollimator-Kombination derart ausgebildet ist, dass sie nacheinander von der Position a in die Positionen c, b und d verfahrbar ist.
     
    14. Gerät nach einem der Ansprüche 8-12, dadurch gekennzeichnet, dass das Gerät zwei mit Fächerstrahl-Kollimatoren versehene Gammadetektoren aufweist, wobei die Detektor/Kollimator-Kombinationen einander gegenüberliegend angeordnet sind und zwischen sich das Bett mit dem darauf liegenden Patienten einschließen und wobei beide derart ausgebildet sind, dass sie von der Position a in die Position c, bzw. von der Position b in die Position d verfahrbar sind.
     
    15. Gerät nach einem der Ansprüche 8 und 10-14, dadurch gekennzeichnet, dass das Bett gegenüber dem Kollimator mittels eines Systems von Antriebselementen verfahrbar ist, wobei dieses System vorzugsweise eine Kombination aus einem am Fuß des Bettes angeordneten beweglichen Element zur horizontalen Verstellung und einem Heber zur Höhenverstellung des Bettes ist.
     
    16. Gerät nach einem der Ansprüche 8-12, dadurch gekennzeichnet, dass das Gerät vier mit Fächerstrahl-Kollimatoren versehene Gammadetektoren aufweist, wobei die Detektor/Kollimator-Kombinationen derart angeordnet sind, dass sie jeweils die Positionen a, b, c, bzw. d einnehmen und hierbei das Bett mit dem darauf liegenden Patienten zwischen sich einschließen.
     
    17. Gerät nach Anspruch 16, dadurch gekennzeichnet, dass die Detektor/Kollimator-Kombinationen gegenüber dem Bett mittels eines Systems von Antriebselementen verfahrbar sind, wobei dieses System vorzugsweise ein durch vier im rechten Winkel zueinander stehende Schienen gebildeter steifer Rahmen ist, der quer zur Bettlängsachse angeordnet ist und an dem die Detektor/Kollimator-Kombinationen entlang gleiten können.
     
    18. Gerät nach einem der Ansprüche 8-17, dadurch gekennzeichnet, dass die relativen Bewegungen des Bettes gegenüber der bzw. den Detektor/Kollimator-Kombination/en durch die Gammakamera rechnergesteuert sind (Kybernation).
     


    Revendications

    1. Procédé d'imagerie SPECT pour l'acquisition d'images d'un organe cible d'un patient en utilisant une gamma caméra munie d'un gamma-détecteur équipé d'un collimateur focalisé sur l'intérieur de l'organe cible pendant l'acquisition des images, ce procédé étant caractérisé en ce que
    l'on utilise un collimateur en éventail focalisé sur une ligne focale parallèle à l'axe longitudinal du corps du patient, cette ligne focale étant déplacée au moins une fois et jusqu'à quatre fois à travers l'organe cible pendant l'acquisition, la distribution de la radioactivité à l'intérieur du corps du patient étant reconstruite par ordinateur à partir des images planaires acquises en utilisant certains algorithmes de reconstruction,

    (i) les images étant acquises le long d'une trajectoire linéaire parcourue perpendiculairement à l'axe longitudinal du corps du patient et

    (ii) le collimateur restant parallèle à sa position initiale sur cette trajectoire pendant chacun des déplacements de la ligne focale.


     
    2. Procédé selon la revendication 1, caractérisé en ce que les images sont acquises le long de quatre trajectoires linéaires dans des directions perpendiculaires à l'axe longitudinal du corps du patient, ces quatre trajectoires traçant sensiblement un carré autour du patient.
     
    3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise, en même temps que le premier gamma-détecteur, un second gamma-détecteur équipé d'un collimateur en éventail situé en regard du premier, emprisonnant entre eux le patient.
     
    4. Procédé selon la revendication 3, caractérisé en ce que l'on utilise, en même temps que le couple de la revendication 3 par rapport auquel il est perpendiculaire, un couple supplémentaire de gamma-détecteurs situés en regard l'un de l'autre et équipés de collimateurs en éventail, emprisonnant de la même manière le patient entre eux, et que l'on acquiert les images en déplaçant chacun des ensembles détecteur-collimateur le long d'une trajectoire linéaire.
     
    5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise un ou plusieurs gamma-détecteurs équipés d'un ou de plusieurs collimateurs en éventail de distance focale considérablement réduite, notamment d'une distance focale comprise entre environ 12 et environ 30 cm, de préférence d'environ 25 cm.
     
    6. Procédé selon la revendication 5, caractérisé en ce que le collimateur en éventail utilisé comporte des premiers éléments septa disposés en éventail de manière à ce que tous les premiers éléments septa convergent vers une ligne focale commune ; et des deuxièmes éléments septa disposés de manière à être parallèles, les deuxièmes éléments septa croisant les premiers éléments septa à angle droit pour former une grille de sorte que des trous d'une section transversale longitudinale sont définis entre chacun des premiers éléments septa adjacents et chacun des deuxièmes éléments septa.
     
