(19)
(11) EP 1 257 624 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.10.2004 Bulletin 2004/41

(21) Application number: 01905750.4

(22) Date of filing: 07.02.2001
(51) International Patent Classification (IPC)7C10M 173/00, C10M 169/04
// (C10M169/04, 101:02, 129:74, 129:76, 133:44, 133:46), C10M135:36,(C10M173/00, 129:74, 129:76, 133:44, 133:46, 135:36), C10M159:04, C10N40:24
(86) International application number:
PCT/EP2001/001381
(87) International publication number:
WO 2001/059046 (16.08.2001 Gazette 2001/33)

(54)

WATER-SOLUBLE COPPER, COPPER ALLOYS AND NON-FERROUS METALS INTERMEDIATE COLD AND HOT ROLLING COMPOSITION

WASSERLÖSLICHE KALT-UND WARMWALZZUSAMMENSETZUNG FÜR KUPFER, KUPFERLEGIERUNGEN UND NICHT-EISENMETALLEN

COMPOSITION DE LAMINAGE A CHAUD ET A TEMPERATURE INTERMEDIAIRE DE METAUX NON FERREUX, D'ALLIAGES DE CUIVRE, ET DE CUIVRE HYDROSOLUBLE


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(30) Priority: 08.02.2000 EP 00400348

(43) Date of publication of application:
20.11.2002 Bulletin 2002/47

(73) Proprietor: Mobil Oil Francaise
92400 Courbevoie (FR)

(72) Inventors:
  • PRINCE, Francis
    F-76620 Le Havre (FR)
  • CLAIRE, Jean-Yves
    F-95800 Courdimanche (FR)

(74) Representative: Troch, Geneviève et al
ExxonMobil Chemical Europe Inc., P.O. Box 105
1830 Machelen
1830 Machelen (BE)


(56) References cited: : 
GB-A- 1 521 081
US-A- 4 767 554
US-A- 3 923 671
   
  • PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11, 29 November 1996 (1996-11-29) & JP 08 170090 A (SUMITOMO LIGHT METAL IND LTD;DAIDO KAGAKU KOGYO KK), 2 July 1996 (1996-07-02)
  • DATABASE WPI Section Ch, Week 197412 Derwent Publications Ltd., London, GB; Class H07, AN 1974-22038V XP002141302 & JP 49 008004 B (ASAHI DENKA K K K), 23 February 1974 (1974-02-23)
  • DATABASE WPI Section Ch, Week 198804 Derwent Publications Ltd., London, GB; Class E13, AN 1988-025259 XP002141832 & JP 62 285991 A (NIPPON MINING CO), 11 December 1987 (1987-12-11)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a water-soluble copper, copper alloys and non-ferrous metals intermediate cold and hot rolling composition and to a process for intermediate cold or hot rolling copper, copper alloys and non-ferrous metals.

[0002] The copper, copper alloys and non-ferrous metals rolling industry expresses the need to maximize the efficiency of their rolled metal manufacturing process. In general terms, this means that there is a wish to operate at higher rolling speeds and to produce more marketable products per operating shift. Additionally, there is also a wish to minimize the number of passes through the mill taken to achieve a given level of reduction. Both these routes require that quality and surface finish be not compromised.

[0003] The invention thus provides an oil composition for rolling mills that enables to prepare emulsions which affords the following customer benefits:
  • a high reduction ratio : one pass reduction is in most cases achievable;
  • an excellent surface finish;
  • an easy handling;
  • a long charge life;
  • a low oil consumption;
  • a long emulsion life;
  • a longer roll life; and
  • a lower sensitivity to dissolved copper salts.


[0004] The invention is effective on any type of rolling, be it reversible or not, on breakdown, intermediate and finishing mills.

[0005] Especially, the invention exhibits high reduction and rolling capabilities while providing an excellent strip surface finish when rolling at high speed.

[0006] The prior art does not teach or even suggest the instant invention.

[0007] Thus, the invention provides a water-soluble copper, copper alloys and non-ferrous metals rolling oil composition comprising a base stock oil and, based on the total weight of the composition,
  • from 1 to 80%, preferably from 1 to 30% by weight of a combination of
    • a monoester of a fatty acid with a polyol and
    • a tetraester of a fatty acid with pentaerythritol;
      the weight monoester : tetraester ratio of said combination ranging from 1:20 to 10:1, preferably from 1:10 to 5:1; and
  • from 0.02 to 2%, preferably from 0.05 to 1% by weight of an azole derivative.


[0008] By "intermediate cold" is herein meant that the temperature is the ambiant temperature for the copper and copper alloy ingot.

[0009] By "hot rolling" is herein meant that the temperature is around 750°C for the copper and copper alloy ingot.

