(19)
(11) EP 1 486 006 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
01.02.2006 Bulletin 2006/05

(21) Application number: 03743942.9

(22) Date of filing: 17.02.2003
(51) International Patent Classification (IPC): 
H04B 1/16(2006.01)
(86) International application number:
PCT/IB2003/000616
(87) International publication number:
WO 2003/077435 (18.09.2003 Gazette 2003/38)

(54)

RECEIVER WITH A SIGNAL PATH

EMPFÄNGER MIT SIGNALWEG

RECEPTEUR AVEC DECODEUR STEREO DANS UN CIRCUIT DE SIGNAUX


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

(30) Priority: 12.03.2002 EP 02075981

(43) Date of publication of application:
15.12.2004 Bulletin 2004/51

(73) Proprietor: Koninklijke Philips Electronics N.V.
5621 BA Eindhoven (NL)

(72) Inventors:
  • TIRRY, Wouter, J.
    NL-5656 AA Eindhoven (NL)
  • VAN PAEPEGEM, Ludovic, A., J.
    NL-5656 AA Eindhoven (NL)

(74) Representative: Weber, Helmut 
Philips Intellectual Property & Standards, Triesterstrasse 64
1101 Wien
1101 Wien (AT)


(56) References cited: : 
EP-A- 0 512 606
EP-A- 0 602 435
US-A- 5 568 206
EP-A- 0 574 273
EP-A- 1 259 002
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a receiver with a signal path comprising the following elements: a tuning arrangement, a demodulator circuit for supplying a stereo multiplex signal with a baseband stereo sum signal (L+R), a 19 kHz stereo pilot and a stereo difference signal (L-R) double-sideband amplitude-modulated on a blanked 38 kHz subcanier, a sampling arrangement for converting an analog signal into a time-discrete signal, and a stereo decoder with a filter and a phase-locked loop comprising an oscillator.

    [0002] Such a receiver is known from EP 0512606 B1. In the UHF range of 88-108 MHz, RF signals are transmitted as frequency-modulated signals. Most stations transmit a stereo signal. After demodulation of the RF frequency-modulated signal, a stereo multiplex signal with a baseband stereo sum signal (L+R) in a 15 kHz range and a stereo difference signal (L-R) which is double-sideband amplitude-modulated on a blanked subcarrier of 38 kHz is obtained. The sum signal (L+R) is also referred to as mono signal. A demodulation of the stereo difference signal (L-R) requires a receiver with a large number of circuit components. The receiver includes a phase-locked loop which is controlled by the stereo pilot. When the frequency of the transmitter changes, the stereo pilot also changes. The demodulator in the receiver is readjusted. Because of these unwanted frequency changes, a sampling rate converter, referred to as SRC for short, precedes the stereo decoder. A second sampling rate converter follows the stereo decoder. These converters are elaborate.

    [0003] With respect to such a stereo decoder it is known from document EP 1259002 that the decoder receives a stereo multiplex signal which comprises at least a difference signal, and a pilot carrier signal and is characterized by a first complex mixer to downconvert the modulated difference signal to a not synchronized complex baseband signal on basis of a fixed frequency, a complex sampling rate decimation unit receiving the not synchronized complex baseband signal and sampling rate decimating said signal with a factor N and a second complex mixer synchronizing and coherent demodulating the sampling rate not synchronized complex baseband signal on basis of a first complex carrier signal derived on basis of the pilot carrier signal and the fixed frequency pilot.

    [0004] With respect to a decoding technique, document US 5,568,206 discloses a device for processing a modulated analog television signal at intermediate frequency, which has a sampling unit for closed sampling of a television signal at intermediate frequency having an oversampling factor of at least 2, related to a useful bandwidth of the television signal at the intermediate frequency, a digital filter for converting the oversampled signal into a complex digital signal, a mixing device for frequency shifting the complex digital signal in such a manner that a mid-frequency of the complex digital signal appears at a frequency 0, a digital filter for band limiting the complex, frequency-shifted digital signal to form a complex output signal, said digital filter having real coefficients for the separate handling of a real part and of an imaginary part of the complex, frequency-shifted digital signal, and digital demodulators for processing of the video and audio elements of the complex output signal after previous mixing. Signal preprocessing for the subsequent video and audio demodulation devices is performed by a video-demodulator for the video elements with an upstream mixer, and first and second audio-demodulators for the separate processing of the audio elements, with correspondingly upstream mixers.

    [0005] It is therefore an object of the invention to provide a simple stereo decoder.

