(19)
(11) EP 1 057 559 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.10.2004 Bulletin 2004/41

(21) Application number: 00110074.2

(22) Date of filing: 12.05.2000
(51) International Patent Classification (IPC)7B22D 17/20

(54)

Method and device for die casting using mold release agents

Verfahren und Vorrichtung zum Druckgiessen unter Verwendung von Formtrennmitteln

Procédé et dispositif de moulage sous pression en utilisant des agents de démoulage


(84) Designated Contracting States:
DE ES FR GB IT

(30) Priority: 31.05.1999 JP 15162499
31.05.1999 JP 15162399
13.10.1999 JP 29094599

(43) Date of publication of application:
06.12.2000 Bulletin 2000/49

(73) Proprietor: Denso Corporation
Kariya-city, Aichi-pref., 448-8661 (JP)

(72) Inventors:
  • Nishikawa, Koji, c/o Denso Corporation
    Kariya-city, Aichi-pref., 448-8661 (JP)
  • Hamada, Toshihiko, c/o Denso Corporation
    Kariya-city, Aichi-pref., 448-8661 (JP)

(74) Representative: KUHNEN & WACKER 
Patent- und Rechtsanwaltsbüro Postfach 19 64
85319 Freising
85319 Freising (DE)


(56) References cited: : 
WO-A-92/17300
US-A- 4 738 297
   
  • PATENT ABSTRACTS OF JAPAN vol. 018, no. 411 (M-1648), 2 August 1994 (1994-08-02) & JP 06 122057 A (ATSUMI TEC:KK), 6 May 1994 (1994-05-06)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

1. Field of the Invention



[0001] This invention relates to a die casting machine according to claim 1.

2. Description of the related Art



[0002] From US-A-4 738 297 a mold-release agent injection nozzle is known which is provided in the portion of a die casting machine leading to the mold cavity or in the mold. A mold-release agent is then spray applied to the surfaces of the mold through the nozzle while the mold is closed. The surplus mold-release agent is then discharged through a vent port having a displaceable valve.

[0003] Japanese Unexamined Patent Publication (Kokai) No. 62-127150 discloses a die casting machine for conducting die casting by using a powder mold releasing agent. In this die casting machine, a mold comprising a fixed mold and a movable mold is clamped, and the inside of a mold cavity is evacuated through an exhaust port communicating with the cavity after this mold clamping. A mold releasing agent such as a powder mold releasing agent is supplied and applied into the mold cavity under the vacuum state through a sleeve.

[0004] The powder mold releasing agent provides various advantages in comparison with a liquid mold releasing agent. For example, when the liquid mold releasing agent is heated by a molten charge, the amount of heat decomposition gases is large, causing a relatively large number of mold cavities in the die cast product. The powder mold releasing agent can decrease the occurrence of such mold cavities. The liquid mold releasing agent is generally sprayed, using an air flow, onto the mold surface. However, this method generates mist and noise and deteriorates the working environment. When the liquid mold releasing agent is sprayed, the temperature of the mold that is heated by the molten charge drops drastically, and the temperature change of the mold in one cycle of die casting becomes greater. As a result, life of the mold drops and hair-line cracks, etc, occur at a relatively early stage.

[0005] In contrast, when the powder mold releasing agent is used, as in the prior art example described above, the mold releasing agent is applied after mold clamping. Therefore, the scatter of the mold releasing agent outside the mold can be reduced. As a result, the powder mold releasing agent can be applied efficiently and the deterioration of the working environment can be prevented. Furthermore, the life of the mold can be increased because the temperature change of the mold in the casting cycle can be reduced.

[0006] When die casting is conducted, the inside of the cavity is evacuated in advance to a high vacuum, in some cases, in order to prevent the occurrence of mold cavities resulting from the entrapment of air. Since the air must be purged sufficiently at this time, the degree of vacuum is preferably as high as 20 to 50 Torr.

[0007] The inventors of the present invention have confirmed that such a high vacuum need not be established when the powder mold releasing agent is sucked into the cavity. The powder mold releasing agent must be sucked into the cavity and must remain there. If the powder mold releasing agent is sucked at an excessively high degree of vacuum, the amount of the powder mold releasing agent reaching the vacuum apparatus through the cavity increases notwithstanding the requirement that it must be sucked and remain in the cavity. The degree of vacuum required for sucking the powder mold releasing agent into the cavity is 700 to 750 Torr, for example.

[0008] The vacuum apparatus for evacuating the inside of the cavity to a high vacuum generally comprises a vacuum tank and a vacuum pump because a vacuum pump having an extremely high capacity must be employed to directly evacuate the cavity by the vacuum pump alone, and the cost of the apparatus increases. Therefore, the vacuum pump and the vacuum tank are combined with each other so that the vacuum pump can gradually reduce the pressure of the vacuum tank. When the degree of vacuum reaches a desired level in the vacuum tank, the vacuum tank is communicated with the cavity to evacuate the inside of the cavity. The following problems arise when such a vacuum apparatus is used to establish both the degree of vacuum necessary for sucking the powder mold releasing agent and the degree of vacuum necessary for air exhaust when the molten charge is ejected.

[0009] Once the vacuum tank is communicated with the cavity, the degree of vacuum inside the vacuum tank drops greatly. Therefore, a relatively long time is necessary after the vacuum tank is communicated with the cavity for sucking the powder mold releasing agent and before the degree of vacuum inside the vacuum tank reaches a level necessary for exhausting the cavity. As a result, the casting cycle of the die cast products is long and the productivity drops.

[0010] On the other hand, when the capacity of the vacuum apparatus is increased (greater capacity of the vacuum tank and greater suction capacity of the vacuum pump) to cope with this problem, the cost of the vacuum apparatus increases drastically.

[0011] When a powder molding agent is used as the molding agent, however, the molding agent sucked into the cavity does not necessarily adhere as a whole to the cavity surface, and a part is discharged from the exhaust port of the cavity. When the powder mold releasing agent thus discharged is built up in the vacuum pump and vacuum tank for evacuating the cavity, the desired degree of vacuum cannot be obtained, and trouble in the vacuum pump is more likely to occur.

[0012] In the die casting machine of the prior art described above, the powder mold releasing agent is supplied through a sleeve (a feed runner). A plunger for ejecting the molten charge supplied into the cavity is disposed inside this sleeve. The plunger slides inside the sleeve at the time of ejection of the molten charge. Therefore, a lubricant is preferably supplied to insure smooth sliding of the plunger.

[0013] However, the lubricant generally has viscosity and when the powder mold releasing agent is supplied, the powder said releasing agent may be deposited into the sleeve. If the powder mold releasing agent builds up inside the sleeve, the powder molding agent is pushed out into the cavity together with the molten charge when the letter is supplied, and may mix into the die cast product.

Summary of the Invention



[0014] It is therefore an object of the present invention to provide a die casting machine that can conduct satisfactorily die casting even when a powder mold releasing agent is used as a mold releasing agent.