[0010] According to one embodiment, the oil composition further comprises, based on the total weight of the composition, from 0,1 to 20% of a mixture of ethoxylated alcohols (having from 5 to 15 carbons atoms and preferably from 12 to 15 carbon atoms). As an example of such a mixture, a mixture of ethoxylated alcohols sold by ICI under tradenames Synperonic® A7 and Hypermer® A60 can be used, the Synperonic® A7:Hypermer® A60 weight ratio preferably ranging from 1:10 to 10:1.

[0011] The invention further provides a process for preparing the oil composition.

[0012] The invention further provides an emulsion containing the oil composition and a process for preparing this emulsion.

[0013] In addition, the invention provides the use of the oil composition of the invention to prepare emulsions intended to be used in a copper, copper alloys and non-ferrous metals hot or cold intermediate rolling process.

[0014] The invention also provides a process for hot roiling copper, copper alloys and non-ferrous metals sheets, comprising applying an effective amount of the emulsion of the invention.

[0015] Finally, the invention provides the use of the emulsion in a hot rolling process or in an intermediate rolling process.

[0016] The invention is now disclosed in more details in the following specification.

[0017] Figure 1 shows the curves obtained when plotting the copper loss in weight (ppm) against the duration of the test in hours, when using an emulsion of the prior art and an emulsion of the invention.

[0018] Figure 2 is a graph showing the applied rolling force in ton/meter versus the number of passes, when using an emulsion of the prior art and an emulsion of the invention.

[0019] The oil compositions of the invention are neat oil concentrates generally intended to be diluted in water to give oil-in-water emulsions.

[0020] The base stock oil is any oil typically used in the field of intermediate cold or hot rolling. It can be paraffinic or naphthenic.

[0021] Paraffinic base oils are made from crude oils that have relatively high alkane contents (high paraffin and isoparaffin contents). Typical crudes are from the Middle East, North Sea, US mid-continent. The manufacturing process requires aromatics removal (usually by solvent extraction) and dewaxing. Paraffinic base oils are characterized by their good viscosity/temperature characteristics, i.e. high viscosity index, adequate low-temperature properties and good stability. They are often referred to as solvent neutrals, where solvent means that the base oil has been solvent-refined and neutral means that the oil is of neutral pH. An alternative designation is high viscosity index (HVI) base oil. They are available in full range of viscosities, from light spindle oils tc viscous brightstock.

[0022] Naphthenic base oils have a naturally low pour point, are wax-free and have excellent solvent power. Solvent extraction and hydrotreatment can be used to reduce the polycyclic aromatic content.

[0023] A preferred base oil is an hydrotreated paraffinic neutral.

[0024] The base oil typically has a viscosity from 10 to 15C cSt at 40°C, preferably from 20 to 50 cSt at 40°C.

[0025] In the combination of the mono and tetra esters, the fatty acid of the monoester has from 16 to 20 carbon atoms and preferably is oleic acid. The polyol of the monoester is preferably glycerol.

[0026] The fatty acid of the tetraester has from 16 to 20 carbon atoms and preferably is oleic acid.

[0027] The azole derivative is generally selected from the group consisting of an aryltriazole, an arylimidazole and an arylthiazole.

[0028] Examples of an aryltriazole include benzotriazole, toluol triazole and toluyl triazole.

[0029] Examples of an arylimidazole include benzimidazole and 2-(5-aminopentyl) benzimidazole.

[0030] As arylthiazole , benzothiazole may be used.

[0031] Preferred azole is toluol triazole.

[0032] The oil composition may comprise classical additives, such as surfactants, coupling agents or cosurfactants, friction reducing agents or lubricity agents, corrosion inhibitors or anti-oxidants, extreme-pressure and anti-wear agents, bactericides and fungicides, anti-foaming agents, anti-rust agents.

[0033] However, an important feature of the invention is that the oil composition, and therefore also the emulsion, do not comprise nonyl-phenol surfactants, which are considered to raise environment problems.

[0034] Examples of anti-foaming agents are silicone based, especially polydimethylsiloxane.

[0035] Examples of corrosion inhibitors are hindered phenols and zinc dialkyldithiophosphates (ZDDP).

[0036] Examples of extreme-pressure and anti-wear agents are dilauryl phosphate, didodecyl phosphite, trialkylphosphate such as tri(2-ethylhexyl)phosphate, tricresylphosphate (TCP), zinc dialkyl(or diaryl)dithiophosphates (ZDDP), phospho-sulphurized fatty oils, zinc dialkyldithiocarbamate), mercaptobenzothiazole, sulphurized fatty oils, sulphurized terpenes, sulphurized cleic acid, alkyl and aryl polysulphides, sulphurized sperm oil, sulphurized mineral oil, sulphur chloride treated fatty oils, chlornaphta xanthate, cetyl chloride, chlorinated paraffinic oils, chlorinated paraffin wax sulphides, chlorinated paraffin wax, and zinc dialkyl(or diaryl)dithiophosphates (ZDDP), tricresylphosphate (TCP), trixylylphosphate (TXP), dilauryl phosphate, respectively.

