BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to a process for the production of lycopene, a carotenoid
that is important in the fields of medicines, feed additives and food additives and
also to an intermediate of lycopene.
2. Description of Related Art
[0002] For the synthesis of lycopene, which is a symmetric C40 compound, there have been
known following methods such as a method of coupling two C15 compounds and a C10 compound,
a method of coupling two C10 compounds and a C20 compound (e.g., Pure & Appl. Chem.,
Vol. 69, 2039 (1997) or Helv. Chim. Acta, Vol. 39, 463 (1956)) and a method of coupling
two C8 compounds and a C24 compound (e.g., DE 2554924 Al). However, these methods
were not always satisfactory in that they required to synthesize two different compounds
of different carbon numbers and molecular structures. There have also been known methods
of coupling two C20 compounds as reported in Proc. Chem. Soc., 261 (1961) and Liebigs
Ann. Chem., 1146 (1977), however, these methods are not always practical from an industrial
point of view because they required multistep Wittig reactions and oxidation-reduction
reactions to obtain C20 compounds.
[0003] EP-A-0 983 998 discloses a tetraene derivative of the formula:

wherein Ar represents an aryl group which may be optionally substituted with at least
one substituent, and R
1 and R
2 are identical or different and represent a hydrogen atom, a lower alkyl group or
a protective group of a hydroxyl group; synthesis methods therefor and synthesis methods
using the same.
[0004] EP-A-0 742 205 discloses a process for preparing β-carotene products with a high
content of 9(Z)-β-carotene from a mother liquor from the industrial preparation of
C
15-triarylphosphonium salts via a Wittig reaction of the C
15-triarylphosphonium salt enriched in the 9(Z)-isomer with either all-(E)-β-apo-12'-carotenal
or 2,7 dimethyl-2,4,6-octatriene-1,8-dial and thereafter with said C
15-triaryl-phosphonium salt and optionally isomerizing the (Z) double bond at the 11
or 11' position of the β-carotene product by heating.
[0005] K. Bernhard et al. describe in "Recent advances in the synthesis of achiral carotenoids",
Pure & Applied Chemistry, Pergamon Press, Oxford, GB, Vol. 63, No. 1, 1991, pages
35-44, the syntheses of β-carotene, lycopene, (3R, 3'R)-zeaxanthin, canthaxanthin,
(3RS, 3'RS)-astaxanthin, 8'-apo-β-caroten-8'-al and crocetindialdehyde by an aldehyde-sulfone
route; and the preparation of gram amounts of (9Z)-, (13Z)-, (9Z, 9'Z)-, (9Z, 15Z)-
and (13Z, 15Z)-β-carotene and of 3-hydroxy-4-oxoretinal, 12'-apoastaxanthinal, 8'-apoastaxanthinal
and gelliodesxanthin by Wittig olefination.
SUMMARY OF THE INVENTION
[0006] An object of the invention is to provide a method for producing lycopene using a
novel intermediate compound.
[0007] Further objects of the invention are to provide industrially advantageous two C20
compounds for producing the intermediate compound and methods for producing the two
C20 compounds from an inexpensive C10 compound linalool or geraniol in an industrially
advantageous manner.
[0008] The present invention provides:
1. a process for producing a sulfonaldehyde derivative of formula (2):

wherein Ar represents an aryl group which may be substituted,
R1 represents a (C1-C4) straight or branched chain alkyl group or a protective group
of a hydroxyl group and the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof,
which comprises oxidizing a sulfone alcohol derivative of formula (1):

wherein Ar, R1 and the wavy line respectively have the same meanings as defined above;
2. a sulfonaldehyde derivative of formula (2) as defined above;
3. a process for producing a phosphonium salt of formula (3):

wherein Ar, R1 and the wavy line respectively have the same meanings as defined above, Y represents
a (C1-C4) straight or branched chain alkyl group or an optionally substituted aryl
group, and X represents a halogen atom or HSO4,
which comprises reacting a sulfone alcohol derivative of formula (1) with a salt
of a tertiary phosphine compound of formula: PY3, and a protonic acid, or with a tertiary phosphine compound of formula: PY3, in the presence of a protonic acid, wherein Y represents the same as defined above;
4. a phosphonium salt of formula (3) as defined above;
5. a process for producing a sulfone derivative of formula (4):

wherein Ar and R1 are the same or different and independently represent the same as defined above and
the wavy line has the same meanings as defined above,
which comprises reacting a phosphonium salt of formula (3) as defined above with
a sulfonaldehyde derivative of formula (2) as defined above in the presence of a base
or an epoxide;
6. a sulfone derivative of formula (4) as defined above; and
7. a process for producing lycopene of formula (5):