[0015] It is another object of the present invention to provide a die casting machine that can prevent a casting cycle from being long and can minimize a rise in the cost of a vacuum apparatus even when the inside of a cavity is evacuated for sucking a powder mold releasing agent and even when a vacuum condition is established to prevent air from being entrapped into a molten charge.

[0016] According to the present invention the above object is solved by the features of claim 1.

[0017] Improved embodiments of the inventive die casting machine result from the subclaims.

[0018] A die casting machine according to one embodiment of the present invention comprises a mold, including a fixed mold and a movable mold, forming a cavity when the fixed mold and the movable mold are clamped; evacuation means connected to the cavity through an evacuation passage, for evacuating the inside of the cavity to a predetermined degree of vacuum; switching means disposed in the evacuation passage, for opening and closing the evacuation passage; powder mold releasing agent feeding means for supplying the powder mold releasing agent into the cavity when the switching means is closed and when the inside of the cavity is evacuated to the predetermined degree of vacuum, and applying the powder mold releasing agent to the surface of the cavity; a first filter interposed between the switching means and the evacuation means, and having a filter diameter smaller than at least a mean grain diameter of the powder mold releasing agent; and molten charge feeding means for supplying a molten charge into the cavity after the powder mold releasing agent is applied to the surface of the cavity.

[0019] As described above, the first filter having a filter diameter smaller than the mean grain diameter of the powder mold releasing agent is interposed between the switching means and the evacuation means. Consequently, even when the switching means is closed and the evacuation means evacuates the inside of the cavity, the major proportion of the powder mold releasing agent in excess are collected by the first filter. Because the powder mold releasing agent is thus substantially prevented from reaching the evacuation means, a trouble, such as a failure to reach the desired degree of vacuum, can be prevented.

[0020] A die casting machine according to another embodiment of the present invention comprises a mold, including a fixed mold and a movable mold, and forms a cavity when the fixed mold and the movable mold are clamped; powder mold releasing agent feeding means for supplying a powder mold releasing agent into the cavity; first evacuation means connected to an exhaust port of the cavity through a first evacuation passage, for evacuating the inside of the cavity to a first predetermined degree of vacuum and sucking the powder mold releasing agent supplied from the powder mold releasing agent feeding means into the cavity; second evacuation means connected to the exhaust port of the cavity through a second evacuation passage, for evacuating the inside of the cavity to a second predetermined degree of vacuum higher than the first degree of vacuum after the powder mold releasing agent is applied to the surface of the cavity; and molten charge feeding means for supplying the molten charge into the cavity when the second evacuation means evacuates the cavity to the second predetermined degree of vacuum.

[0021] The first degree of vacuum for sucking the powder mold releasing agent is established by the first evacuation means. The second degree of vacuum for purging the air inside the cavity to prevent the air from being entrapped by the molten charge is established by the second evacuation means. The first and second degrees of vacuum are attained by the first and second evacuation means that are provided independently of each other. Therefore, a waiting time for acquiring the predetermined degree of vacuum is not needed. In consequence, the casting cycle can be prevented from becoming long.

[0022] Further, the present invention takes the difference between the first degree of vacuum, for sucking the powder mold releasing agent, and the second degree of vacuum, for purging the air inside the cavity to prevent air from being entrapped into the molten charge, into specific consideration. When the powder mold releasing agent is sucked into the cavity, a high degree of vacuum required for achieving the high vacuum state for preventing entrapment of air into the molten charge is not necessary. In this case, the first evacuation means is so set as to attain a lower degree of vacuum than the second evacuation means. Therefore, although two independent evacuation means are provided, the increase in the cost can be restricted.

[0023] The die casting method of the present invention described above can prevent the casting cycle from becoming long while the increase of the cost is restricted.

[0024] The present invention may be more fully understood from the description of preferred embodiments of the invention set forth below, together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS



[0025] 

Fig. 1 is an overall structural view of a die casting machine according to the present invention;

Fig. 2 is a schematic sectional view showing the schematic construction of a solenoid valve used for an evacuation mechanism of the die casting machine used in Fig. 1;

Fig. 3 is a partial exploded perspective view showing the construction of a bag filter;

Fig. 4 is a graph showing the relationship between a filter diameter of a filter element of a bag filter and the number of times of troubles of a vacuum apparatus per month;

Fig. 5 is a flowchart showing the former half portion of control contents of control panels 35 and 38;

Fig. 6 is a flowchart showing the latter half portion of the control contents of the control panels 35 and 38; and

Figs. 7A to 7D is an explanatory view showing a main operation process of a die casting machine.


DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0026] Hereinafter, preferred embodiments of the present invention will be explained with reference to the accompanying drawings.

[0027] Fig. 1 shows a die casting machine according to an embodiment of the present invention.

[0028] A mold comprises a movable mold 1 and a fixed mold 7, as shown in Fig. 1. The fixed mold 7 comprises a fixed mother mold 9 and a fixed mold liner 10. The fixed mold liner 10 is fixed to the fixed mother mold 9 by a bolt, or the like. They are fixed to a fixed disc 8 of the die casting machine. The movable mold 1 comprises a movable mother mold 4 and a movable mold liner 5. The movable mold liner 5, that defines a cavity 40 with the fixed liner 10, is fixed to the movable mold 4 by a bolt, or the like. They are fitted to a movable disc 2 of the die casting machine through a die base 3.

[0029] One of the ends of the cavity 40 is connected to a sleeve 13 fixed to the fixed mother mold 9 and to the fixed disc 8. A powder mold releasing agent feeding port 14 and a molten charge feeding gate 15 are defined at an upper part of the sleeve 13. The powder mold releasing agent and the molten charge are supplied into the cavity 40 through the sleeve 13. A chip lubricant is supplied, too, from the molten charge feeding gate 15 as will be described later. The other end of the cavity 40 is connected to an exhaust passage 12. The exhaust passage 12 is connected to an evacuation passage 17 for evacuating the cavity 40.

[0030] A cut-off pin 6 is provided so that the connection portion between the exhaust passage 12 and the cavity 40 can be opened and closed. The cut-off pin 6 switches opening/closing of the connection portion between the exhaust passage 12 and the cavity 40 by utilizing oil pressure from an oil pressure feeding source, not shown.

[0031] A passage 11 is defined in such a manner as to branch from a sliding passage of the cut-off pin 6. A hose connects this passage 11 to a pressure gauge 28. This pressure gauge 28 indicates whether or not the vacuum inside the cavity 40 has reached a predetermined degree of vacuum when the molten charge is supplied into the cavity 40. A switching valve 29 is disposed in front of the pressure gauge 28. This valve 29 is closed when the powder mold releasing agent is supplied, and prevents the powder mold releasing agent from reaching the pressure gauge 28.