    7. Procédé selon l'une quelconque des revendications 2-6,
    caractérisé en ce que l'on utilise, optionnellement en plus de certains algorithmes itératifs connus, l'algorithme de reconstruction suivant:



    où :

    x, y et z sont les coordonnées orthogonales le long de la direction transversale horizontale, de la direction transversale verticale et de la direction longitudinale respectivement;

    Pα(V,r,z) sont les valeurs de pixels des images planaires, où r est la coordonnée le long de la direction transversale du détecteur et V la position du détecteur sur la trajectoire linéaire α ;

    côté gauche, en dessous, côté droit et au-dessus correspondent aux positions du collimateur par rapport à la table sur laquelle est couchée le patient;

    f est la distance focale du collimateur en éventail; et

    Uα est la longueur du déplacement de la ligne focale du collimateur en éventail sur la trajectoire linéaire α versus l'origine des axes des coordonnes (x = 0, y = 0).


     
    8. Matériel pour mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes comportant au moins une gamma caméra avec au moins un collimateur en éventail fixé sur un détecteur, et une table destinée à recevoir le patient qu'il y a lieu d'examiner et placée dans une position relative telle que la table est entourée de quatre positions de collimateur situées sensiblement aux angles d'un carré, notamment dans des positions opposées respectives a/b et c/d, ces positions pouvant être occupées par l'au moins un collimateur qui est focalisé sur une ligne focale parallèle à l'axe longitudinal de la table;
    le matériel étant caractérisé en ce que:

    - la table est adaptée pour être positionnée à une distance telle des positions du collimateur que, dans chaque position, la ligne focale du collimateur se situe à l'intérieur du corps du patient couché sur la table ; et

    - la table est adaptée pour suivre les mouvements par rapport à l'au moins un collimateur dans deux directions perpendiculaires s'étendant toutes deux en travers de l'axe longitudinal de la table, p. ex. un mouvement vers le côté en position a/b et un mouvement de montée et de descente en position c/d.


     
    9. Matériel pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1-7, comportant au moins une gamma caméra avec au moins un collimateur en éventail fixé sur un détecteur, et une table destinée à recevoir le patient qu'il y a lieu d'examiner et placée dans une position relative telle que la table est entourée de quatre positions de collimateur situées sensiblement aux angles d'un carré, notamment dans des positions opposées respectives a/b et c/d, ces positions pouvant être occupées par l'au moins un collimateur focalisé sur une ligne focale parallèle à l'axe longitudinal de la table;
    le matériel étant caractérisé en ce que:

    - la table est adaptée pour être positionnée à une distance telle des positions du collimateur que, dans chaque position, la ligne focale du collimateur se situe à l'intérieur du corps du patient couché sur la table ; et

    - l'au moins un collimateur est adapté pour permettre les mouvements par rapport à la table dans les directions perpendiculaires, toutes orientées en travers de l'axe longitudinal de la table, p. ex. sensiblement parallèles à la surface de la table en position a/b et sensiblement perpendiculaires à la surface de la table en position c/d.


     
    10. Matériel selon la revendication 8 ou 9, caractérisé en ce que l'amplitude des mouvements relatifs de la table par rapport à l'au moins un collimateur est au moins égale à deux fois la dimension transversale du détecteur ou du collimateur.
     
    11. Matériel selon la revendication 10, caractérisé en ce que l'amplitude des mouvements relatifs de la table par rapport à l'au moins un collimateur est de 100 cm environ.
     
    12. Matériel selon l'une quelconque des revendications 8-11, caractérisé en ce que l'au moins un collimateur a une distance focale comprise entre environ 12 et environ 30 cm, de préférence une distance focale d'environ 25 cm.
     
    13. Matériel selon l'une quelconque des revendications 8-12, caractérisé en ce que le matériel comporte un gamma-détecteur équipé d'un collimateur en éventail, l'ensemble détecteur-collimateur étant conformé de manière à pouvoir être déplacé successivement depuis la position a vers les positions c, b et d.
     
    14. Matériel selon l'une quelconque des revendications 8-12, caractérisé en ce que le matériel comporte deux gamma-détecteurs équipés de collimateurs en éventail, les ensembles détecteur-collimateur étant placés l'un en face de l'autre, emprisonnant entre eux la table portant le patient, les deux étant conformés de manière à pouvoir être déplacés depuis la position a vers la position c et depuis la position b vers la position d respectivement.
     
    15. Matériel selon l'une quelconque des revendications 8 et 10-14, caractérisé en ce que la table est adaptée pour être déplacée par rapport au collimateur au moyen d'un système d'organes d'entraînement, de préférence d'un ensemble constitué d'un organe mobile situé au bas de la table pour son déplacement horizontal et un vérin pour le déplacement vertical de la table.
     
    16. Matériel selon l'une quelconque des revendications 8-12, caractérisé en ce que le matériel comporte quatre gamma-détecteurs équipés de collimateurs en éventail, les ensembles détecteur-collimateur étant positionnés de manière à occuper respectivement les positions a, b, c et d, emprisonnant entre eux la table portant le patient.
     
    17. Matériel selon la revendication 16, caractérisé en ce que les ensembles détecteur-collimateur sont adaptés pour être déplacés par rapport à la table au moyen d'un système d'entraînement, de préférence d'un cadre rigide de quatre rails mutuellement perpendiculaires placé en travers de l'axe longitudinal de la table et le long duquel les ensembles détecteur-collimateur sont mobiles en coulissement.
     
    18. Matériel selon l'une quelconque des revendications 8-17, caractérisé en ce que les mouvements relatifs de la table par rapport à/aux ensemble(s) détecteur-collimateur sont commandés par ordinateur (cybernétisation) au moyen de la caméra gamma.
     




    Drawing