[0037] Examples of corrosion inhibitors or anti-oxidants are radical scavengers such as phenolic antioxidants (sterically hindered), aminic antioxidants, organo-copper salts, hydroperoxides decomposers, butylated hydroxytoluene.

[0038] Examples of anti-rust agents are amine derivative of alkenyl succinic anhydride.

[0039] Further elements on base oils and additives can be found in "Chemistry And Technology Of Lubricants", R.M. Mortier and S.T. Orszulik, VCH Publishers, Inc, First published in 1992.

[0040] The following is an example of content of the water-soluble oil composition of the invention (the percentages are weight percentages based on the total weight of the composition) :
  • 0.1-10% of trialkyl(C1-4)phenol;
  • 0.5-4.0% of trialkyl(C3-10)phosphate ester;
  • 1-4% of petroleum sulfonate;
  • 0.1-0.5% of aminoalkyl(C2-3) alkanediol(C2-3);
  • 1-4% of trialkanol (C2-4)amine;
  • 2-10% of a glycerol mono fatty acid (C16-20) ester;
  • 5-15% of pentaerythritol tetra fatty acid (C16-20) ester;
  • 0.5-1.0% of 5-carboxy 4-hexyl 2-cyclohexen 1-octanoic acid;
  • 3-6 % of ethoxylated alcohols (C5-15, comprising 2-10 CH2O groups);
  • 0.05-0.3% of triazole derivative;
  • 0.05-0.4% of siloxan based polymer;
  • the balance being a naphthenic lube base oil or a mixture of naphthenic base oils.


[0041] The water-soluble oil composition of the invention is prepared by blending the base oil and the other ingredients under stirring or with any mixing device, preferably whilst controlling the temperature so that is does not exceed 50°C, and more preferably 35°C.

[0042] An oil-in-water emulsion is prepared by diluting under stirring the oil composition of the invention in water.

[0043] An interesting feature of the invention is that it is possible to use hard water having up to 200 mg calcium carbonate per liter.

[0044] It is preferred to use deionized water which may previously have been warmed to around 35°C.

[0045] The emulsion generally comprises water and, based on the total volume of the emulsion, from 0.5 to 30%, preferably from 1 to 20%, by volume, of the oil composition.

[0046] The copper alloys to which the invention applies are any copper alloy, including brass and bronze alloys.

[0047] Examples of non-ferrous metals to which the invention applies are nickel and nickel alloys, zinc and zinc alloys.

[0048] The hot rolling process can be the classical process. It is generally carried out at a temperature of ingot 750°C.

[0049] The cold intermediate rolling process can be the classical process. It is generally carried out at ambient temperature.

[0050] The rolling process is preferably carried out on breakdown or finishing mills. The instant oil-in-water composition allows a significant reduction of the number of passes. With conventional prior art emulsions, the number of passes was typically 3-10. The emulsion of the invention allows lowering this number by 1 pass, which is a significant improvement.

[0051] When the rolling process is carried out in a breakdown mill, the emulsion preferably comprises, based on the total volume of the emulsion, from 2 to 3% by volume of the oil composition.

[0052] When the rolling process is carried out in a finishing mill, the emulsion preferably comprises, based on the total volume of the emulsion, from 4 to 7% by volume of the oil composition.

[0053] The following examples illustrate the invention without limiting it. All parts and ratios are given by weight, unless otherwise stated.

Example



[0054] A composition is prepared by mixing the ingredients of Table 1 in the order in which they appear in this table. The temperature is maintained at a maximum of 50°C to ensure a complete dissolution and homogeneisation of the ingredients without impairing the properties of the emulsion.
TABLE 1
Ingredients Content (wt%)
Hydrotreated naphthenic base oil (20 cSt at 40°C) 33.50
Hydrotreated naphthenic base oil (110 cSt at 40°C) 39.50
Polydimethylsiloxane dispersed silica compound (defoamant) 0.10
Di-tertiobutyl paracresol (antioxidant) 0.20
Trioctylphosphate ester (extreme-pressure agent) 3.00
Petroleum sulfonate (surfactant) 2.80
Aminoethylpropanediol (buffer) 0.30
Triethanolamine (cosurfactant) 2.00
Glycerol monooleate ester (lubricity agent) 5.00
Pentaerythritol tetraoleate ester (lubricity agent) 8.40
5-carboxy 4-hexyl 2-cyclohexen 1-octanoic acid (corrosion inhibitor) 0.70
Ethoxylated alcohols* (surfactants) 4,50
Toluol triazole (corrosion inhibitor/copper passivator) 0.20
* : mixture of C12-15 alcohols :
   - sold by ICI under the tradename Synperonic® A7 : 0,6%
   - ethylene oxide addition polymer sold by ICI under the tradename Hypermer® A60 : 3,90%