wherein the wavy line has the same meaning as defined above,
which comprises reacting a sulfone derivative of formula (4) as defined above with
a basic compound.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0009] The present invention will be hereinafter explained in detail.
[0010] The protective group of a hydroxyl group in the substituent R
1 of the sulfone alcohol derivative (1), sulfonaldehyde derivative (2), phosphonium
salt (3) and sulfone derivative (4) in the present invention include an acyl group,
a silyl group, an alkoxyalkyl group, an aralkyl group, a hydrocarbyloxycarbonyl group
and the like.
[0011] Examples of the acyl group include a group of formula: Q-C=O, wherein Q is a hydrogen
atom, a (C1-C6)alkyl group or
a phenyl group which may be substituted with a (C1-C3)alkyl group, a (C1-C3)alkoxy
group, a halogen atom or a nitro group.
[0012] Specific examples thereof include an acetyl, pivaloyl, benzoyl, p-nitrobenzoyl group,
p-methylbenzoyl group, p-methoxybenzoyl group and the like.
[0013] Examples of the silyl group include a silyl group substituted with three groups selected
from a (C1-C4)alkyl group and a phenyl group. Specific examples thereof include trimethylsilyl,
t-butyldimethylsilyl, t-butyldiphenylsilyl group and the like.
[0014] Examples of the alkoxyalkyl group include a (C2-C5)alkoxyalkyl group such as tetrahydropyranyl,
methoxymethyl, methoxyethoxymethyl, 1-ethoxyethyl and the like.
[0015] Examples of the aralkyl group include a methyl group substituted with at least one
phenyl group, which phenyl group may be substituted with a (C1-C3)alkyl group(e.g.
methyl, ethyl, n-propyl, i-propyl), a (C1-C3)alkoxy group(methoxy, ethoxy, n-propoxy,
i-propoxy), a halogen atom, a nitro group and the like. Specific examples thereof
include a benzyl group, p-methoxybenzyl group, p-nitrobenzyl group, trityl group,
a benzhydryl group and the like.
[0016] Examples of the hydrocarbyloxycarbonyl group include a (C1-C7) alkyl- or aralkyl-oxycarbonyl
group such as a benzyloxycarbonyl group, a t-butoxycarbonyl group, a methoxycarbony
group, ethoxycarbonyl group, n-propoxycarbonyl group or the like.
[0017] Examples of the lower alkyl group in the substituent R
1 include a (C1 - C4) straight or branched chain alkyl group such as a methyl, ethyl,
n-propyl, isopropyl, n-butyl, isobutyl or t-butyl group.
[0018] Preferred are the lower alkyl group and acyl groups for R
1.
[0019] Examples of the aryl group which may be substituted represented by "Ar" include
a phenyl group and a naphthyl group, both of which may be substituted with at least
one group selected from
a C1 to C6 alkyl group(e.g. a methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl,
i-butyl, t-butyl, n-pentyl, t-amyl, or n-hexyl group),
a C1 to C6 alkoxy group(e.g. a methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy,
s-butoxy, i-butoxy, t-butoxy, n-pentyloxy, t-amyloxy, or n-hexyloxy group),
a halogen atom and a nitro group.
[0020] Specific examples thereof include a phenyl, naphthyl, o-tolyl, m-tolyl, p-tolyl,
o-methoxyphenyl, m-methoxyphenyl, p-methoxyphenyl, o-chlorophenyl, m-chlorophenyl,
p-chlorophenyl, o-bromophenyl, m-bromophenyl, p-bromophenyl, o-iodophenyl, m-iodophenyl,
p-iodophenyl, o-fluorophenyl, m-fluorophenyl, p-fluorophenyl, o-nitrophenyl, m-nitrophenyl
and p-nitrophenyl group.
[0021] The substituent X of the phosphonium salt (3) represents a halogen atom (e.g. a chlorine
atom, bromine atom and iodine atom) or HSO
4.
[0022] The sulfonaldehyde derivative (2)can be obtained by a process which comprises oxidizing
the sulfone alcohol derivative (1).
[0023] The oxidizing of the sulfone alcohol derivative (1) is usually conducted by one of
the following methods and the like.
[0024] The oxidizing of the sulfone alcohol derivative (1) can be conducted by (a) subjecting
the sulfone alcohol derivative (1) to contact with a metal oxidant.
[0025] Alternatively, the oxidizing may be conducted by
(b) subjecting the sulfone alcohol derivative (1) to contact with a sulfoxide compound,
a sulfoxide-activating compound and optionally a base, or
(c) subjecting the sulfone alcohol derivative (1) to contact with a sulfide compound,
a halogenating agent and a base, or
(d) subjecting the sulfone alcohol derivative (1) to contact with an aldehyde in the
presence of a catalyst selected from an aluminum alkoxide or aryloxide, and a boron
compound, or
(e) subjecting the sulfone alcohol derivative (1) to contact with an oxygen in the
presence of a catalyst.
[0026] A description will be made to the oxidizing reaction (a).
[0027] Examples of the metal oxidant include a salt or oxide of chromium or manganese, an
oxide of nickel or selenium, or a salt of silver. Specific examples thereof include
pyridinium chlorochromate, pyridinium dichromate, manganese dioxide, nickel peroxide,
selenium dioxide and silver carbonate. The amount of the metal oxidant to be used
is usually about 1 to 20 moles, preferably 1 to 10 moles per mol of the sulfone alcohol
derivative (1).
[0028] The reaction is usually conducted in a solvent. Examples of the solvent include
a hydrocarbon solvent such as n-hexane, cyclohexane, n-pentane, n-heptane, toluene
or xylene,
a halogenated hydrocarbon solvent such as chloroform, dichloromethane, 1,2-dichloroethane,
monochlorobenzene, o-dichlorobenzene or α,α,α-trifluorotoluene,
an aprotic polar solvent such as N,N-dimethylformamide, dimethylsulfoxide, acetonitrile,
N,N-dimethylacetamide or hexamethylphosphoric triamide or
an ether solvent such as 1,4-dioxane, tetrahydrofuran or anisole. The reaction
temperature is usually in a range between about 0°C and 50°C.
[0029] After completion of the reaction, the reaction mixture is usually subjected to post-treatments
which include filtration to remove the metal oxidant where an organic solvent as listed
above or water may be optionally used, phase separation, washing and/or evaporation
to give the desired product, which may be further purified by column chromatography
or recrystallization, if necessary.
[0030] Next, a description will be made to the oxidizing reactions (b) and (c) described
above, which may be referred to as "Swern oxidation" or "Corey-Kim oxidation" respectively.
[0031] Examples of the sulfoxide compound include a di(C1-C3)alkyl sulfoxide such as dimethylsulfoxide
and the like. Examples of the sulfoxide-activating compound include oxalyl chloride,
acetic anhydride, thionyl chloride, phosgene or the like. The sulfoxide compound and
the sulfoxide-activating compound are usually used in an equimolar amount each other.
Specific examples of the combination thereof include dimethylsulfoxide and oxalyl
chloride, dimethylsulfoxide and any one of the above-described sulfoxide-activating
compound other than oxalyl chloride and the like.
[0032] Examples of the sulfide compound include a methyl(C1-C3)alkyl sulfide or methylphenylsulfide
such as dimethylsulfide and the like. Examples of the halogenating agent to be used
with the sulfide compound include N-chlorosuccinimide and the like. The sulfide compound
and the halogenating agent are usually used in an equimolar amount each other. Specific
examples of the combination thereof include dimethylsulfide and N-chlorosuccinimide,
and the like.
[0033] The amount of the sulfoxide compound and sulfoxide-activating compound, or the sulfide
compound and halogenating agent to be used is usually about 1 to 5 moles, preferably
about 1 to 3 moles per mol of the sulfone alcohol derivative (1).
[0034] Examples of the base include a (C6-C12)tertiary amine such as triethylamine, tripropylamine
or tributylamine. The amount of the base is usually about 1 to 5 moles, preferably
1 to 3 moles per mol of the sulfoxide compound or sulfide compound.
[0035] The reaction is usually conducted in a solvent, examples of which include those described
for the oxidizing reaction (a) above and an ester solvent such as ethyl acetate or
butyl acetate. The reaction temperature is usually in a range of about -80 to 0°C.
[0036] Next a description will be made to the reaction (d), which may be referred to as
a hydrogen transfer type oxidation reaction (for example, Oppenauer oxidation).
[0037] Examples of the aluminum alkoxide or aryloxide to be used in this reaction include
a (C3-C7) secondary or tertiary alkoxide or aryloxide of aluminum.
[0038] Specific examples thereof include aluminum isopropoxide, aluminum t-butoxide, aluminum
s-butoxide and aluminum phenoxide. Examples of the boron compounds include tris(pentafluorophenyl)
boron and bis(pentafluorophenyl)boric acid.
[0039] Examples of the aldehyde, as a hydrogen acceptor, include a tertiary alkyl or aromatic
aldehyde having C5-C7 carbon atoms such as trimethylacetaldehyde, 2,2-dimethylbutanal
or benzaldehyde.
[0040] The amount of the aluminum alkoxide or aryloxide, or boron compounds may be catalytic
and is usually about 0.001 to 0.3 mol, preferably about 0.01 to 0.1 mol per mol of
the sulfone alcohol derivative (1).
[0041] The amount of the aldehyde is usually about 1 to 10 moles, preferably about 1 to
5 moles per mol of the sulfone alcohol derivative (1).
[0042] The reaction is usually conducted in a solvent, examples of which include those described