    [0006] This object is solved by the characteristic features defined in claim 1. According to the invention, filter operations can be performed in a complex range. Frequency response edges are in a complex range around 0 Hz. A multiplication, performed within a period of time, of a real input signal with a cosine wave yields a shift towards two sides within the frequency range, i.e. a modulation around the carrier frequency +/- φ:



    [0007] A modulation by means of a cosine wave having a carrier frequency φ produces an output signal in which the interesting part is supplemented by an unwanted part of the input spectrum around +/- 2φ. This can be prevented by means of a prefilter which suppresses the unwanted part in the spectrum around +/- 2φ. The same applies to a modulation with a sine wave.

    [0008] A multiplication of a real or complex signal by means of a complex exponent eiθn, i.e. with an imaginary exponent, leads to a shift to only one side in the frequency range so that no prefilter is used.



    [0009] In the stereo decoder, complex modulations are realized by means of the signals cos (nφ) and sin (nφ) supplied by the oscillator. The non-recursive half band filters, i.e. the finite impulse response filters, referred to as FIR filters for short, have the property of a π/2 phase shift. This π/2 phase shift is also referred to as phase quadrature or as quadratic mirroring. The term quadratic mirroring indicates that the transfer function H(f) of this type of filter can be mirrored by a quarter of the sampling frequency (Fs/4) in accordance with the following equation.



    [0010] The term half band refers to a second property of FIR filters, namely to the fact that these filters serve for a reduction and/or an interpolation. The FIR filters have the interesting property that half of the coefficients is zero. When used for reduction, this means in digital techniques that every second value in a table is removed. For interpolation, this means that a second value, namely the preceding value, is inserted behind each value in the table. A twofold reduction is also referred to as down-sampling by 2.

    [0011] The third interesting property of the FIR filters is that the delay is an integral multiple of the sampling when the length is chosen to be odd. When these FIR filters are used in connection with complex modulations, only simple delay members are to be inserted so that the complex modulations in the stereo decoder are in phase at different times. The transfer functions of the FIR filters used in the stereo decoder for complex signals are shifted by a quarter of the sampling frequency in the frequency range so that the transition bands, hereinafter also referred to as slopes, are centered around the frequency of 0 Hz, i.e. around f0 = 0 and overlap with the L+R and L-R spectra which can also be centered around f0 = 0 when these filters are used. The value f0 = 0 is also referred to as DC by analogy with direct current, which has the zero frequency at the applied voltage. Because of the mirroring property, the L+R and L-R signal can be retrieved by connecting the real parts of the signals.

    [0012] The shift of the transfer function of a FIR filter in the frequency range by a quarter of the sampling frequency means that the coefficients of the real FIR filters are modified in the following way:



    [0013] This modification of the coefficients has no further consequences for realizing the FIR filters.

    [0014] These three properties of the FIR filters in combination with complex modulations are the key to an elegant solution for the stereo decoder.

    [0015] These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.

    [0016] In the drawings:

    Fig. 1 is a block diagram of a receiver including a stereo decoder,

    Fig. 2 shows a first frequency spectrum at the input of the stereo decoder,

    Fig. 3 shows the first spectrum and a frequency response of a first half band, or FIR, filter,

    Fig. 4 shows a second spectrum at the output of the first FIR filter,

    Fig. 5 shows a third spectrum at the output of a first modulator,

    Fig. 6 shows the third spectrum and a frequency response of a second FIR filter,

    Fig. 7 shows a fourth spectrum at the output of the second FIR filter,

    Fig. 8 shows a fifth spectrum at the output of a second modulator,

    Fig. 9 shows the fifth spectrum and two further frequency responses of a symmetrical FIR high-pass and low-pass filter,

    Fig. 10 shows a sixth spectrum at a first output of the symmetrical FIR high-pass and low-pass filter,

    Fig. 11 shows a seventh spectrum at the second output of the symmetrical FIR high-pass and low-pass filter,

    Fig. 12 shows a pilot at an output of an elliptic filter,

    Fig. 13 shows an eighth spectrum with a complex L+R signal at the output of a third modulator,

    Fig. 14 shows a ninth spectrum with a complex L-R signal at the output of a fourth modulator,

    Fig. 15 shows a tenth spectrum of a real L+R signal at the output of a first converter,

    Fig. 16 shows an eleventh spectrum of a real L-R signal at the output of a second converter,

    Fig. 17 is a block diagram of a phase-locked loop, and

    Fig. 18 is a block diagram of an oscillator.