[0055] The characteristics of the composition of Table 1 are set out in Table 2.
TABLE 2
Oil concentrate before dilution Unit Method Typical characteristics
Colour (ASTM)   ISO 2049 L 2.0
Density at 15°C G/ml ASTM D 1298 0.9225
Pour point °C ISO 3016 -24
Viscosity at 40°C CSt ASTM D 445 48.6
Neutralization number KOH mg/g ASTM D 974 1.9
Saponification number KOH mg/g ASTM D 94 28.1
Total base number KOH mg/g ISO 3771 9.3


[0056] An emulsion is prepared by diluting under stirring the oil composition of Table 1 in deionized water prewarmed to 35°C. The characteristics of the obtained emulsion are given in Table 3.
TABLE 3
Emulsion Method Typical characteristics
Stability of the 6% (v/v) emulsion (at room temperature, for 20 hours) Mobil 1) 1.0% cream
pH value of fresh 6% (v/v) emulsion at 20°C ASTM E 70-90 8.6
1): The emulsion stability was determined according to the following procedure. 470 ml of distilled water at room temperature or test temperature were measured into a 800-ml beaker. A 50-ml stirrer having four paddles was attached to a stirring motor so that the paddles were positioned 25mm above the bottom of the beaker. A 50-ml dropping funnel was positioned such that the outlet was 15mm from the beaker wall. The stirrer was turned on and the rate adjusted to 1000 rpm. The sample was then heated up to a temperature of 35 ± 1°C. 30 ml of the test oil were added to the dropping funnel. The dropping rate was adjusted such that all the oil was transferred to the water within 120 + 20 seconds. The stirring was then continued for an additional 60 seconds while the sample temperature was maintained at 35°±1°C. The resulting emulsion was poured into a 500-ml graduated cylinder and allow to stand at room temperature for 20 hours. After 20 hours, the upper layer (yellow cream + oil) was read in volume percent.

EXPERIMENTAL TESTING



[0057] A blank is first prepared by diluting a prior art oil composition which has the composition set out in Table 4 :
TABLE 4
Ingredients Content (wt%)
Naphthenic base oil (100 cSt at 40°C) 39.0
Naphthenic base oil (22 cSc at 40°C) 36.0
Tap water 0.5
Petreoleum sulfonate 3.0
Amino ethyl alkanediol (C3 to C6) 0.3
Trioctyl phosphate ester 3.0
Trialkanol amine (C2 to C4) 1.0
5-carboxy 4-hexyl 2-cyclohexen 1-octanoic acid 0.7
Ethoxylated nonylphenol (5 ethylene oxide groups) 0.7
Ethoxylated nonylphenol (10 ethylene oxide groups) 2.4
Alkanol oleic acid ester (C2 to C12) 13.4


[0058] Two emulsions are prepared by respectively diluting the oil compositions of the invention and of the prior art in dionized water.

[0059] Both emulsions are tested on copper to assess the surface finish improvement. The tests are carried out on copper strips in the following way.

[0060] All surface blemishes are removed from the test copper strips with silicon carbide paper. Each side is polished with silicon carbide grains picked with a pad of cotton moistened with iso-octane. The strips must be handled only with stainless steel forceps. After polishing, each strip is washed with iso-octane to remove the grains and immersed into fresh iso-octane. The strips are then removed from the wash solvent, dried with air and weighed to the nearest 0.1 mg. 500 ml of the test metal processing oil emulsion are prepared and 200 ± 1 g are weighed twice and each emulsion sample is introduced into a 250 mf flask.

[0061] The dry copper strips are then immersed into the flasks containing the emulsion samples and the flasked are corked. The flasked are placed into an oven at a temperature of 50°C for a given test period.

[0062] At the end of this period, the flasks are withdrawn from the oven. The strips are removed from the test emulsions, washed with acetone to remove water and with iso-octane to remove the oil. They are dried with air and then, weighed to the nearest 0.1 mg.

[0063] A further test cycle can be carried out by reimmersing the strips into the original test samples, corking the flasks and placing them into the ovent at the same temperature and for the same period as before.

[0064] The metal losses are then calculated for each strip as follows :

or



[0065] With :

M1 = strip weight before testing, in mg

M2 = strip weight after testing, in mg



[0066] Figure 1 shows the curves obtained when plotting the copper loss (or copper dissolution) in weight (ppm) against the duration of the test in hours.

[0067] As can be seen, with the emulsion of the invention the copper loss in much smaller than with the emulsion of the prior art, which means less chemical attack of the copper strip leading to a surface finish improvement.

[0068] The emulsions of the invention and of the prior art were then tested on brass to measure the rolling force improvement.

[0069] Figure 2 is a graph showing the applied rolling force in metric ton/meter versus the number of passes.

[0070] It can be seen that when the number of passes increases, the difference between the emulsion of the prior art and the emulsion of the invention increases, the rolling force being always smaller with the emulsion of the invention than with the emulsion of the prior art.