for the oxidizing reaction (a) above. The reaction temperature is usually in a range
of about 10 to 60°C.
[0043] Next a description will be made to the oxidation reaction (e).
[0044] Examples of the catalyst for the oxidation reaction using oxygen include platinum,
a catalyst comprising 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and copper chloride,
a catalyst comprising tris(triphenylphosphine)ruthenium and hydroquinone chloride,
and a catalyst comprising tetrapropylammonium perruthenate and molecular sieves 4A.
[0045] The amount of the catalyst to be used is usually about 0.001 to 0.3 mol, preferably
about 0.01 to 0.1 mol per mol of the sulfone alcohol derivative (1). The reaction
is usually conducted in a solvent, examples of which include those described for the
oxidizing reaction (a) above.
[0046] Oxygen may be used either alone or as a mixture with other gases such as air, and
it may be either of atmospheric pressure or pressured and may be introduced into the
reaction solution. The reaction temperature is usually in a range of about 10°C to
60°C.
[0047] After completion of the above-described reactions of (b) to (e), the reaction mixture
is usually subjected to post-treatments which include optionally filtration, washing,
phase separation and/or evaporation as described above for the reaction (a) to give
the desired products, which may be further purified by column chromatography or recrystallization,
if necessary.
[0048] Specific examples of the sulfonaldehyde derivative of formula (2) include a sulfonaldehyde
derivative of formula (2), wherein Ar is a p-tolyl group and R
1 is a methyl group, sulfonaldehyde derivatives of formula (2), wherein Ar is a p-tolyl
group and R
1 represents any one of the specific protective groups of a hydroxyl group as described
above or any one of specific C2-C4 alkyl groups as described above. Further specific
examples thereof include sulfonaldehyde derivatives of formula (2), wherein p-tolyl
group for R
1 is replaced by other specific groups as described above for "Ar" in the above-described
specific sulfonaldehyde derivatives.
[0049] The phosphonium salt (3) can be obtained by a process which comprises reacting the
sulfone alcohol derivative (1) with a salt of a tertiary phosphine compound and a
protonic acid, or with a tertiary phosphine compound in the presence of a protonic
acid, wherein said tertiary phosphine compound is represented by a formula: PY
3, wherein Y has the same meaning as defined above.
[0050] Examples of the tertiary phosphine compound include a triphenylphosphine compound
of which phenyl group may be substituted with a C1-C3 alkyl or a C1-C3 alkoxy group,
and a tri(C1-C6)alkylphosphine.
[0051] Specific examples of the triphenylphosphine compound include triphenylphosphine,
tri-(o-tolyl)phosphine and the like.
[0052] Specific examples of said trialkylphosphine include triethylphosphine, tripropylphosphine,
tributylphosphine, tripentylphosphine, trihexylphosphine and the like.
[0053] Examples of the protonic acid include hydrogen chloride, hydrogen bromide, hydrogen
iodide and sulfuric acid .
[0054] Examples of the salt of the tertiary phosphine compound and a protonic acid used
in the above reaction include triphenylphosphine hydrochloride, triphenylphosphine
hydrobromide or triphenylphosphine hydroiodide.
[0055] Examples of the protonic acid allowed to coexist with the tertiary phosphine compound
include hydrogen chloride, hydrogen bromide, hydrogen iodide and sulfuric acid.
[0056] The amount of the tertiary phosphine compound or its salt with a protonic acid is
usually about 0.7 to 2 moles per mol of the sulfone alcohol derivative (1). The amount
of the protonic acid allowed to coexist with the tertiary phosphine compound is usually
about 0.9 to 1.2 moles per mol of the sulfone alcohol derivative (1).
[0057] The reaction is usually conducted in an organic solvent, examples of which include
those described for oxidizing reaction (a) above and an alcohol solvent such as methanol
or ethanol.
[0058] The reaction temperature is usually in a range of 10°C to 50°C.
[0059] The resulting phosphonium salt (3) may be isolated after the reaction, alternatively
it may be used as it is in the subsequent reaction without being isolated.
[0060] Specific examples of the phosphonium salt (3) include a phosphonium salt (3), wherein
"Ar" and R
1 have the same meaning as defined for specific examples of the sulfonaldehyde derivative
of formula (2) and Y is a phenyl group and X is chlorine, and further examples of
compounds of formula (3), wherein Y represents any one of the groups as specified
for Y above in place of the phenyl group above. In addition to these phosphonium salt
(3), further examples thereof include phosphonium salts of formula (3), wherein X
represents bromine or iodine in place of chlorine in the specified compounds above
and the like.
[0061] The sulfone derivative (4) of the present invention can be obtained by a process
which comprises reacting the aforementioned phosphonium salt (3) with the sulfonaldehyde
derivative (2) in the presence of a base or an epoxide.
[0062] There is no particular limitation as to the base used in the above reaction as long
as it does not adversely affect the reaction. Examples of the base include an alkali
metal alkoxide such as potassium methoxide, potassium ethoxide, potassium n-butoxide,
potassium t-butoxide, sodium methoxide, sodium ethoxide, sodium n-butoxide, or sodium
t-butoxide and an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide.
An epoxide such as an ethylene oxide or 1,2-butene oxide may be used instead of the
base.
[0063] The amount of the base or epoxide is usually 1 to 5 moles per mol of the phosphonium
salt (3).
[0064] The reaction is usually conducted in an organic solvent, examples of which include
those described for the oxidizing reaction (a) above. The reaction may also be conducted
in a two phase system of an organic solvent immiscible with water such as the hydrocarbon
solvent, the halogenated hydrocarbon solvent or the like as referred to in reaction
(a) above and water.
[0065] The reaction temperature is usually in a range of about -10°C to 150°C, preferably
0°C to 100°C.
[0066] After completion of the reaction, the reaction mixture is usually subjected to post-treatments
which include optionally filtration, washing, phase separation and/or evaporation
to give the desired product, which may be further purified by column chromatography
or recrystallization, if necessary.
[0067] Specific examples of the sulfone drivative (4) include a sulfone derivative of formula
(4), wherein "Ar" and R
1 have the same meanings as specified for the sulfonealdehyde compound of formula (2)
above and the like.
[0068] The resulting sulfone derivative (4) can be derivatized to lycopene by a process
which comprises reacting the sulfone derivative (4) with a basic compound.
[0069] Example of the basic compound to be used in the this reaction include an alkali metal
hydroxide, an alkali metal hydride and an alkali metal alkoxide. Specific examples
thereof include sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride,
sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium
t-butoxide, potassium t-butoxide and the like. The amount of the basic compound is
usually about 2 to 30 moles, preferably 4 to 25 moles per mol of the sulfone derivative
(4).
[0070] The reaction is usually conducted in an organic solvent, examples of which include
those described above for the oxidizing reaction (a) above.
[0071] The reaction temperature is usually in a range of -78°C to the boiling point of the
solvent to be used.
[0072] After completion of the reaction, the reaction mixture is usually subjected to post-treatments
which include optionally filtration, washing, phase separation and/or evaporation
as described above to give lycopene, which may be further purified by column chromatography
or recrystallization, if necessary.
[0073] Since lycopene is liable to be oxidized, said post-treatments are preferably carried
out in an inert atmosphere, for example, in a atmosphere of nitrogen or argon, and
an antioxidant such as BHT(di-t-butylhydroxytoluene) may be added to the reaction
mixture or a solution thereof.
[0074] The sulfone alcohol derivative (1), which may be a mixture of geometrical isomers
of E and Z, a racemate or an optically active isomer can be used in the present process.
[0075] The sulfone alcohol derivative (1) above can be readily synthesized from linalool
or geraniol, which is available at relatively low cost, according to the rout as shown
by the Scheme 1 described below, wherein R represents a protective. A method for the
synthesis of the sulfones (6) is described in J. Org. Chem. Vol. 39, 2135 (1974).
The sulfones (6) are coupled with an allyl bromide (7) to obtain a sulfone compound
(8) and the protected hydroxyl group of the resulting sulfone compound (8) is subjected
to selective deprotection of a primary alcoholic OH group or deprotection and selective
protection or alkylation of a secondary alcoholic OH group to obtain the sulfone alcohol
derivative (1) (e.g. EP0983998).