[0032] Two systems of evacuation mechanisms are connected to an exhaust passage 12 of the cavity 40 through the evacuation passage 17. The evacuation mechanism of the first system mainly comprises a vacuum tank 21 and a vacuum pump 22, and evacuates the cavity 40 to a predetermined degree of vacuum (-20 mmHg or 700 to 750 Torr) for sucking the powder mold releasing agent into the cavity 40. The capacity of the vacuum tank 21 is set to 100 L, for example. The evacuation mechanism of the second system mainly comprises a vacuum tank 26 and a vacuum pump 27. This mechanism evacuates the cavity 40 to a predetermined high vacuum (not higher than 60 Torr) for preventing the occurrence of mold cavities resulting from entrapment of air at the time of casting of the die cast products. The capacity of the vacuum tank 26 is set to 400 L, for example. The vacuum pump 27 has a greater capacity than the vacuum pump 22.

[0033] In these first and second evacuation mechanisms, the vacuum pumps 22 and 27 evacuate the respective vacuum tanks 21 and 26 so that the predetermined degrees of vacuum can be obtained in each cycle of die casting. Incidentally, the vacuum tanks 21 and 26 are connected to the cavity at different timings.

[0034] Solenoid valves 19 and 24 are disposed on the upstream side of the vacuum tanks 21 and 26 in the evacuation passage 17 to control connection/disconnection between the cavity 40 and the vacuum tanks 21 and 26, respectively.

[0035] Fig. 2 shows the schematic construction of the solenoid valve 19. Incidentally, the solenoid valve 24 has the same construction as the solenoid valve 19. A substantially cylindrical space is defined inside a housing 44 of the solenoid valve 19, and a sliding portion 45 is slidably disposed inside this space. A valve body 41 is interconnected to the distal end of the sliding portion 45. The valve body 41 moves integrally with the sliding portion 45 inside the housing 44. A passage 43 that constitutes a part of the evacuation passage 17 is formed inside the housing 44 as shown in Fig. 2. A spring, not shown, for biasing the sliding portion 45 in Fig. 2 is disposed inside the housing 44. A solenoid, not shown, is also disposed inside the housing 44 for attracting the sliding portion 45 when power is supplied.

[0036] Fig. 2 shows the valve open state of the solenoid valve 19. This valve open state is established when power is supplied to the solenoid and the sliding portion 45 slides up. As shown in Fig. 2, only the valve body 41 is exposed to the passage 43 under the valve open condition of the solenoid valve 19, but the sliding portion 45 is shielded, by the valve body 41, from the passage 43. Therefore, even when an excessive amount of the powder mold releasing agent flows towards the vacuum tank 21, the mold releasing agent is prevented from adhering to the outer peripheral surface of the sliding portion 45. Since a sliding defect in the sliding portion 45 due to the powder releasing agent can thus be prevented, the solenoid valve 19 can execute reliably its opening/closing operation.

[0037] Bag filters 20 and 25 are disposed between the solenoid valve 19 and the vacuum tank 21 and between the solenoid valve 24 and the vacuum tank 26, respectively. Fig. 3 is a partial sectional perspective view showing the schematic construction of this bag filer 20. Incidentally, the bag filter 25 has the same construction.

[0038] A bag-like filter element 52 is disposed inside a housing 50 having a suction port 51 and an exhaust port 53 as shown in Fig. 3. In this bag filter 20, a gas stream containing the powder mold releasing agent and sucked from the suction port 51 is filtered through the entire surface of the bag-like filter element 52 and is then discharged from the exhaust port 53. Since the bag filter 25 has a large filtration area, a drop in the vacuum suction effect of the vacuum tank 21 can be restricted.

[0039] The filter diameter (mesh size) of the filter element 52 is set to 3 µm because the mean grain diameter of the powder mold releasing agent is 8 µm, the minimum grain diameter is 4 µm and the maximum grain diameter is 12 µm. In other words, if the filter diameter of the filter element 52 is smaller than the minimum grain diameter of the powder mold releasing agent, the bag filter 20 can collect substantially all the powder mold releasing agent. Therefore, the filter diameter of the filter element is so selected as to satisfy this relationship.

[0040] Fig. 4 is a graph showing the relationship between the filter diameter of the filter element 52 and the number of times trouble occurs in the vacuum apparatus, including the vacuum tank 21 and the vacuum pump 22, per month. It has been confirmed that when the bag filter 20 is not used, trouble in the vacuum apparatus occurs three times per month, but when the bag filter 20 is disposed and its filter diameter is small, the trouble less often. Particularly, when the filter diameter of the filter element is 5 µm or below, no trouble occurs in the vacuum apparatus. Therefore, the filter can sufficiently exhibit its function even when the filter diameter of the filter element 52 is not smaller than the minimum grain diameter of the powder mold releasing agent. It can be utilized practically if the filter diameter is smaller than at least the mean grain diameter (8 µm) of the mold releasing agent.

[0041] Filters 18 and 22 having a relatively large filter diameter are disposed upstream of the solenoid valves 19 and 24, respectively. More concretely, filters having a filter diameter of 50 to 300 µm are used as the filters 18 and 23. These filters 18 and 23 are directed to collect relatively large foreign matters such as fins of the die cast products. These filters 18 and 23 can prevent the operation defects of the solenoid valves 19 and 24 resulting from invasion of relatively large foreign matter and can prolong the service life of the bag filters 20 and 25.

[0042] The die casting machine according to this embodiment further includes a powder feeding apparatus 30. The powder feeding apparatus 30 has a metering discharge portion 31 that meters the amount of the powder mold releasing agent to be supplied at one time, and discharges it to the powder mold releasing agent feeding port 14. The metering discharge portion 31 is connected to a positive pressure feeding source 34 through a solenoid valve 33. After a predetermined amount of the powder mold releasing agent is discharged, the metering discharge portion 31 applies the positive pressure from the positive pressure feeding source 34 into the cavity 40. In consequence, the powder mold releasing agent can be applied uniformly to the entire surface of the cavity 40. When the positive pressure is applied into the cavity 40 while the powder mold releasing agent is packed into the cavity 40, the powder mold releasing agent can be applied substantially uniformly to the entire surface of the cavity 40 even when the cavity 40 has a complicated shape.

[0043] A control panel 35 controls the operation of the powder feeding apparatus 30. The control panel 35 controls the operation of the metering discharge portion 31 of the powder feeding apparatus 30 and the switching operation of the solenoid valve 33. The control panel 35 includes a vacuum gauge 36. The internal pressure of the cavity 40 is applied to this vacuum gauge 36 through the powder feeding apparatus 30. The vacuum gauge 30 measures the degree of vacuum inside the cavity 40. The vacuum gauge 36 is used for measuring the degree of vacuum inside the cavity 40 particularly when the powder mold releasing agent is supplied.

[0044] Another control panel 38 is disposed to control the overall operations of the die casting machine. The control panel 38 controls the opening/closing operation of the solenoid valves 19 and 24 of the evacuation mechanisms, the opening/closing operations of the cut-off pin 6 and of the switching valve 29, the position control of the plunger 16, and the mold opening/clamping operations of the movable mold 2.

[0045] Hereinafter, the control of the control panels 35 and 38 will be explained with regard to the operation of the die casting machine. Incidentally, Figs. 7A to 7D show the main operating conditions of the die casting machine.