    [0017] Fig. 1 shows a stereo decoder 1 with a finite impulse response, or FIR, filter 2, a complex modulator 3, a second FIR filter 4, a second complex modulator 5, a down-sampling-by-2 filter 6, a circuit 7 with two FIR filters 8 and 9, a third and a fourth modulator 10 and 11, two further down-sampling-by-2 filters 12 and 13, two converters 14 and 15, an elliptic low-pass filter 16, a control path 17, a double interpolation filter 18, an oscillator 19, a delay member 20, a fifth down-sampling-by-2 filter 21, a second delay member 22, a sixth down-sampling-by-2 filter 23 and a third delay member 24. Input signals are applied to the FIR filter 2 via an electrically conductive connection 25 in the stereo decoder 1. Two further electrically conductive connections 26 lead from the FIR filter 2 to the modulator 3 and apply signals from the FIR filter 2 to the modulator 3. Signals from the modulator 3 are applied to the second FIR filter 4 via two electrically conductive signal connections 27. Signals are further applied to outputs 37 and 38 via further signal connections 27 to 36 and via the FIR filter 4, the modulator 5, the FIR filters 8 and 9, the modulators 10 and 11, the down-sampling-by-2 filters 12 and 13, and the converters 14 and 15. The connections 26 to 36 are two parallel connections each transmitting a signal.

    [0018] The oscillator 19 is a discrete controlled oscillator, referred to as DCO for short. The DCO 19 has three outputs with two electrically conductive signal connections 39 to 41 which lead to the complex modulator 3, via the delay member 20 and a further connection 42 to the modulator 5 and via the down-sampling-by-2 filter 21 and the second delay member 22 and further connections 43 and 44 to the modulator 10, via the FIR filter 4, the down-sampling-by-2 filter 23 and the third delay member 24 and further connections 45, 46 and 47 to the modulator 11. The DCO 19 generates a cosine signal on one signal connection of an output and a sine signal on the other signal connection. The signals have a frequency of 38 kHz on the connection 39, a frequency of +19 kHz on the connections 40, 45, 46 and 47, and a frequency of-19 kHz on the connections 41, 42, 43 and 44.

    [0019] A tuning arrangement 49 with an antenna 50, a frequency modulator 51 and an A/D converter 52 are arranged at an input 48 of the stereo decoder 1. The converter samples the time-division multiplex signal with a sampling rate Fs of 4 x 44.1 kHz. The tuning arrangement 49 is controlled via a connection 53. Arranged at the outputs 37 and 38 of the stereo decoder 1 is a converter 54 which generates a left and a right stereo signal from the mono signal L+R and the difference signal L-R, which stereo signals are reproduced as acoustic signals by loudspeakers 55 and 56. The stereo decoder 1, the tuning arrangement 49, the frequency modulator 51, the A/D converter 52 and the converter 54 constitute a receiver.

    [0020] The FIR filters 2, 4, 7, 8 and 9 in combination with complex modulations are the key to an elegant solution for the stereo decoder 1 whose function will now be elucidated with reference to Figs. 2 to 15.

    [0021] Fig. 2 shows a spectrum of a multiplex signal applied to the stereo decoder 1, which signal is present on the connection 25 and is sampled at a sampling rate Fs of 4 x 44.1 kHz. The spectrum is shown without RDS, ARI and SCA signal. Starting from zero, the baseband stereo sum signal L+R with the baseband 57, the pilot 58 at 19 kHz and subsequently the stereo difference signal L-R with the two sidebands 59 and 60 double-sideband amplitude-modulated on a 38 kHz subcarrier extend in the right half of the spectrum. Because of the symmetry property within the frequency range, the bands and the pilot 57-60 are mirrored around zero and occur in a side-inverted form in the left half of the spectrum as bands and pilots 61, 62, 63 and 64.

    [0022] Fig. 3 shows a frequency response 65 of the symmetrical FIR low-pass filter 2 which, viewed from the zero-crossing, is shifted to the right by Fs/4, i.e. by 44.1 kHz. The L+R signal is thus in the transmission band 66, which is hereinafter also referred to as slope. The filter 2 is complex, operates in a complex manner and also supplies a complex output signal.

    [0023] Fig. 4 shows a spectrum of the complex output signal after filtering of the filter 2. Since the L+R signal is filtered with slope values within the slope 66, reduced values, dependent on the relevant slope value, are obtained for the L+R signal. Sidebands 67 and 68 of the L+R signal are reduced. The complex output signal of the filter 2 is present on the connection 26.

    [0024] Fig. 5 shows a spectrum after the modulation by the modulator 3. The signal is complex-modulated at -38 kHz in the modulator 3, i.e. the spectrum is shifted to the left by -38 kHz. The L-R signal of the spectrum is thus centered around zero, i.e. around DC. The zero is now between the two sidebands 59 and 60 of the L-R signal. The output signal of the modulator 3 is supplied on the connection 27.

    [0025] Fig. 6 shows the centered L-R signal which is now applied to the symmetrical FIR filter 4. The filter is shifted to the left by Fs/4, i.e. by 44.1 kHz. A filtering with the symmetrical FIR high-pass filter, shifted to the right by Fs/4, is also possible. The L-R signal, i.e. the two sidebands of the L-R signal, are thus situated in a second transition band 69, hereinafter also referred to as slope, of a second frequency response 70.