[0076] According to the process of the present invention, lycopene which is an important
carotenoid in the fields of medicines, feed additives and food additives can be produced
from readily available linalool or geraniol in an industrially advantageous manner.
EXAMPLES
[0077] The present invention will be explained in more detail by way of examples, which
are not intended to be limiting of the present invention.
Example 1
[0078] 712 mg (1.5 mmol) of methoxy alcohol (I) was dissolved in 10 ml of methylene chloride,
to which was added 0.65 g of manganese dioxide and the mixture was stirred at an ambient
temperature for 17 hours. 0.65 g of manganese dioxide was further added to the mixture,
which was then stirred at an ambient temperature for 10 hours and thereafter the reaction
solution was diluted with an ether. The diluted solution was dried using anhydrous
magnesium sulfate and subjected to filtration. Then the solvent in the filtrate was
evaporated to obtain a crude product. The resulting crude product was purified using
silica gel column chromatography to give methoxyaldehyde (II) as a pale yellow oil
in a yield of 73%.
1H-NMR δ(CDCI
3)
1.15-1.22(3H, m), 1.59(3H, s), 1.63(3H, br), 1.60-1.70(2H, m), 1.93(3H, br), 2.10-2.20(3H,
m), 2.43-2.45(3H, m), 2.20-2.40(3H, m), 2.50-3.00(3H, m), 3.11-3.23(3H, m), 3.75-4.20(2H,
m), 4.80-5.30(3H, m), 5.80-5.95(1H, m), 7.20-7.35(2H, m), 7.60-7.75(2H, m), 9.84-10.02(1H,
m).
Example 2
[0079] 855 mg (1.8 mmol) of methoxy alcohol (I) was dissolved in 15 ml of methanol, to which
was added 700.6 mg (1.98 mmol) of triphenylphosphine hydrobromide and the mixture
was then stirred at an ambient temperature for 24 hours. The reaction solution was
concentrated to obtain 1.45 g of a crude product of a phosphonium salt (III). The
resulting crude product was used as it was in the subsequent reaction.
1H-NMR δ(CDCI
3)
1.00-1.30(3H, m), 1.30-1.80(11H, m), 1.80-2.10(3H, m), 2.10-2.60(3H, m), 2.60-3.40(6H,
m), 2.45(3H, s), 3.70-4.10(2H, m), 4.30-5.60(5H, m), 5.60-6.40(1H, m), 7.20-8.00(19H,
m).
Example 3
[0080] 94.5 mg (0.2 mmol) of methoxyaldehyde (II) was dissolved in 0.5 ml of methylene chloride,
to which was added 0.4 ml of an aqueous solution of 2M sodium hydroxide. To the mixture
was added dropwise 0.5 ml of a methylene chloride solution containing 209 mg (0.26
mmol) of the crude product of the phosphonium salt (III) over about 20 minutes and
the mixture was stirred at an ambient temperature for 24 hours. Water was added to
the reaction solution, which was then subjected to extraction using chloroform. The
extract was dried over anhydrous magnesium sulfate, followed by evaporation to obtain
a crude product. The resulting crude product was purified by silica gel chromatography
to obtain a methoxysulfone (IV) as a yellow oil in a yield of 46%.
1H-NMR δ(CDCI
3)
1.10-1.35(6H, m), 1.59(6H, br), 1.67(6H, br), 1.74(6H, br), 1.93(6H, br), 1.40-2.20(12H,
m), 2.20-2.50(2H, m), 2.44(6H, s), 2.70-3.05(2H, m), 3.05-3.30(6H, m), 3.70-4.10(4H,
m), 4.80-5.30(6H, m), 5.80-6.00(1H, m), 6.00-6.15(1H, m), 6.15-6.50(2H, m), 7.15-7.40(4H,
m), 7.50-7.80(4H, m).
Example 4
[0081] 157.7 mg (0.17 mmol) of the methoxysulfone (IV) was dissolved in 3 ml of tetrahydrofuran,
to which was added 182 mg (2.6 mmol) of potassium methoxide. The mixture was stirred
at an ambient temperature for 2 hours and thereafter heated under reflux for 7 hours.
The temperature of the reaction mixture was then lowered to an ambient temperature.
A small amount of methanol was added to the reaction mixture, which was then purified
by silica gel chromatography to obtain lycopene (V) in a yield of 85%.
Reference Example 1
[0083] 40 g (0.204 mol) of geranyl acetate was dissolved in 100 ml of n-hexane, to which
was gradually added 17.1 g (0.071 mol) of trichloroisocyanuric acid and the mixture
was kept at -10°C to 0°C for 6 hours. After the reaction, excess trichloroisocyanuric
acid and byproduct isocyanuric acid were removed by filtration. The filtrate was washed
with an aqueous sodium bicarbonate solution and water and dried over anhydrous magnesium
sulfate, followed by evaporation to obtain a crude product. The resulting crude product
was purified by silica gel column chromatography to obtain allyl chloride (a) as a
pale yellow oil in a yield of 86%.
1H-NMR δ(CDCI
3)
1.71(3H, s), 1.81(3H, s), 1.90-2.22(4H, m), 2.05(3H, s), 4.34(1H, t, J=7Hz), 4.59(2H,
d, J=7Hz), 4.90(1H, s), 5.01(1H, s), 5.37(1H, t, J=7Hz).
Reference Example 2
[0084] A dried four necked flask was charged with 6.8 g (0.17 mol) of a fine powdered sodium
hydroxide, 2.2 g (8.5 mmol) of triphenylphosphine, 1.4 g (5.1 mmol) of tetra n-butylammonium
chloride, 0.62 g (1.7 mmol) of an allylpalladium chloride dimer and 100 ml of THF
under a nitrogen atmosphere. 150 ml of a THF solution containing 40 g (0.17 ml) of
the above allyl chloride (a) was added dropwise to the mixture at an ambient temperature
over one hour with stirring. The resulting mixture was stirred at an ambient temperature
for three days, quenched with water and subjected to extraction with ether. The separated
organic layer was washed with a saturated brine and dried over anhydrous magnesium
sulfate, followed by evaporation to obtain a crude product. The resulting crude product
was purified by silica gel chromatography to obtain a triene (b) in a yield of 65%.
1H-NMR δ(CDCI
3)
1.70(3H, s), 1.85(3H, s), 2.08(3H, s), 2.81(2H, d, J=7Hz), 4.58(2H, d, J=7Hz), 4.90(2H,
s), 5.37(1H, t, J=7Hz), 5.61(1H, td, J=7, 16Hz), 6.16(1H, d, J=16Hz).
Reference Example 3
[0085] To 20.1 g (0.1 mol) of triene (b) and 100 ml of acetic acid charged in a flask was
added 18.3 g (0.1 mol) of N-bromosuccinimide. The reaction mass became clear at an
ambient temperature in 10 to 15 minutes. The mixture was stirred for 2 hours, quenched
with water, and subjected to extraction with toluene. The resulting organic layer
was dried over anhydrous magnesium sulfate, followed by evaporation to obtain 1,4-bromoacetate
(c) (a mixture of an E and a Z isomer) and 1,2-bromoacetate (d) (a mixture of an E
and a Z isomer) as an about 1:1 mixture in a yield of 95%. The resulting mixture was
separated and purified by silica gel chromatography to obtain the compounds (c) and
(d) respectively as a pale yellow oil.
1,4-bromoacetate (c)
1H-NMR δ(CDCI
3)
1.77(3H, s), 1.82(3H, s), 1.98(3H, s), 2.02(3H, s), 2.19(2H, m), 3.89(2H, s), 4.55(2H,
d, J=7Hz), 5.37(1H, t, J=7Hz), 5.48-5.62(2H, m).
1,2-bromoacetate (d)
1H-NMR δ(CDCI
3)
1.65(3H, s), 1.68(3H, s), 2.05(3H, s), 2.06(3H, s), 2.78(2H, d, J=6Hz), 3.67(1H, d,
J=11Hz), 3.82(1H, d, J=11Hz), 4.57(2H, d, J=7Hz), 5.35(1H, t, J=7Hz), 5.61-5.77(2H,
m).
Reference Example 4
[0086] To 2.93 g (10 mmol) of geranyl p-tolylsulfone and 1.55 g (13.8 mmol) of potassium
t-butoxide charged in a flask and cooled to -60°C was added 15 ml of N,N-dimethylformamide
(DMF) and the mixture was stirred for 30 minutes at the same temperature. 10 ml of
a DMF solution containing 3.37 g (10.1 mmol) of 1,4-bromoacetate (c) was added dropwise
to the stirred mixture at the same temperature. After the resulting mixture was stirred
for 24 hours, it was quenched with an aqueous solution of saturated ammonium chloride
and subjected to extraction with ethyl acetate. The resulting organic layer was washed
with water and a saturated brine and dried over anhydrous magnesium sulfate, followed
by evaporation to obtain a crude product. The resulting crude product was purified
by silica gel chromatography to obtain a diacetate (f) as a pale yellow oil in a yield
of 70%.
1H-NMR δ(CDCI
3)
1.60(3H, s), 1.67(3H, s), 1.70(3H, s), 1.57-1.76(2H, m), 1.93(3H, s), 1.90-2.36(5H,
m), 2.00(3H, s), 2.04(3H, s), 2.10(3H, s), 2.44(3H, s), 2.82-2.95(1H, m), 3.79-3.86(1H,
m), 4.53(2H, d, J=7Hz), 4.81-5.15(3H, m), 5.33(1H, m), 5.57(1H, m), 7.29(2H, d, J=8Hz),
7.67(2H, d, J=8Hz).
Reference Example 5
[0087] 2.55 g (4.68 mmol) of the diacetate (f) was dissolved in 10 ml of methanol, to which
was added 1.12 g (5.62 mmol) of an aqueous 20% sodium hydroxide solution and the mixture
was stirred at an ambient temperature for 2 hours. After the reaction, the mixture
was quenched with an aqueous saturated ammonium chloride solution and subjected to
extraction with an ether. The resulting organic layer was washed with a saturated
brine and dried over anhydrous magnesium sulfate, followed by evaporation to obtain
a crude product. The resulting crude product was purified by silica gel column chromatography
to obtain a diol (g) as a pale yellow oil in a yield of 95%.
1H-NMR δ(CDCI
3)
1.55-1.71(4H, m), 1.56(3H, s), 1.62(3H, s), 1.68(6H, s), 1.80-1.94(2H, m), 1.93(3H,
s), 2.25-2.41(1H, m), 2.44(3H, s), 2.82-2.95(1H, m), 3.42(1H, br s), 3.89(1H, t, J=7Hz),
4.04-4.08(2H, m), 4.38-4.47(1H, m), 4.69(1H, s), 4.90(1H, d, J=7Hz), 4.98(1H, br),
5.15-5.27(1H, m), 5.45-5.51(1H, t, J=7Hz), 7.29(2H, d, J=8Hz), 7.67(2H, d, J=8Hz).
Reference Example 6
[0088] 2.50 g (5.43 mmol) of the diol (g) was dissolved in 28 ml of methanol, to which was
added 55 mg (0.54 mmol) of 96% concentrated sulfuric acid and the mixture was stirred
for 24 hours. After the reaction, the mixture was quenched with an aqueous saturated
sodium bicarbonate solution and subjected to extraction with ether. The resulting
organic layer was washed with a saturated brine and dried over anhydrous magnesium
sulfate, followed by evaporation to obtain a crude product. The resulting crude product
was purified by silica gel column chromatography to obtain a methoxy alcohol (I) as
a pale yellow oil in a yield of 77%.
1H-NMR δ(CDCI
3)
1.18-1.23(3H, m), 1.59(3H, s), 1.67(6H, br), 1.57-1.68(2H, m), 1.93(3H, br), 1.80-2.40(3H,
m), 2.41(3H, s), 2.45-3.00(3H, m), 3.11-3.23(3H, m), 3.75-4.20(4H, m), 4.80-5.18(3H,
m), 5.30-5.60(1H, m), 7.20-7.35(2H, m), 7.60-7.75(2H, m).
1. A process for producing a sulfonaldehyde derivative of formula (2):