[0046] Fig. 5 is a flowchart showing the control the control panels 35 and 38. The control panel 38 for controlling the die casting machine and the control panel 35 for controlling the feeding apparatus 30 of the powder mold releasing agent exchange data on the controlling condition through mutual communication.

[0047] In the first step 100, mold clamping of the movable mold 1 and the fixed mold 7 is effected. In the next step 110, the plunger 16 is moved to the position at which the molten charge gate 15 is closed. In step 120, the solenoid valve 19 is opened, and evacuation of the cavity 40 is started.

[0048] Opening of the solenoid valve 19 is notified to the control panel 35 on the power feeding apparatus side. In step 130, the control panel 35 measures the degree of vacuum, using the vacuum gauge 36, after the passage of the time (several seconds) from opening of the solenoid valve 19 till the degree of vacuum necessary for sucking the powder mold releasing agent into the cavity 40 is acquired. When the degree of vacuum measured by the vacuum gauge 36 is outside a predetermined range (-20 mmHG or 700 to 750 Torr), the operation of the die casting machine is stopped on the assumption that an abnormality has developed in the vacuum apparatus, etc (step 160). When the degree of vacuum so measured falls within the predetermined range, in step 140, a predetermined amount of the powder mold releasing agent is ejected from the metering discharge portion 31. The powder mold releasing agent is sucked into the cavity 40 through the powder mold releasing agent feeding port 14 and through the sleeve 13 (see Fig. 7A).

[0049] The degree of vacuum inside the cavity 40 is measured again in the next step 150 to judge whether or not the degree of vacuum so measured is within the predetermined range. The solenoid valve 19 is kept opened from the start till the end of the supply of the powder mold releasing agent. Therefore, if the powder mold releasing agent is supplied normally into the cavity 40, the degree of vacuum at the end point of the supply should fall within a predetermined higher vacuum range (350 to 450 Torr) than the degree of vacuum at the start of the supply. In other words, if the vacuum inside the cavity 40 at the end point of the supply is outside the predetermined range, it can be assumed that an abnormality such as clogging has occured in the feed route of the powder mold releasing agent. Therefore, if the degree of vacuum measured in step 150 is outside the predetermined range, the die casting machine is stopped in step 160. When the measured vacuum falls within the predetermined range, on the other hand, the solenoid valve 33 is opened in step 180. In consequence, the positive pressure is applied into the cavity 40 from the positive pressure feeding source 34 through the solenoid valve 33, and the powder mold releasing agent packed into the cavity 40 is applied substantially uniformly to the entire surface of the cavity 40.

[0050] The control panel 38 closes the switching valve 29 and closes the solenoid valve 19 in synchronism with the opening operation of the solenoid valve 33.

[0051] The switching valve 29 is closed so that the excessive powder mold releasing agent can be prevented from being discharged from inside the cavity 40 and can be prevented from reaching the pressure gauge 28. In this case, the excess powder mold releasing agent stays inside the hose connecting the passage 11 to the switching valve 29. Since this hose is exchanged periodically, the measurement of the degree of vacuum by the pressure gauge 28 is not affected. As the switching valve 19 is closed, the degree of vacuum inside the vacuum tank 21 is prevented from dropping.

[0052] In the next step 190, whether or not the predetermined time has passed is judged. If it has, the solenoid valve 33 is closed in step 200 and the application of the positive pressure is completed. As for the level and the time of the positive pressure applied this time, a positive pressure of about 2 to 8 kg/cm2 is applied for several seconds.

[0053] Closing of the solenoid valve 33 is reported to the control panel 38 on the die casting machine side. The control panel 38 moves back the plunger 16 and opens the molten charge gate 15 in step 210. The chip lubricant is ejected under this state from the molten charge gate 15 through the chip lubricant nozzle 39 (see Fig. 7B). This chip lubricant insures smooth sliding of the plunger 16. "Glaface P1200N" (a product of Haruno Shoji K. K.), for example, can be used. The chip lubricant is a liquid and has viscosity. Therefore, assuming that the powder mold releasing agent is supplied from the powder mold releasing agent feeding port 14 after the chip lubricant is supplied to the sleeve 13, the powder mold releasing agent adheres to the chip lubricant and aggregates. Then, the powder mold releasing agent so aggregating is pushed into the cavity 40 with the molten charge when the molten charge is ejected from the sleeve 13 into the cavity 40, and mixes into the die cast product. This mixture remarkably deteriorates quality of the die cast product.

[0054] To solve this problem, the mold releasing agent is sucked into the cavity 40 before the chip lubricant is supplied to the sleeve 13 in this embodiment. In consequence, when the powder mold releasing agent is supplied first into the cavity 40, the quantity of the remaining powder in the sleeve 13 can be reduced to about 1/8 in comparison with the case where the chip lubricant is first supplied to the sleeve 13.

[0055] After the chip lubricant is supplied, the molten charge is poured into the sleeve 13 from the molten charge gate 15 by a ladle 60 (see Fig. 7C). In step 220, the plunger 16 is moved to the position at which the molten charge gate 15 is closed, and the inside of the sleeve is kept air-tight.

[0056] Under this state, the solenoid valve 24 is opened and the switching valve 29 is opened. In consequence, the cavity 40 is evacuated to a predetermined high vacuum (60 Torr or below), and the degree of vacuum can be measured by the vacuum gauge 28. When the time necessary for acquiring the predetermined high vacuum has passed after the solenoid valve 24 was opened, the degree of vacuum inside the cavity 40 is measured by the vacuum gauge 28. If the degree of vacuum so measured does not reach the predetermined high vacuum, the die casting machine is stopped on the assumption that an abnormality has occurred in the casting machine(step 250). When the degree of vacuum measured reaches the predetermined high vacuum, on the other hand, the cut-off pin 6 is moved to the position at which the connection portion between the cavity 40 and the exhaust passage 12 is closed in step 260. The solenoid valve 24 is then closed. In consequence, the molten charge ejected into the cavity 40 is prevented from flowing out to the exhaust passage 12, and so forth.

[0057] In step 270, the plunger 16 is moved at a high speed so that the molten charge 13 is ejected from the sleeve 13 into the cavity 40 (see Fig. 7D). Thereafter, the plunger 16 is moved back to the initial position when the molten charge inside the cavity 40 is solidified.

[0058] In step 280, the movable mold 1 is moved and mold is opened. The resulting die cast product is withdrawn from the mold.

[0059] A series of operations described above provide the die cast product, and are repeatedly carried out.

[0060] When the series of operations are repeatedly carried out, the mold temperature at the time of withdrawal of the die cast produces reaches about 400 to about 500°C because the temperature of the molten charge is about 700°C. Therefore, the mold temperature remains high even when the casting cycle shifts to the next cycle.

[0061] As a result of studies, the inventors of the present invention have clarified that adhesion of the powder mold releasing agent to the mold drops at a high temperature at which the mold temperature exceeds 300°C. Therefore, a plurality of cooling pipes are disposed inside both movable mold 1 and fixed mold 7 in the same way as in the conventional molds so that the mold can be cooled when cooling water is caused to flow through the cooling pipes.