[0071] Since the lower the rolling force, the better the emulsion, it can be inferred that not only is the emulsion of the invention better than that of the prior art, but also the higher the number of passes, the better the emulsion of the invention as compared to the emulsion of the prior art.


Claims

1. Water-soluble copper, copper alloys and non-ferrous metals intermediate cold and hot rolling oil composition comprising a base stock oil and, based on the total weight of the composition :

- from 1 to 80% by weight of a combination of

• a monoester of a fatty acid with a polyol and

• a tetraester of a fatty acid with pentaerythritol;
the weight monoester : tetraester ratio of said combination ranging from 1:20 to 10:1; and

- from 0.02 to 2% by weight of an azole derivative.


 
2. Water-soluble oil composition according to claim 1, further comprising, based on the total weight of the composition, from 0,1 to 20% of a mixture of ethoxylated alcohols having from 5 to 15 carbons atoms and preferably from 12 to 15 carbon atoms.
 
3. Water-soluble oil composition according to claim 1 or 2, comprising, based on the total weight of the composition, from 3 to 30% by weight of said combination.
 
4. Water-soluble oil composition according to any one of claims 1 to 3, comprising, based on the total weight of the composition, from 0.05 to 1% of said azole derivative.
 
5. Water-soluble oil composition according to any one of claims 1 to 4, wherein said weight monoester : tetraester ratio ranges from 1:10 to 5:1.
 
6. Water-soluble oil composition according to any one of claims 1 to 5, wherein the fatty acid of the monoester has from 16 to 20 carbon atoms and preferably is oleic acid.
 
7. Water-soluble oil composition according to any one of claims 1 to 6, wherein the polyol of the monoester is glycerol.
 
8. Water-soluble oil composition according to any one of claims 1 to 7, wherein the fatty acid of the tetraester has from 16 to 20 carbon atoms and preferably is oleic acid.
 
9. Water-soluble oil composition according to any one of claims 1 to 8, wherein the azole derivative is selected from the group consisting of an aryltriazole, an arylimidazole and an arylthiazole.
 
10. Water-soluble oil composition according to claim 9, wherein the aryltriazole is selected from the group consisting of benzotriazole, toluol triazole and toluyl triazole.
 
11. Water-soluble oil composition according to claim 9, wherein the arylimidazole is selected from the group consisting of benzimidazole and 2-(5-aminopentyl) benzimidazole.
 
12. Water-soluble oil composition according to claim 9, wherein the arylthiazole is benzothiazole.
 
13. Water-soluble oil composition according to claim 10, wherein the aryltriazole is toluol triazole.
 
14. Water-soluble oil composition according to anyone of claims 1 to 13, comprising (in weight percentages based on the total weight of the composition) :

- 0.1-10% of trialkyl(C1-4)phenol;

- 0.5-4.0% of trialkyl(C3-10)phosphate ester;

- 1-4% of petroleum sulfonate;

- 0.1-0.5% of aminoalkyl(C2-3) alkanediol(C2-3);

- 1-4% of trialkanol(C2-4)amine;

- 2-10% of a glycerol mono fatty acid (C16-20) ester;

- 5-15% of pentaerythritol tetra fatty acid (C16-20) ester;

- 0.5-1.0% of 5-carboxy 4-hexyl 2-cyclohexen 1-octanoic acid;

- 3-6 % of ethoxylated alcohols (C5-15, comprising 2-10 CH2O groups);

- 0.05-0.3% of triazole derivative;

- 0.05-0.4% of siloxan based polymer;

- the balance being a naphthenic lube base oil or a mixture of naphthenic base oils.


 
15. Water-soluble oil composition according to any one of claims 1 to 14, in which the base stock oil has a viscosity comprised between 10 and 150 cSt, preferably between 20 and 50 cSt at 40°C.
 
16. Oil-in-water emulsion comprising water and from 0.5 to 30%, preferably from 1 to 15% (v/v) of the water-soluble oil composition according to any one of claims 1 to 15.
 
17. Process for the preparation of a water-soluble oil composition according to any one of claims 1 to 15, comprising blending the base stock and the other ingredients under stirring or with any mixing device.
 
18. Process for the preparation of an oil-in-water emulsion according to claim 16, comprising diluting the oil composition in water under stirring.
 
19. Intermediate cold rolling process for rolling copper, copper alloys and non-ferrous metals sheets, comprising applying an effective amount of the emulsion according to claim 16.
 
20. Intermediate cold rolling process according to claim 19, wherein the rolling process is carried out in a breakdown mill and the emulsion comprises, based on the total volume of the emulsion, from 2 to 3% by volume of the water-soluble oil composition according to any one of claims 1 to 15.
 
21. Intermediate cold rolling process according to claim 19, wherein the rolling process is carried out in a finishing mill and the emulsion comprises, based on the total volume of the emulsion, from 4 to 7% by volume of the water-soluble oil composition according to any one of claims 1 to 15.
 