wherein Ar represents an aryl group which may be substituted,
R
1 represents a (C1-C4) straight or branched chain alkyl group or a protective group
of a hydroxyl group and the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof,
which comprises oxidizing a sulfone alcohol derivative of formula (1):

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined above.
2. A process according to claim 1, wherein R1 represents an acyl group, a silyl group, an alkoxyalkyl group, an aralkyl group,
a hydrocarbyloxycarbonyl group or a (C1-C4) straight or branched chain alkyl group.
3. A process according to claim 1, wherein R1 represents
a group of formula: Q-C=O, wherein Q is a hydrogen atom,
a (C1-C6) alkyl group or a phenyl group which may be substituted with a (C1-C3)
alkyl group, C1-C3 alkoxy group, a halogen atom or a nitro group,
a silyl group substituted with three groups selected from a (C1-C4)alkyl group
and a phenyl group,
a (C2-C5)alkoxyalkyl group,
a methyl group substituted with at least one phenyl group, which phenyl group may
be substituted with a group selected from
a (C1-C3)alkyl group, a (C1-C3)alkoxy group,
a halogen atom and a nitro group,
a (C1-C7) alkyl- or aralkyl-oxycarbonyl group,
a (C1 - C4) straight or branched chain alkyl group, and
Ar represents a phenyl group and a naphthyl group, both of which may be substituted
with at least one group selected from a (C1-C6) alkyl group, a (C1-C6) alkoxy group,
a halogen atom or a nitro group
4. A process according to claim 1, wherein oxidizing of said sulfone alcohol derivative
of formula (1) is conducted by subjecting the sulfone alcohol derivative of formula
(1) to contact with
(a) a metal oxidant, or
(b) a sulfoxide compound, a sulfoxide-activating compound and optionally a base, or
(c) a sulfide compound, a halogenating agent and a base, or
(d) an aldehyde in the presence of a catalyst selected from aluminum alkoxide or aryloxide,
and a boron compound, or
(e) oxygen in the presence of a catalyst.
5. A process according to claim 1, wherein oxidizing of said sulfone alcohol derivative
of formula (1) is conducted by subjecting the sulfone alcohol derivative of formula
(1) to contact with a metal oxidant.
6. A sulfonaldehyde derivative of formula (2) as defined in claim 1 or 2 or 3.
7. A process for producing a phosphonium salt of formula (3):

wherein Ar represents an aryl group which may be substituted,
R
1 represents a (C1-C4) straight or branched chain alkyl group or a protective group
of a hydroxyl group, the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof. X represents a halogen atom or HSO
4, and
Y represents a (C1-C4) straight or branched chain alkyl group or an optionally substituted
aryl group,
which comprises reacting a sulfone alcohol derivative of formula (1) :