[0062] Here, the surface of the cavity 40 of the mold to which the powder mold releasing agent adheres is the portion that is heated to the highest temperature by the molten charge. Therefore, in this embodiment, the number of cooling pipes and the positions of their formation are selected so that they have a cooling capacity capable of cooling the surface temperature of the cavity 40 down to 300°C or below before the powder mold releasing agent is supplied. In this way, the drop of adhesion of the powder mold releasing agent can be prevented.

[0063] Incidentally, the powder mold releasing agent used in this embodiment is a mixture prepared by mixing 80% of talc and 20% of wax. An aluminum molten charge or a magnesium molten charge can be used as molten charges.

[0064] While the invention has been described by reference to specific embodiments chosen for purposes of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the present invention.


Claims

1. A die casting machine comprising:

a mold including a fixed mold (7) and a movable mold (1) and forming a cavity (40) when said fixed mold (7) and said movable mold (1) are clamped;

evacuation means (21, 22, 26, 27) connected to said cavity (40) through an evacuation passage (17), for evacuating the inside of said cavity (40) to a predetermined degree of vacuum;

switching means (6) disposed in said evacuation passage (17) for opening and closing said evacuation passage (17);

powder mold releasing agent feeding means (14) for supplying a powder mold releasing agent into said cavity (40) when said switching means (6) opens said evacuation passage (17) and the inside of said cavity (40) is evacuated to said predetermined degree of vacuum, and for applying said powder mold releasing agent to the surface of said cavity (40);

a first filter (20, 25) interposed between said switching means (6) and said evacuation means (21, 22, 26, 27), and having a filtermesh size smaller than at least a mean grain diameter of said powder mold releasing agent;

molten charge feeding means (15) for supplying a molten charge into said cavity after said powder mold releasing agent is applied to the surface of said cavity (40);.

   wherein a second filter (18, 23) having a filter mesh size greater than that of said first filter (20,25) is interposed between said cavity (40) and said switching means inside said evacuation passage (17).
 
2. A die casting machine according to claim 1, wherein the filter mesh size of said first filter (20, 25) is set to a diameter smaller than the minimum grain diameter of said powder mold releasing agent.
 
3. A die casting machine according to claim 1 or 2, wherein said switching means (6) maintains an open condition while said powder mold releasing agent feeding means (14) supplies said powder mold releasing agent into said cavity (40), so that said powder mold releasing agent is introduced into said cavity (40) while evacuating said cavity (40).
 
4. A die casting machine according to any one of claims 1 to 3, further comprising:

measurement means (36) for measuring the degree of vacuum inside said cavity (40); and

first abnormality detecting means(36) for executing detection of abnormalityof the evacuation means (21, 22, 26, 27) when the degree of vacuum measured by said measurement means is outside the range of the first degree of vacuum when said switching means (6) opens and the time set for the degree of vacuum inside said cavity (40) to reach said predetermined degree of vacuum passes.


 
5. A die casting machine according to claim 3, further comprising:

measurement means (36) for measuring the degree of vacuum inside said cavity (40); and

second abnormality detection means (36) for measuring the degree of vacuum inside said cavity (40) by said measurement means when the supply of said powder mold releasing agent into said cavity (40) finishes, and executing abnormality detectionsuch as clogging occurred in a feed route of the powder mold releasing agent when the degree of vacuum so measured is outside the range of the second degree of vacuum.


 
6. A lie casting machine according to any one of claims 1 to 5, further comprising:

pressurization means (34) for pressurizing the inside of said cavity (40) to a positive pressure after the supply of said powder mold releasing agent is completed, while said switching means (6) is closed.


 
7. A die casting machine according to any one of claims 1 to 6, wherein said switching means comprises a solenoid valve (19), and a sliding portion interconnected to a valve body thereof is shielded from said evacuation passage by said valve body when said valve body is opened.
 
8. A die casting machine according to any one of claims 1 to 7, wherein said molten charge feeding means (15) includes a sleeve (13) for introducing said molten charge into said cavity (40) and a plunger (16) for ejecting said molten charge into said cavity (40) when said molten charge is supplied into said sleeve (13), and wherein said powder mold releasing agent feeding means supplies said powder mold releasing agent into said cavity (40) through said sleeve (13).
 
9. A die casting machine according to claim 8, further comprising lubricant feeding means (39) for supplying a lubricant for said plunger (16) sliding inside said sleeve (13), and wherein said lubricant feeding means (39) supplies said lubricant into said sleeve (13) after said powder mold releasing agent feeding means (15) finishes supplying said powder mold releasing agent.
 
10. A die casting machine according to any one of claims 1 to 9, further comprising a cooling mechanism for lowering the surface temperature of said mold to 300°C or below before said powder mold releasing agent feeding means supplies said powder mold releasing agent.
 
11. A die casting machine according to claim 10, wherein said cooling mechanism comprises cooling pipes which are formed inside said mold and through which cooling water flows, and lowers the surface temperature of said cavity (40) of said mold to 300°C or below after a die cast product is withdrawn from inside said mold and before said powder mold releasing agent is supplied.
 
12. A die casting machine according to claim 1, wherein said evacuation means comprises:

first evacuation means (21, 22) connected to said cavity (40) through a first evacuation passage, for evacuating the inside of said cavity (40) to first predetermined degree of vacuum and sucking said powder mold releasing agent supplied from said powder mold releasing agent feeding means into said cavity (40); and

second evacuation means (26, 27) connected to said cavity (40) through a second evacuation passage, for evacuating the inside of said cavity (40) to a second predetermined degree of vacuum higher than said first degree of vacuum after said powder mold releasing agent is applied to the surface of said cavity (40).


 
13. A die casting machine according to claim 12, wherein said first evacuation means comprises:

a first vacuum tank (21);

a fust vacuum pump (22) for evacuating said first vacuum tank (21);

first switching means disposed in said first evacuation passage upstream of said first vacuum tank (21), for switching connection/disconnection of said cavity (40) and said first vacuum tank (21) by opening/closing said first evacuation passage;

   wherein said second evacuation means comprises:

a second vacuum tank(26);

a second vacuum pump (27) for evacuating said second vacuum tank (26); and

second switching means disposed in said second evacuation passage upstream of said second vacuum tank (26), for switching connection/disconnection of said cavity (40) and said second vacuum tank (26); and

   wherein said second switching means is dosed when said first switching means is opened, and said first switching means is dosed when said second switching means is opened.
 
14. A die casting machine according to claim 13, wherein said second vacuum pump (27) has a capacity greater than that of said first vacuum pump (22)
 
15. A die casting machine according to claim 1, wherein the filter mesh sizeof said first and second filters are set to a value smaller than the minimum grain diameter of said powder mold releasing agent.
 
16. A die casting machine according to claim 1 or 15, further comprising:

a third filter having a filter mesh size greater than that of said first filter, and disposed between said cavity (40) and said first switching means in said first evacuation passage; and

a fourth filter having a filter mesh size greater than that of said second filter, and disposed between said cavity (40) and said second switching means in said second evacuation passage.