22. Hot rolling process for rolling copper, copper alloys and non-ferrous metals sheets, comprising applying an effective amount of the emulsion according to claim 16.
 
23. Hot rolling process according to claim 22, wherein the rolling process is carried out in a breakdown mill and the emulsion comprises, based on the total volume of the emulsion, from 2 to 3% by volume of the water-soluble oil composition according to any one of claims 1 to 15.
 
24. Hot rolling process according to claim 22, wherein the rolling process is carried out in a finishing mill and the emulsion comprises, based on the total volume of the emulsion, from 4 to 7% by volume of the water-soluble oil composition according to any one of claims 1 to 15.
 
25. Use of the water-soluble oil composition according to any one of claims 1 to 15 to prepare emulsions intended to be used in a copper, copper alloys and non-ferrous metals intermediate cold or hot rolling process.
 
26. Use of the water-in-oil emulsion of claim 16 in an intermediate cold or hot rolling process.
 


Ansprüche

1. Wasserlösliche Mittelkalt- und Warmwalzölzusammensetzung für Kupfer, Kupferlegierungen und Nicht-Eisenmetalle, die Basismaterialöl und, bezogen auf das Gesamtgewicht der Zusammensetzung,

- 1 bis 80 Gew.% einer Kombination aus

■ Monoester von Fettsäure mit Polyol und

■ Tetraester von Fettsäure mit Pentaerythrit,
   wobei das Gewichtsverhältnis von Monoester:Tetraester der Kombination im Bereich von 1:20 bis 10:1 liegt, und

- 0,02 bis 2 Gew.% Azolderivat

umfasst.
 
2. Wasserlösliche Ölzusammensetzung nach Anspruch 1, die ferner, bezogen auf das Gesamtgewicht der Zusammensetzung, 0,1 bis 20 % einer Mischung ethoxylierter Alkohole mit 5 bis 15 Kohlenstoffatomen und vorzugsweise 12 bis 15 Kohlenstoffatomen umfasst.
 
3. Wasserlösliche Ölzusammensetzung nach Anspruch 1 oder 2, die, bezogen auf das Gesamtgewicht der Zusammensetzung, 3 bis 30 Gew.% der Kombination umfasst.
 
4. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 3, die, bezogen auf das Gesamtgewicht der Zusammensetzung, 0,05 bis 1 % des Azolderivats umfasst.
 
5. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 4, bei der das Gewichtsverhältnis von Monoester:Tetraester im Bereich von 1:10 bis 5:1 liegt.
 
6. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 5, bei der die Fettsäure des Monoesters 16 bis 20 Kohlenstoffatome aufweist und vorzugsweise Ölsäure ist.
 
7. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 6, bei der das Polyol des Monoesters Glycerin ist.
 
8. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 7, bei der die Fettsäure des Tetraesters 16 bis 20 Kohlenstoffatome aufweist und vorzugsweise Ölsäure ist.
 
9. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 8, bei der das Azolderivat ausgewählt ist aus der Gruppe bestehend aus Aryltriazol, Arylimidazol und Arylthiazol.
 
10. Wasserlösliche Ölzusammensetzung nach Anspruch 9, bei der das Aryltriazol ausgewählt ist aus der Gruppe bestehend aus Benzotriazol, Toluoltriazol und Toluyltriazol.
 
11. Wasserlösliche Ölzusammensetzung nach Anspruch 9, bei der das Arylimidazol ausgewählt ist aus der Gruppe bestehend aus Benzimidazol und 2-(5-Aminopentyl)benzimidazol.
 
12. Wasserlösliche Ölzusammensetzung nach Anspruch 9, bei der das Arylthiazol Benzothiazol ist.
 
13. Wasserlösliche Ölzusammensetzung nach Anspruch 10, bei der das Aryltriazol Toluoltriazol ist.
 
14. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 13, die (in Gewichtsprozenten bezogen auf das Gesamtgewicht der Zusammensetzung)

- 0,1 bis 10 % Trialkyl(C1-4)phenol,

- 0,5 bis 4,0 % Trialkyl(C3-10)phosphatester,

- 1 bis 4 % Petroleumsulfonat,

- 0,1 bis 0,5 % Aminoalkyl(C2-3)alkandiol(C2-3),

- 1 bis 4 % Trialkanol(C2-4)amin,

- 2 bis 10 % Glycerinmonofettsäure(C16-20)ester,

- 5 bis 15 % Pentaerythrittetrafettsäure(C16-20)-ester,

- 0,5 bis 1,0 % 5-Carboxy-4-hexyl-2-cyclohexen-1-octansäure,

- 3 bis 6 % ethoxylierte Alkohole (C5-15, die 2 bis 10 CH2O-Gruppen umfassen),

- 0,05 bis 0,3 % Triazolderivat,

- 0,05 bis 0,4 % Polymer auf Siloxanbasis,

- als Rest naphthenisches Schmierbasisöl oder eine Mischung naphthenischer Basisöle

umfasst.
 