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined above, with a salt
of a tertiary phosphine compound and a protonic acid, or with a tertiary phosphine
compound in the presence of a protonic acid, wherein said tertiary phosphine compound
is represented by a formula: PY
3, wherein Y has the same meaning as defined above.
8. A phosphonium salt of formula (3) as defined in claim 7.
9. A phosponium salt according to claim 8, wherein R1 represents an acyl group, a silyl group, an alkoxyalkyl group, an aralkyl group,
a hydrocarbyloxycarbonyl group, or a (C1-C4) straight or branched chain alkyl group.
10. A phosponium salt according to claim 9, wherein R1 represents
a group of formula Q-C=O, wherein Q is a hydrogen atom, a C1-C6 alkyl group or
a phenyl group which may be substituted with a C1-C3 alkyl group, C1-C3 alkoxy group,
a halogen atom or a nitro group,
a silyl group substituted with three groups selected from a (C1-C4)alkyl group
and a phenyl group,
a (C2-C5)alkoxyalkyl group,
a methyl group substituted with at least one phenyl group, which phenyl group may
be substituted with a group selected from
a (C1-C3)alkyl group, a (C1-C3)alkoxy group,
a halogen atom and a nitro group,
a (C1-C7) alkyl- or aralkyl-oxycarbonyl group,
a (C1 - C4) straight or branched chain alkyl group,
Ar represents a phenyl group or a naphthyl group, both of which may be substituted
with at least one group selected from a (C1-C6) alkyl group, a (C1-C6) alkoxy group,
a halogen atom and a nitro group and
Y represents a C1-C6 alkyl group or a phenyl group which may be substituted with
a C1-C3 alkyl group or a C1-C3alkoxy group.
11. A process for producing a sulfone derivative of formula (4):

wherein Ar represents an aryl group which may be substituted, R
1 represents a (C1-C4) straight or branched chain alkyl group or a protective group
of a hydroxyl group, and the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof,
which comprises reacting a phosphonium salt of formula (3):

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined above, X represents
a halogen atom or HSO
4, and Y represents a (C1-C4) straight or branched chain alkyl group or an optionally
substituted aryl group,
with a sulfonaldehyde derivative of formula (2):

wherein Ar, R
1 and the wavy line have the same meanings respectively as defined above, in the presence
of a base or an epoxide.
12. A process according to claim 11, wherein said phosphonium salt of formula (3) is a
compound obtained by a process comprising reacting a sulfone alcohol derivative of
formula (1):

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined with a salt of a
tertiary phosphine compound and a protonic acid, or with a tertiary phosphine compound
in the presence of a protonic acid, wherein said tertiary phosphine compound has the
same meaning as defined.
13. A process according to claim 11, wherein said sulfonaldehyde derivative of formula
(2) is a compound obtained by a process comprising oxidizing a sulfone alcohol derivative
of formula (1):

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined for formula (2).
14. A process according to claim 13, wherein said phosphonium salt of formula (3) is a
compound obtained by a process comprising reacting a sulfone alcohol derivative of
formula (1):

wherein Ar, R
1 and the wavy line respectively have the same meanings as defined for the phosphonium
salt of formula (3) with a salt of a tertiary phosphine compound and a protonic acid,
or with a tertiary phosphine compound in the presence of a protonic acid.
15. A sulfone derivative of formula (4) as defined in claim 11.
16. A process for producing lycopene of formula (5):

wherein wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof,
which comprises reacting a sulfone derivative of formula (4)

wherein Ar represents an aryl group which may be substituted,
R
1 represents a (C1-C4) straight or branched chain alkyl group or a protective group
of a hydroxyl group, and the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof, with a basic compound.
17. A process according to claim 11, 12, 13 or 14, which further comprises reacting the
sulfone derivative of formula (4) with a basic compound to produce lycopene of formula
(5) :

wherein the wavy line depicted by "

" indicates a single bond and stereochemistry relating to a double bond bound therewith
is E or Z or a mixture thereof.
18. A process according to Claims 7, 9, 10, 11, 12 13 and 14, wherein the salt of a tertiary
phosphine compound is triphenylphosphine hydrochloride, triphenylphosphine hydrobromide
or triphenylphosphine hydroiodide.
19. A process according to Claim 7, 11, 12 13 or 14, wherein the protonic acid is hydrogen
chloride, hydrogen bromide, hydrogen iodide or sulfuric acid.
20. A process for producing lycopene according to Claim 16 or 17, wherein the basic compound
is an alkali metal hydroxide or an alkali metal alkoxide.
1. Verfahren zur Herstellung eines Sulfonaldehydderivats der Formel (2):

worin Ar für eine Arylgruppe, die substituiert sein kann, steht,
R
1 für eine geradkettige oder verzweigtkettige (C
1-C
4)-Alkylgruppe oder eine Hydroxylschutzgruppe steht und die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist,
wobei das Verfahren die Oxidation eines Sulfonalkoholderivats der Formel (1):

worin Ar, R
1 bzw. die Wellenlinie die oben definierten Bedeutungen haben, umfasst.
2. Verfahren nach Anspruch 1, wobei R1 für eine Acylgruppe, eine Silylgruppe, eine Alkoxyalkylgruppe, eine Aralkylgruppe,
eine Hydrocarbyloxycarbonylgruppe oder eine geradkettige oder verzweigtkettige (C1-C4)Alkylgruppe steht.
3. Verfahren nach Anspruch 1, wobei R1
eine Gruppe der Formel Q-C=O, worin Q ein Wasserstoffatom, eine (C1-C4)Alkylgruppe oder eine Phenylgruppe, die mit einer (C1-C6)Alkylgruppe, (C1-C3)-Alkoxygruppe, einem Halogenatom oder einer Nitrogruppe substituiert sein kann, bedeutet,
eine Silylgruppe, die mit drei Gruppen substituiert ist, die aus einer (C1-C4)Alkylgruppe und einer Phenylgruppe ausgewählt sind,
eine (C2-C5)Alkoxyalkylgruppe,
eine mit mindestens einer Phenylgruppe substituierte Methylgruppe, wobei die Phenylgruppe
mit einer Gruppe substituiert sein kann, die aus einer (C1-C3)Alkylgruppe, einer (C1-C3)-Alkoxygruppe, einem Halogenatom und einer Nitrogruppe ausgewählt ist,
eine (C1-C7)Alkyl- oder Aralkyloxycarbonylgruppe,
eine geradkettige oder verweigtkettige (C1-C4)Alkylgruppe bedeutet und
Ar für eine Phenylgruppe und eine Naphthylgruppe steht, die beide mit mindestens einer
Gruppe substituiert sein können, die aus einer (C1-C6)Alkylgruppe, einer (C1-C6)Alkoxygruppe, einem Halogenatom oder einer Nitrogruppe ausgewählt ist.
4. Verfahren nach Anspruch 1, wobei die Oxidation des Sulfonalkoholderivats der Formel
(1) durchgeführt wird, indem das Sulfonylalkoholderivat der Formel (1) mit
(a) einem Metalloxidationsmittel oder
(b) einer Sulfoxidverbindung, einer Sulfoxidaktivierungsverbindung und optional einer
Base oder
(c) einer Sulfidverbindung, einem Halogenierungsmittel und einer Base, oder
(d) einem Aldehyd in Gegenwart eines Katalysators, der aus einem Aluminiumalkoxid
oder -aryloxid und einer Borverbindung ausgewählt ist, oder
(e) Sauerstoff in Gegenwart eines Katalysators
in Kontakt gebracht wird.
5. Verfahren nach Anspruch 1, wobei die Oxidation des Sulfonalkoholderivats der Formel
(1) durchgeführt wird, indem das Sulfonalkoholderivat der Formel (1) mit einem Metalloxidationsmittel
in Kontakt gebracht wird.
6. Sulfonaldehydderivat der Formel (2) gemäß der Definition in Anspruch 1 oder 2 oder
3.
7. Verfahren zur Herstellung eines Phosphoniumsalzes der Formel (3):

worin Ar für eine Arylgruppe, die substituiert sein kann, steht,
R
1 für eine geradkettige oder verzweigtkettige (C
1-C
4)-Alkylgruppe oder eine Hydroxylschutzgruppe steht und die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist,
X für ein Halogenatom oder HSO
4 steht und
Y für eine geradkettige oder verzweigtkettige (C
1-C
4)Alkylgruppe oder eine optional substituierte Arylgruppe steht,
wobei das Verfahren die Reaktion eines Sulfonalkoholderivats der Formel (1):