 
17. A die casting machine according to any one of claims 13 to 16, wherein each of said first and second switching means comprises a solenoid valve, and a sliding portion interconnected to a valve body thereof is shielded from said first or second evacuation passage when said valve body is open.
 
18. A die casting machine according to any one of claims 12 to 17,
   wherein said powder mold releasing agent feeding means supplies said powder mold releasing agent into said cavity (40) through said sleeve (13); and
   wherein said lubricant feeding means supplies said lubricant into said sleeve (13) after said powder mold releasing agent feeding means finishes supplying said powder mold releasing agent.
 


Ansprüche

1. Druckgußmaschine, umfassend:

eine Form, die eine feste Formhälfte (7) und eine bewegliche Formhälfte (1) umfaßt, und die eine Kavität (4) bildet, wenn die feste Formhälfte (7) und die bewegliche Formhälfte (1) eingespannt werden;

eine Evakuierungseinrichtung (21, 22, 26, 27), die über eine Evakuierungsleitung (17) mit der Kavität (40) verbunden ist, um den Innenraum der Kavität (40) auf einen vorgegebenen Vakuumgrad zu evakuieren;

eine Schalteinrichtung (6), die in der Evakuierungsleitung (17) angeordnet ist, zum Öffnen und Schließen der Evakuierungsleitung (17);

eine Formtrennpulver-Zuführeinrichtung (14) zum Zuführen eines Formtrennpulvers in die Kavität (40), wenn die Schalteinrichtung (6) die Evakuierungsleitung (17) öffnet und der Innenraum der Kavität (40) auf den vorgegebenen Vakuumgrad evakuiert wird, und zum Aufbringen des Formtrennpulvers auf die Oberfläche der Kavität (40);

ein erstes Filter (20, 25), das zwischen der Schalteinrichtung (6) und der Evakuierungseinrichtung (21, 22, 26, 27) angeordnet ist und das eine Filtermaschengröße aufweist, die zumindest kleiner ist als der mittlere Kornduchmesser des Formtrennpulvers;

Eintragsschmelze-Zuführeinrichtung (15) zum Zuführen des geschmolzenen Eintragsguts in die Kavität, nachdem das Formtrennpulver auf die Oberfläche der Kavität (40) aufgebracht wurde;

   worin ein zweites Filter (18, 23) mit einer Filtermaschengröße, die über der des ersten Filters (20, 25) liegt, zwischen der Kavität (40) und der Schalteinrichtung innerhalb der Evakuierungsleitung (17) angeordnet ist.
 
2. Druckgußmaschine nach Anspruch 1, worin die Filtermaschengröße des ersten Filters (20, 25) auf einen Durchmesser gesetzt ist, der geringer ist als der minimale Korndurchmesser des Formtrennpulvers.
 
3. Druckgußmaschine nach Anspruch 1 oder 2, worin die Schalteinrichtung (6) den Öffnungszustand beibehält, während die Formtrennpulver-Zuführeinrichtung (14) das Formtrennpulver in die Kavität (40) liefert, so daß das Formtrennpulver in die Kavität (40) eingebracht wird, während die Kavität (40) evakuiert wird.
 
4. Druckgußmaschine nach einem der Ansprüche 1 bis 3, weiter umfassend:

eine Meßeinrichtung (36) zum Messen des Vakuumgrads in der Kavität (40) und

ein erstes Unregelmäßigkeits-Erfassungsmittel (36) zum Durchführen einer Unregelmäßigkeitserfassung für die Evakuierungseinrichtung (21, 22, 26, 27), wenn der Vakuumgrad, der von der Meßeinrichtung gemessen wird, außerhalb eines ersten Vakuumgradbereichs liegt, wenn die Schalteinrichtung (6) sich öffnet und die Zeit, die dafür vorgesehen ist, daß der Vakuumgrad in der Kavität (40) den vorgegebenen Vakuumgrad erreicht, vergangen ist.


 
5. Druckgußmaschine nach Anspruch 3, ferner umfassend:

eine Meßeinrichtung (36) zum Messen des Vakuumgrads in der Kavität (40) und

eine zweite Unregelmäßigkeits-Erfassungseinrichtung (36) zum Messen des Vakuumgrads in der Kavität (40) durch die Meßeinrichtung, wenn die Zufuhr des Formtrennpulvers in die Kavität (40) beendet wird, und zum Erfassen einer Unregelmäßigkeit, beispielsweise einer Verstopfung, die sich in einer Zufuhrstrecke des Formtrennpulvers ereignet hat, wenn der so gemessene Vakuumgrad außerhalb eines zweiten Vakuumgradbereichs liegt.


 
6. Druckgußmaschine nach einem der Ansprüche 1 bis 5, femer umfassend:

ein Druckmittel (34) zum Erhöhen des Drucks in der Kavität (40) auf einen positiven Druck, nachdem die Zufuhr des Formtrennpulvers abgeschlossen ist, während die Schalteinrichtung (6) geschlossen ist.


 
7. Druckgußmaschine nach einem der Ansprüche 1 bis 6, worin die Schalteinrichtung ein Magnetventil (19) aufweist, und wobei ein Gleitabschnitt, der mit dessen Ventilkörper verbunden ist, durch diesen Ventilkörper von der Evakuierungsleitung abgeschirmt wird, wenn der Ventilkörper geöffnet ist.
 
8. Druckgußmaschine nach einem der Ansprüche 1 bis 7, worin die Eintragsschmelze-Zuführeinrichtung (15) eine Hülse (13) zum Einführen des geschmolzenen Eintragsguts in die Kavität (40) und einen Kolben (16) zum Einspritzen des geschmolzenen Eintragsguts in die Kavität (40), wenn das geschmolzene Eintragsgut in die Hülse (13) geliefert wird, umfaßt, und worin die Formtrennpulver-Zuführeinrichtung (39) das Formtrennpulver durch die Hülse (13) in die Kavität liefert.
 
9. Druckgußmaschine nach Anspruch 8, ferner eine Schmiermittel-Zuführeinrichtung (39) umfassend zum Zuführen eines Schmiermittels zu dem Kolben (16), der innerhalb der Hülse (13) gleitet, nachdem die Formtrennpulver-Zuführeinrichtung (15) die Zufuhr von Formtrennpulver beendet hat.
 
10. Druckgußmaschine nach einem der Ansprüche 1 bis 9, ferner umfassend einen Kühlmechanismus zum Senken der Oberflächentemperatur der Form auf 300 °C oder weniger, bevor die Formtrennpulver-Zuführeinrichtung das Formtrennpulver zuführt.
 
11. Druckgußmaschine nach Anspruch 10, worin der Kühlmechanismus Kühlrohre umfaßt, die in der Form ausgebildet sind und durch die Kühlwasser strömt, und die Oberflächentemperatur der Kavität (40) der Form auf 300 °C oder weniger senkt, nachdem das Gußerzeugnis aus der Form genommen wurde und bevor das Formtrennpulver zugeführt wird.
 