15. Wasserlösliche Ölzusammensetzung nach einem der Ansprüche 1 bis 14, bei der das Basismaterialöl eine Viskosität zwischen 10 und 150 cSt, vorzugsweise zwischen 20 und 50 cSt bei 40°C hat.
 
16. Öl-in-Wasser-Emulsion, die Wasser und 0,5 bis 30 %, vorzugsweise 1 bis 15 % (Vol./Vol.) der wasserlöslichen Ölzusammensetzung nach einem der Ansprüche 1 bis 15 umfasst.
 
17. Verfahren zur Herstellung von wasserlöslicher Ölzusammensetzung nach einem der Ansprüche 1 bis 15, bei dem das Basismaterial und die anderen Bestandteile unter Rühren oder mit beliebiger Mischvorrichtung gemischt werden.
 
18. Verfahren zur Herstellung von Öl-in-Wasser-Emulsion nach Anspruch 16, bei dem die Ölzusammensetzung in Wasser unter Rühren verdünnt wird.
 
19. Mittelkaltwalzverfahren zum Walzen von Blechen aus Kupfer, Kupferlegierungen und Nicht-Eisenmetallen, bei dem eine wirksame Menge der Emulsion gemäß Anspruch 16 angewendet wird.
 
20. Mittelkaltwalzverfahren nach Anspruch 19, bei dem das Walzverfahren in einem Vorwalzwerk durchgeführt wird und die Emulsion, bezogen auf das Gesamtvolumen der Emulsion, 2 bis 3 Vol.% der wasserlöslichen Ölzusammensetzung gemäß einem der Ansprüche 1 bis 15 umfasst.
 
21. Mittelkaltwalzverfahren nach Anspruch 19, bei dem das Walzverfahren in einem Fertigwalzwerk durchgeführt wird und die Emulsion, bezogen auf das Gesamtvolumen der Emulsion, 4 bis 7 Vol.% der wasserlöslichen Ölzusammensetzung gemäß einem der Ansprüche 1 bis 15 umfasst.
 
22. Warmwalzverfahren zum Walzen von Blechen aus Kupfer, Kupferlegierungen und Nicht-Eisenmetallen, bei dem eine wirksame Menge der Emulsion gemäß Anspruch 16 angewendet wird.
 
23. Warmwalzverfahren nach Anspruch 22, bei dem das Walzverfahren in einem Vorwalzwerk durchgeführt wird und die Emulsion, bezogen auf das Gesamtvolumen der Emulsion, 2 bis 3 Vol.% der wasserlöslichen Ölzusammensetzung gemäß einem der Ansprüche 1 bis 15 umfasst.
 
24. Warmwalzverfahren nach Anspruch 22, bei dem das Walzverfahren in einem Fertigwalzwerk durchgeführt wird und die Emulsion, bezogen auf das Gesamtvolumen der Emulsion, 4 bis 7 Vol.% der wasserlöslichen Ölzusammensetzung gemäß einem der Ansprüche 1 bis 15 umfasst.
 
25. Verwendung der wasserlöslichen Ölzusammensetzung nach einem der Ansprüche 1 bis 15 zur Herstellung von Emulsionen, die in einem Mittelkalt- oder Warmwalzverfahren für Kupfer, Kupferlegierungen und Nicht-Eisenmetalle verwendet werden sollen.
 
26. Verwendung der Wasser-in-Öl-Emulsion nach Anspruch 16 in einem Mittelkalt- oder Warmwalzverfahren.
 


Revendications

1. Composition d'huile hydrosoluble pour laminage à chaud et à froid intermédiaire de cuivre, d'alliages de cuivre et de métaux non ferreux, comprenant une huile de base et, par rapport au poids total de la composition :

- 1 à 80% en poids d'une combinaison :

• d'un monoester d'un acide gras avec un polyol et

• d'un tétraester d'un acide gras avec du pentaérythritol;

   le rapport en poids du monoester au tétraester de ladite combinaison se situant dans la plage de 1:20 à 10:1; et

- 0,02 à 2% en poids d'un dérivé d'azole.


 
2. Composition d'huile hydrosoluble selon la revendication 1, comprenant en outre, par rapport au poids total de la composition, 0,1 à 20% d'un mélange d'alcools éthoxylés ayant 5 à 15 atomes de carbone et, de préférence, 12 à 15 atomes de carbone.
 
3. Composition d'huile hydrosoluble selon la revendication 1 ou 2, comprenant, par rapport au poids total de la composition, 3 à 30% en poids de ladite combinaison.
 
4. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 3, comprenant, par rapport au poids total de la composition, 0,05 à 1 % dudit dérivé d'azole.
 
5. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 4, dans laquelle ledit rapport en poids du monoester au tétraester se situe dans la plage de 1:10 à 5:1.
 
6. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 5, dans laquelle l'acide gras du monoester a 16 à 20 atomes de carbone et est de préférence l'acide oléique.
 
7. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 6, dans laquelle le polyol du monoester est le glycérol.
 
8. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 7, dans laquelle l'acide gras du tétraester a 16 à 20 atomes de carbone et est de préférence l'acide oléique.
 
9. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 8, dans laquelle le dérivé d'azole est choisi dans le groupe constitué d'un aryltriazole, d'un arylimidazole et d'un arylthiazole.
 
10. Composition d'huile hydrosoluble selon la revendication 9, dans laquelle l'aryltriazole est choisi dans le groupe constitué du benzotriazole, du toluènetriazole et du toluyltriazole.
 
11. Composition d'huile hydrosoluble selon la revendication 9, dans laquelle l'arylimidazole est choisi dans le groupe constitué du benzimidazole et du 2-(5-aminopentyl)benzimidazole.
 
12. Composition d'huile hydrosoluble selon la revendication 9, dans laquelle l'arylthiazole est le benzothiazole.
 
13. Composition d'huile hydrosoluble selon la revendication 10, dans laquelle l'aryltriazole est le toluènetriazole.
 
14. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 13, comprenant (en pourcentage en poids par rapport au poids total de la composition) :

- 0,1 à 10% de trialkyl(en C1-C4)phénol;

- 0,5 à 4,0% d'ester phosphate de trialkyle (en C3-C10);

- 1 à 4% de sulfonate de pétrole;

- 0,1 à 0,5% d'aminoalkyl(en C2-C3)alcanediol (en C2-C3)

- 1 à 4% de trialcanol(en C2-C4)amine;

- 2 à 10% de monoester d'acide gras(en C16-C20) et de glycérol;

- 5 à 15% de tétraester d'acide gras(en C16-C20) et de pentaérythritol;

- 0,5 à 1,0% d'acide 5-carboxy-4-hexyl-2-cyclohexène-1-octanoique;

- 3 à 6% d'alcools éthoxylés (en C5-C15, comprenant 2 à 10 groupes CH2O);

- 0,05 à 0,3% de dérivé de triazole;

- 0,05 à 0,4% de polymère à base de siloxanne;

- le restant étant une huile de base lubrifiante naphténique ou un mélange d'huiles de base naphténiques.


 
15. Composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 14, dans laquelle l'huile de base a une viscosité de 10 à 150 cSt, de préférence de 20 à 50 cSt à 40°C.
 
16. Emulsion d'huile dans l'eau comprenant de l'eau et 0,5 à 30%, de préférence 1 à 15% (v/v), de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15.
 
17. Procédé pour la préparation d'une composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15, comprenant le mélange de l'huile de base et des autres ingrédients en agitant ou avec un dispositif de mélange quelconque.
 
18. Procédé pour la préparation d'une émulsion d'huile dans l'eau selon la revendication 16, comprenant la dilution de la composition d'huile dans de l'eau tout en mélangeant.
 
19. Procédé de laminage à froid intermédiaire pour laminer des tôles de cuivre, d'alliages de cuivre et de métaux non ferreux, comprenant l'application d'une quantité efficace de l'émulsion selon la revendication 16.
 
20. Procédé de laminage à froid intermédiaire selon la revendication 19, dans lequel le procédé de laminage est effectué dans un laminoir dégrossisseur et l'émulsion comprend, par rapport au volume total de l'émulsion, 2 à 3% en volume de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15.
 
21. Procédé de laminage à froid intermédiaire selon la revendication 19, dans lequel le procédé de laminage est effectué dans un laminoir finisseur et l'émulsion comprend, par rapport au volume total de l'émulsion, 4 à 7% en volume de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15.
 
22. Procédé de laminage à chaud pour laminer des tôles de cuivre, d'alliages de cuivre et de métaux non ferreux, comprenant l'application d'une quantité efficace de l'émulsion selon la revendication 16.
 
23. Procédé de laminage à chaud selon la revendication 22, dans lequel le procédé de laminage est effectué dans un laminoir dégrossisseur et l'émulsion comprend, par rapport au volume total de l'émulsion, 2 à 3% en volume de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15.
 
24. Procédé de laminage à chaud selon la revendication 22, dans lequel le procédé de laminage est effectué dans un laminoir finisseur et l'émulsion comprend, par rapport au volume total de l'émulsion, 4 à 7% en volume de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15.
 
25. Utilisation de la composition d'huile hydrosoluble selon l'une quelconque des revendications 1 à 15 pour préparer des émulsions destinées à être utilisées dans un procédé de laminage à chaud ou à froid intermédiaire de cuivre, d'alliages de cuivre et de métaux non ferreux.
 
26. Utilisation de l'émulsion d'eau dans l'huile selon la revendication 16 dans un procédé de laminage à chaud ou à froid intermédiaire.
 




Drawing