worin Ar, R
1 bzw. die Wellenlinie die oben definierten Bedeutungen haben, mit einem Salz einer
tertiären Phosphinverbindung und einer Protonsäure oder mit einer tertiären Phosphinverbindung
in Gegenwart einer Protonsäure, wobei die tertiäre Phosphinverbindung durch die Formel
PY
3, wobei Y die oben definierte Bedeutung hat, dargestellt wird, umfasst.
8. Phosphoniumsalz der Formel (3) gemäß der Definition in Anspruch 7.
9. Phosphoniumsalz nach Anspruch 8, wobei R1 für eine Acylgruppe, eine Silylgruppe, eine Alkoxyalkylgruppe, eine Aralkylgruppe,
eine Hydrocarbyloxycarbonylgruppe oder eine geradkettige oder verzweigtkettige (C1-C4)Alkylgruppe steht.
10. Phosphoniumsalz nach Anspruch 9, wobei R1
eine Gruppe der Formel Q-C=O, worin Q ein Wasserstoffatom, eine (C1-C6)Alkylgruppe oder eine Phenylgruppe, die mit einer (C1-C3)Alkylgruppe, (C1-C3)-Alkoxygruppe, einem Halogenatom oder einer Nitrogruppe substituiert sein kann, bedeutet,
eine Silylgruppe, die mit drei Gruppen substituiert ist, die aus einer (C1-C4)Alkylgruppe und einer Phenylgruppe ausgewählt sind,
eine (C2-C5)Alkoxyalkylgruppe,
eine mit mindestens einer Phenylgruppe substituierte Methylgruppe, wobei die Phenylgruppe
mit einer Gruppe substituiert sein kann, die aus einer (C1-C3)Alkylgruppe, einer (C1-C3)-Alkoxygruppe, einem Halogenatom und einer Nitrogruppe ausgewählt ist,
eine (C1-C7)Alkyl- oder Aralkyloxycarbonylgruppe,
eine geradkettige oder verweigtkettige (C1-C4)Alkylgruppe bedeutet,
Ar für eine Phenylgruppe oder eine Naphthylgruppe steht, die beide mit mindestens
einer Gruppe substituiert sein können, die aus einer (C1-C6)Alkylgruppe, einer (C1-C6)Alkoxygruppe,
einem Halogenatom oder einer Nitrogruppe ausgewählt ist,
Y für eine (C1-C6)Alkylgruppe oder eine Phenylgruppe, die mit einer (C1-C3)Alkylgruppe oder einer (C1-C3)Alkoxygruppe substituiert sein kann, steht.
11. Verfahren zur Herstellung eines Sulfonderivats der Formel (4):

worin Ar für eine Arylgruppe, die substituiert sein kann, steht,
R
1 für eine geradkettige oder verzweigtkettige (C
1-C
4)-Alkylgruppe oder eine Hydroxylschutzgruppe steht und die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist,
wobei das Verfahren die Reaktion eines Phosphoniumsalzes der Formel (3) :

worin Ar, R
1 bzw. die Wellenlinie die oben definierten Bedeutungen haben, X für ein Halogenatom
oder HSO
4 steht und Y für eine geradkettige oder verzweigtkettige (C
1-C
4)Alkylgruppe oder eine optional substituierte Arylgruppe steht,
mit einem Sulfonaldehydderivat der Formel (2):

worin Ar, R
1 und die Wellenlinie jeweils die oben definierten Bedeutungen haben, in Gegenwart
einer Base oder eines Epoxids umfasst.
12. Verfahren nach Anspruch 11, wobei das Phosphoniumsalz der Formel (3) eine Verbindung
ist, die durch ein Verfahren erhalten wurde, das die Reaktion eines Sulfonalkoholderivats
der Formel (1):

worin Ar, R
1 und die Wellenlinie jeweils die definierten Bedeutungen haben,
mit einem Salz einer tertiären Phosphinverbindung und einer Protonsäure oder mit einer
tertiären Phosphinverbindung in Gegenwart einer Protonsäure, wobei die tertiäre Phosphinverbindung
die definierte Bedeutung hat, umfasst.
13. Verfahren nach Anspruch 11, wobei das Sulfonaldehydderivat der Formel (2) eine Verbindung
ist, die durch ein Verfahren erhalten wurde, das die Oxidation eines Sulfonalkoholderivats
der Formel (1):

worin Ar, R
1 und die Wellenlinie jeweils die für die Formel (2) definierten Bedeutungen haben,
umfasst.
14. Verfahren nach Anspruch 13, wobei das Phosphoniumsalz der Formel (3) eine Verbindung
ist, die durch ein Verfahren erhalten wurde, das die Reaktion eines Sulfonalkoholderivats
der Formel (1)

worin Ar, R
1 und die Wellenlinie jeweils die für das Phosphoniumsalz der Formel (3) definierten
Bedeutungen haben, mit einem Salz einer tertiären Phosphinverbindung und einer Protonsäure
oder mit einer tertiären Phosphinverbindung in Gegenwart einer Protonsäure umfasst.
15. Sulfonderivat der Formel (4) gemäß der Definition in Anspruch 11.
16. Verfahren zur Herstellung von Lycopin der Formel (5):

worin die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist,
wobei das Verfahren die Reaktion eines Sulfonderivats der Formel (4)

worin Ar für eine Arylgruppe, die substituiert sein kann, steht,
R
1 für eine geradkettige oder verzweigtkettige (C
1-C
4)-Alkylgruppe oder eine Hydroxylschutzgruppe steht und die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist, mit
einer basischen Verbindung umfasst.
17. Verfahren nach Anspruch 11, 12, 13 oder 14, das ferner die Reaktion des Sulfonderivats
der Formel (4) mit einer basischen Verbindung zur Herstellung von Lycopin der Formel
(5) :

worin die durch "

" dargestellte Wellenlinie eine Einfachbindung anzeigt und die Stereochemie in Bezug
auf eine daran gebundene Doppelbindung E oder Z oder ein Gemisch derselben ist, umfasst.
18. Verfahren nach den Ansprüchen 7, 9, 10, 11, 12, 13 und 14, wobei das Salz einer tertiären
Phosphinverbindung Triphenylphosphinhydrochlorid, Triphenylphosphinhydrobromid oder
Triphenylphosphinhydroiodid ist.
19. Verfahren nach Anspruch 7, 11, 12, 13 oder 14, wobei die Protonsäure Chlorwasserstoff,
Bromwasserstoff, Iodwasserstoff oder Schwefelsäure ist.
20. Verfahren zur Herstellung von Lycopin nach Anspruch 16 oder 17, wobei die basische
Verbindung ein Alkalimetallhydroxid oder Alkalimetallalkoxid ist.
1. Procédé servant à produire un dérivé sulfone-aldéhyde de formule (2) :