12. Druckgußmaschine nach Anspruch 1, worin die Evakuierungseinrichtung umfaßt:

eine erste Evakuierungseinrichtung (21, 22), die über eine erste Evakuierungsleitung mit der Kavität (40) verbunden ist, zum Evakuieren des Innenraums einer Kavität (40) auf einen ersten vorgegebenen Vakuumgrad und zum Saugen des Formtrennpulvers, das von der Formtrennpulver-Zuführeinrichtung geliefert wird, in die Kavität (40); und

eine zweite Evakuierungseinrichtung (26, 27), die über eine zweite Evakuierungsleitung mit der Kavität (40) verbunden ist, auf einen zweiten vorgegebenen Vakuumgrad, der über dem ersten Vakuumgrad liegt, nachdem das Formtrennpulver auf die Oberfläche der Kavität (40) aufgebracht wurde.


 
13. Druckgußmaschine nach Anspruch 12, worin die erste Evakuierungseinrichtung umfaßt:

einen ersten Vakuumtank (21);

eine erste Vakuumpumpe (22) zum Evakuieren des ersten Vakuumtanks (21 );

eine erste Schalteinrichtung, die in der ersten Evakuierungsleitung stromaufwärts vom ersten Vakuumtank (21) angeordnet ist, zum Umschalten zwischen Verbinden und Trennen der Kavität (40) und des Vakuumtanks (21) durch Öffnen/Schließen der ersten Evakuierungsleitung;

   worin die zweite Evakuierungseinrichtung umfaßt:

einen zweiten Vakuumtank (26);

eine zweite Vakuumpumpe (27) zum Evakuieren des zweiten Vakuumtanks (26) und

eine zweite Schalteinrichtung, die in der zweiten Evakuierungsleitung stromaufwärts von dem zweiten Vakuumtank (26) angeordnet ist, zum Umschalten zwischen Verbinden und Trennen der Kavität (40) und des zweiten Vakuumtanks (26); und

   worin die zweite Schalteinrichtung geschlossen wird, wenn die erste Schalteinrichtung geöffnet wird, und wobei die erste Schalteinrichtung geschlossen wird, wenn die erste Schalteinrichtung geöffnet wird.
 
14. Druckgußmaschine nach Anspruch 13, worin die zweite Vakuumpumpe (27) eine größere Leistung hat als die erste Vakuumpumpe (22).
 
15. Druckgußmaschine nach Anspruch 1, worin die Filtermaschengröße des ersten und des zweiten Filters auf einen Wert gesetzt ist, der geringer ist als der minimale Korndurchmesser des Formtrennpulvers.
 
16. Druckgußmaschine nach Anspruch 1 oder 15, ferner umfassend:

ein drittes Filter mit einer Filtermaschengröße, die über der des ersten Filters liegt, das zwischen der Kavität (40) und der ersten Schalteinrichtung der ersten Evakuierungsleitung angeordnet ist; und

ein viertes Filter mit einer Filtermaschengröße, die über der des zweiten Filters liegt, das zwischen der zweiten Kavität (40) und der zweiten Schalteinrichtung in der zweiten Evakuierungsleitung angeordnet ist.


 
17. Druckgußmaschine nach einem der Ansprüche 13 bis 16, worin sowohl die erste aus auch die zweite Schalteinrichtung ein Magnetventil umfaßt, und ein Gleitabschnitt, der mit dessen Ventilkörper verbunden ist, von der ersten und der zweiten Evakuierungsleitung abgeschirmt ist, wenn der Ventilkörper offen ist.
 
18. Druckgußmaschine nach einem der Ansprüche 12 bis 17,
   worin die Formtrennpulver-Zuführeinrichtung das Formtrennpulver durch die Hülse (13) in die Kavität (40) liefert; und
   worin die Schmiermittel-Zuführeinrichtung das Schmiermittel in die Hülse (13) liefert, nachdem das Formtrennpulver-Zuführmittel die Zufuhr des Formtrennpulvers beendet hat.
 


Revendications

1. Machine de moulage sous pression comprenant :

un moule comprenant un moule fixe (7) et un moule mobile (1) et formant une cavité (40) lorsque ledit moule fixe (7) et ledit moule mobile (1) sont attachés ;

un moyen d'évacuation (21, 22, 26, 27) connecté à ladite cavité (40) au moyen d'un passage d'évacuation (17), pour vider le contenu de ladite cavité (40) avec un degré de vide prédéterminé;

un moyen de commutation (6) placé dans ledit passage d'évacuation (17) pour ouvrir et fermer ledit passage d'évacuation (17) ;

un moyen d'alimenter un agent de démoulage en poudre (14) pour fournir un agent de démoulage en poudre dans ladite cavité (40) lorsque ledit moyen de commutation (6) ouvre ledit passage d'évacuation (17) et que le contenu de ladite cavité (40) est vidé vers ledit degré de vide prédéterminé, et pour appliquer ledit agent de démoulage en poudre à la surface de ladite cavité (40) ;

un premier filtre (20, 25) interposé entre ledit moyen de commutation (6) et ledit moyen d'évacuation (21, 22, 26, 27), et ayant un filtre de taille de maille plus petite que au moins une moyenne de diamètre de grain dudit agent de démoulage en poudre ;

un moyen d'alimentation de charge fondue (15) pour appliquer une charge fondue dans ladite cavité après avoir appliqué ledit agent de démoulage en poudre à la surface de ladite cavité (40) ;

   dans laquelle un deuxième filtre (18, 23) ayant une taille de maille plus grande que celle dudit premier filtre (20, 25) est interposé entre ladite cavité (40) et ledit moyen de commutation à l'intérieur dudit passage d'évacuation (17).
 
2. Machine de moulage sous pression selon la revendication 1, dans laquelle on choisit la taille de maille du filtre dudit premier filtre (20, 25) à un diamètre plus petit que le diamètre minimum de grain dudit agent de démoulage en poudre.
 
3. Machine de moulage sous pression selon la revendication 1 ou 2, dans laquelle ledit moyen de commutation (6) maintient une condition ouverte pendant que ledit moyen d'alimentation d'agent de démoulage en poudre (14) fournit ledit agent de démoulage en poudre dans ladite cavité (40), de telle façon que ledit agent de démoulage en poudre soit introduit dans ladite cavité (40) pendant le vidage de la dite cavité (40).
 
4. Machine de moulage sous pression selon l'une quelconque des revendications 1 à 3, comprenant en outre:

un moyen de mesure (36) pour mesurer le degré de vide à l'intérieur de ladite cavité (40) ; et

un premier moyen de détection d'anomalie (36) pour exécuter la détection de l'anormalité du moyen d'évacuation (21, 22, 26, 27) lorsque le degré de vide mesuré par ledit moyen de mesure est un dehors de la fourchette du premier degré de vide lorsque ledit moyen de commutation (6) ouvre et règle le degré de vide à l'intérieur de la cavité (40) pour atteindre ledit degré prédéterminé de passage de vide.


 
5. Machine de moulage sous pression selon la revendication 3, comprenant en outre :

un moyen de mesure (36) pour mesurer le degré de vide à l'intérieur de ladite cavité (40) ; et

un deuxième moyen de détection d'anomalie (36) pour mesurer le degré de vide à l'intérieur de ladite cavité (40) au moyen dudit moyen de mesure lorsque l'alimentation dudit agent de démoulage en poudre dans ladite cavité (40) se termine, et l'exécution dudit moyen de détection d'anomalie tel qu'un engorgement se produisant dans une voie d'alimentation de l'agent de démoulage en poudre lorsque le degré de vide ainsi mesuré est en dehors de la fourchette du deuxième degré de vide.


 
6. Machine de moulage sous pression selon l'une quelconque des revendications 1 à 5, comprenant en outre :

un moyen de mise sous pression (34) pour mettre sous pression l'intérieur de ladite cavité (40) sous une pression positive après que la fourniture dudit agent de démoulage en poudre soit terminée, pendant que ledit moyen de commutation (6) est fermé.


 
7. Machine de moulage sous pression selon l'une quelconque des revendications 1 à 6, dans lequel ledit moyen de commutation comprend une électrovanne (19), et une partie coulissante interconnectée au corps de vanne est isolée dudit passage d'évacuation au moyen dudit corps de vanne lorsque ledit corps de vanne est ouvert.
 
8. Machine de moulage sous pression selon l'une quelconque de revendications 1 à 7, dans laquelle ledit moyen d'alimentation de charge fondue (15) comprend un manchon (13) pour introduire ladite charge fondue dans ladite cavité (40) et un plongeur (16) pour expulser ladite charge fondue dans ladite cavité (40) lorsque ladite charge fondue est fournie dans ledit manchon (13), et lorsque ledit moyen d'alimentation d'agent de démoulage en poudre fournit ledit agent de démoulage en poudre dans ladite cavité (40) à travers ledit manchon (13).
 
9. Machine de moulage sous pression selon la revendication 8, comprenant en outre un moyen d'alimentation de lubrifiant (39) pour fournir un lubrifiant pour ledit plongeur (16) coulissant dans ledit manchon (13), et dans laquelle ledit moyen d'alimentation de lubrifiant (39) fournit ledit lubrifiant dans ledit manchon (13) après que ledit moyen d'alimentation d'agent de démoulage en poudre (15) termine de fournir ledit agent de démoulage en poudre.
 
10. Machine de moulage sous pression selon l'une quelconque des revendications 1 à 9, comprenant en outre un mécanisme de refroidissement pour abaisser la température de surface dudit moule à 300°C ou en dessous avant que ledit moyen d'alimentation d'agent de démoulage en poudre fournisse ledit agent de démoulage en poudre.
 
11. Machine de moulage sous pression selon la revendication 10, dans laquelle ledit mécanisme de refroidissement comprend des tuyaux de refroidissement qui sont formés à l'intérieur dudit moule et à travers lesquels l'eau de refroidissement s'écoule, et abaisse la température de surface de ladite cavité (40) dudit moule jusqu'à 300°C ou en dessous après que le produit de moulage soit retiré de l'intérieur dudit moule et avant que ledit agent de démoulage en poudre soit fourni.
 
12. Machine de moulage sous pression selon la revendication 1, dans laquelle ledit moyen d'évacuation comprend :

un premier moyen d'évacuation (21, 22) connecté à ladite cavité (40) à travers un premier passage d'évacuation, pour vider l'intérieur de ladite cavité (40) à un premier degré de vide et aspirer ledit agent de démoulage en poudre fourni à partir dudit moyen d'alimentation d'agent de démoulage en poudre dans ladite cavité (40) ; et

un deuxième moyen d'évacuation (26, 27) connecté à ladite cavité (40) à travers un deuxième passage d'évacuation, pour vider l'intérieur de ladite cavité (40) à un deuxième degré de vide prédéterminé plus élevé que ledit premier degré de vide après que ledit agent de démoulage en poudre soit appliqué à ladite cavité (40).


 
13. Machine de moulage sous pression selon la revendication 12, dans laquelle ledit premier moyen d'évacuation comprend :

un premier réservoir de vide (21) ;

une première pompe à vide (22) pour vider ledit réservoir à vide (21) ;

un premier moyen de commutation placé dans ledit premier passage d'évacuation en amont dudit premier réservoir de vide (21), pour être commuté en connexion/déconnexion avec ladite cavité (40) et ledit premier réservoir de vide (21) en ouvrant/fermant ledit passage d'évacuation ;

   dans laquelle ledit deuxième moyen d'évacuation comprend ;

un deuxième réservoir de vide (26) ;

une deuxième pompe à vide (27) pour vider ledit réservoir à vide (26) ;et

un deuxième moyen de commutation placé dans ledit premier passage d'évacuation en amont dudit premier réservoir de vide (26), pour être commuté en connexion/déconnexion avec ladite cavité (40) et ledit premier réservoir de vide (26) ; et

   dans laquelle ledit deuxième moyen de commutation est fermé lorsque le premier moyen de commutation est ouvert, et ledit premier moyen de commutation est fermé lorsque ledit deuxième moyen de commutation est ouvert.
 
14. Machine de moulage sous pression selon la revendication 13, dans lequel ladite deuxième pompe à vide (27) a une capacité plus grande que celle de ladite première pompe à vide (22)
 
15. Machine de moulage sous pression selon la revendication 1, dans laquelle on fixe la taille de maille desdits premier et deuxième filtres à une valeur plus petite que le diamètre de grain minimum dudit agent de démoulage en poudre.
 
16. Machine de moulage sous pression selon la revendication 1 ou 15, comprenant en outre :

un troisième filtre ayant une taille de maille plus grande que celle dudit premier filtre, et placé entre ladite cavité (40) et ledit moyen de commutation dans ledit premier passage d'évacuation ; et

un quatrième filtre ayant une taille de maille plus grande que celle dudit deuxième filtre, et placé entre ladite cavité (40) et ledit deuxième moyen de commutation dans ledit deuxième passage d'évacuation.


 
17. Machine de moulage sous pression selon l'une quelconque des revendications 13 à 16, dans lequel chacun desdits premier et deuxième moyen de commutation comprend une électrovanne, et une partie coulissante interconnectée au corps de vanne est isolé dudit premier ou deuxième passage d'évacuation lorsque ledit corps de valve est ouvert.
 
18. Machine de moulage sous pression selon l'une quelconque des revendications 12 à 17,
   dans laquelle ledit moyen d'alimentation d'agent de démoulage en poudre fournit ledit agent de démoulage en poudre dans ladite cavité (40) à travers ledit manchon (13) ; et
   dans laquelle ledit moyen d'alimentation de lubrifiant fournit ledit lubrifiant dans ledit manchon (13) après que ledit moyen d'alimentation d'agent de démoulage en poudre ait fini de fournir ledit agent de démoulage en poudre.
 




Drawing