dans laquelle Ar représente un groupe aryle qui peut être substitué, R
1 représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe protecteur
d'un groupe hydroxyle et la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies,
lequel comprend d'oxyder un dérivé sulfone-alcool de formule (1) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
ci-dessus.
2. Procédé selon la revendication 1, dans lequel R1 représente un groupe acyle, un groupe silyle, un groupe alcoxyalkyle, un groupe aralkyle,
un groupe hydrocarbyloxycarbonyle ou un groupe alkyle en C1-C4 à chaîne linéaire ou
ramifiée.
3. Procédé selon la revendication 1, dans lequel R1 représente
un groupe de formule : Q - C = O, dans laquelle Q est un atome d'hydrogène, un
groupe alkyle en C1-C6 ou un groupe phényle qui peut être substitué par un groupe
alkyle en C1-C3, un groupe alcoxy en C1-C3, un atome d'halogène ou un groupe nitro,
un groupe silyle substitué par trois groupes choisis entre un groupe alkyle en
C1-C4 et un groupe phényle,
un groupe alcoxyalkyle en C2-C5,
un groupe méthyle substitué par au moins un groupe phényle, lequel groupe phényle
peut être substitué par un groupe choisi entre un groupe alkyle en C1-C3, un groupe
alcoxy en C1-C3, un atome d'halogène et un groupe nitro,
un groupe (alkyle en C1-C7)- ou aralkyl-oxycarbonyle,
un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée et
Ar représente un groupe phényle et un groupe naphtyle, tous deux pouvant être substitués
par au moins un groupe choisi entre un groupe alkyle en C1-C6, un groupe alcoxy en
C1-C6, un atome d'halogène ou un groupe nitro.
4. Procédé selon la revendication 1, dans lequel l'oxydation dudit dérivé sulfone-alcool
de formule (1) est effectuée en mettant le dérivé sulfone-alcool de formule (1) en
contact avec
(a) un oxydant en métal ou
(b) un composé sulfoxyde, un composé activant un sulfoxyde et facultativement une
base ou
(c) un composé sulfure, un agent halogénant et une base ou
(d) un aldéhyde en présence d'un catalyseur choisi entre un alcoxyde ou aryloxyde
d'aluminium, et un composé du bore ou
(e) de l'oxygène en présence d'un catalyseur.
5. Procédé selon la revendication 1, dans lequel ladite oxydation dudit dérivé sulfone-alcool
de formule (1) est effectuée en mettant le dérivé sulfone-alcool de formule (1) en
contact avec un oxydant en métal.
6. Dérivé sulfone-aldéhyde de formule (2) tel que défini dans la revendication 1 ou 2
ou 3.
7. Procédé servant à produire un sel de phosphonium de formule (3) :

dans laquelle Ar représente un groupe aryle qui peut être substitué, R
1 représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe protecteur
d'un groupe hydroxyle et la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies, X représente un atome d'halogène
ou HSO
4 et Y représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe
aryle facultativement substitué,
lequel comprend de faire réagir un dérivé sulfone-alcool de formule (1) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
ci-dessus, avec un sel d'un composé phosphine tertiaire et d'un acide protonique ou
avec un composé phosphine tertiaire en présence d'un acide protonique, dans lequel
ledit composé phosphine tertiaire est représenté par la formule : PY
3, dans laquelle Y a la même signification que celle définie ci-dessus.
8. Sel de phosphonium de formule (3) tel que défini dans la revendication 7.
9. Sel de phosphonium selon la revendication 8, dans lequel R1 représente un groupe acyle, un groupe silyle, un groupe alcoxyalkyle, un groupe aralkyle,
un groupe hydrocarbyloxycarbonyle ou un groupe alkyle en C1-C4 à chaîne linéaire ou
ramifiée.
10. Sel de phosphonium selon la revendication 9, dans lequel R1 représente
un groupe de formule : Q - C = O, dans laquelle Q est un atome d'hydrogène, un
groupe alkyle en C1-C6 ou un groupe phényle qui peut être substitué par un groupe
alkyle en C1-C3, un groupe alcoxy en C1-C3, un atome d'halogène ou un groupe nitro,
un groupe silyle substitué par trois groupes choisis entre un groupe alkyle en
C1-C4 et un groupe phényle,
un groupe alcoxyalkyle en C2-C5,
un groupe méthyle substitué par au moins un groupe phényle, lequel groupe phényle
peut être substitué par un groupe choisi entre un groupe alkyle en C1-C3, un groupe
alcoxy en C1-C3, un atome d'halogène et un groupe nitro,
un groupe (alkyle en C1-C7)- ou aralkyl-oxycarbonyle,
un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée,
Ar représente un groupe phényle ou un groupe naphtyle, tous deux pouvant être substitués
par au moins un groupe choisi entre un groupe alkyle en C1-C6, un groupe alcoxy en
C1-C6, un atome d'halogène et un groupe nitro,
Y représente un groupe alkyle en C1-C6 ou un groupe phényle qui peut être substitué
par un groupe alkyle en C1-C3 ou un groupe alcoxy en C1-C3.
11. Procédé servant à produire un dérivé sulfone de formule (4) :

dans laquelle Ar représente un groupe aryle qui peut être substitué, R
1 représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe protecteur
d'un groupe hydroxyle et la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies,
lequel comprend de faire réagir un sel de phosphonium de formule (3) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
ci-dessus, X représente un atome d'halogène ou HSO
4 et Y représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe
aryle facultativement substitué,
avec un dérivé sulfone-aldéhyde de formule (2) :

dans laquelle Ar, R
1 et la ligne ondulée ont les mêmes significations respectivement que celles définies
ci-dessus, en présence d'une base ou d'un époxyde.
12. Procédé selon la revendication 11, dans lequel ledit sel de phosphonium de formule
(3) est un composé obtenu par un procédé comprenant de faire réagir un dérivé sulfone-alcool
de formule (1) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
avec un sel d'un composé phosphine tertiaire et d'un acide protonique ou avec un composé
phosphine tertiaire en présence d'un acide protonique, dans lequel ledit composé phosphine
tertiaire a la même signification que celle définie.
13. Procédé selon la revendication 11, dans lequel ledit dérivé sulfone-aldéhyde de formule
(2) est un composé obtenu par un procédé comprenant d'oxyder un dérivé sulfone-alcool
de formule (1) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
pour la formule (2).
14. Procédé selon la revendication 13, dans lequel ledit sel de phosphonium de formule
(3) est un composé obtenu par un procédé comprenant de faire réagir un dérivé sulfone-alcool
de formule (1) :

dans laquelle Ar, R
1 et la ligne ondulée respectivement ont les mêmes significations que celles définies
pour le sel de phosphonium de formule (3) avec un sel d'un composé phosphine tertiaire
et d'un acide protonique ou avec un composé phosphine tertiaire en présence d'un acide
protonique.
15. Dérivé sulfone de formule (4) tel que défini dans la revendication 11.
16. Procédé servant à produire du lycopène de formule (5) :

dans laquelle la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies,
lequel comprend de faire réagir un dérivé sulfone de formule (4) :

dans laquelle Ar représente un groupe aryle qui peut être substitué, R
1 représente un groupe alkyle en C1-C4 à chaîne linéaire ou ramifiée ou un groupe protecteur
d'un groupe hydroxyle et la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies, avec un composé basique.
17. Procédé selon la revendication 11, 12, 13 ou 14, lequel comprend en plus de faire
réagir le dérivé sulfone de formule (4) avec un composé basique pour produire du lycopène
de formule (5) :

dans laquelle la ligne ondulée représentée par

représente une liaison simple et la stéréochimie concernant une double liaison reliée
à celle-ci est E ou Z ou un mélange de ces stéréochimies.
18. Procédé selon les revendications 7, 9, 10, 11, 12, 13 et 14, dans lequel le sel d'un
composé phosphine tertiaire est le chlorhydrate de triphénylphosphine, le bromhydrate
de triphénylphosphine ou l'iodhydrate de triphénylphosphine.
19. Procédé selon la revendication 7, 11, 12, 13 ou 14, dans lequel l'acide protonique
est le chlorure d'hydrogène, le bromure d'hydrogène, l'iodure d'hydrogène ou l'acide
sulfurique.
20. Procédé servant à produire du lycopène selon la revendication 16 ou 17, dans lequel
le composé basique est un hydroxyde d'un métal alcalin ou un alcoxyde d'un métal alcalin.