    [0026] Fig. 7 shows a spectrum after the filtering by means of the filter 4. Since the stereo difference signal L-R is filtered with slope values within the slope 69, reduced values, dependent on the relevant slope value, are obtained for the L-R signal. The associated signal with reduced sidebands 71 and 72 is supplied on the connection 28 and applied to the modulator 5.

    [0027] Fig. 8 shows the spectrum complex-modulated at 19 kHz in the modulator 5 and shifted to the right by 19 kHz. When the frequencies of the complex modulation are exact multiples of the original pilot frequency, the pilot is now situated at the zero-crossing. The signal is down-sampled by 2 in the down-sampling-by-2 filter 6. From the connection 30, the complex signal is passed through two different branches. In one branch, the signal is applied to the filter circuit 7 for the purpose of audio processing and in the other branch it is applied to an elliptic filter 16, i.e. a bandpass filter having a small bandwidth for extraction of the pilots 58 and 62. The pilot 58, which is now near DC, is used for controlling the DCO 19 which controls the complex modulations.

    [0028] Fig. 9 shows the signal in the filter circuit 7. The FIR filter 8 with a frequency response 73 is shown in the left-hand part and the FIR filter 9 with a frequency response 74 is shown in the right-hand part. The filter circuit is a symmetrical FIR high-pass and low-pass filter which is shifted to the left by (Fs/2)/4 = 22.05 kHz so that the L+R and the L-R signal are separated.

    [0029] Fig. 10 shows a spectrum of an output signal as supplied by the FIR low-pass filter 8 on the connection 32. The signal is the L+R mono signal complex-filtered with the slope 66, with the two reduced sidebands 67 and 68.

    [0030] Fig. 11 shows a spectrum of an output signal as supplied by the FIR filter 9 on the connection 31. The signal is the L-R stereo difference signal complex-filtered with the slope 69, with the two reduced sidebands 71 and 72.

    [0031] Fig. 12 shows a spectrum after the low-pass filter 16. The pilot 58 is at DC.

    [0032] Fig. 13 shows the spectrum of the L+R mono signal after the modulator 10. In the modulator 10, the signal is modulated with 19 kHz, i.e. shifted to the right by 19 kHz, so that the two reduced sidebands 67 and 68 of the spectrum are DC-centered.

    [0033] Fig. 14 shows the spectrum of the L-R difference signal after the modulator 11. In the modulator 11, the L-R signal is modulated with -19 kHz, i.e. shifted to the left by -19 kHz so that the two reduced sidebands 71 and 72 of the spectrum are DC-centered.

    [0034] Fig. 15 shows a spectrum of the L-R signal with original sidebands 66 and 76 after the converter 14. The converter 14 filters the real parts from the complex L+R signal, thus obtaining the original L+R signal.

    [0035] Fig. 16 shows a spectrum of the L-R signal with original sidebands 77 and 78 after the converter 15. The converter 15 filters the real parts from the complex L-R signal, thus obtaining the original L-R signal.

    [0036] Fig. 17 shows a phase-locked loop, or PLL, 80 with the modulator 3, the FIR filter 4, the second modulator 5, the down-sampling-by-2 filter 6, the elliptic low-pass filter 16, the control path 17, the interpolation filter 18, the DCO 19, and the delay member 20. The control path 17 comprises an amplifier 81 with a coefficient a, a delay member 82 and a second amplifier 83 with a coefficient b in a forward control 84, and a delay member 85 in a feedback control 86, as well as two adders 87 and 88. The PLL 80 operates as follows.

    [0037] The original L-R signal can only be regained exactly and in phase with the L+R signal when the DCO 19 is clocked with the pilot in frequency and phase synchronism. This means that the complex signal has only a DC part after the elliptic low-pass filter 16, or the imaginary part of the signal is zero. Deviations from zero are used to control the DCO 19 in phase synchronism with the pilot by means of the PLL 80.

    [0038] When the offset, starting from the initial phase and frequency deviation, is to be set to zero, a proportional and integrating control path 16 is necessary so that the input signal, which is step-shaped both in phase and in frequency, is synchronous with zero in the offset.

    [0039] Only the imaginary part after the complex modulation, i.e. actually only the phase recognition is utilized in the feedback loop of the PLL and is used for controlling the DCO 19.

    [0040] The properties of the transient response such as response time and attenuation are adjustable by adjustment of the multiplication coefficients a and b of the amplifiers 81 and 83 in the control path 17.

    [0041] The input signal of the oscillator 19 is a correction of the mismatching between the phase of the pilot and the output signal of the DCO 19.

    [0042] Fig. 18 shows the DCO 19 with four operational amplifiers 90, 91, 92 and 93, two delay members 94 and 95 and two adders 96 and 97. The complex oscillator 19 generates a cosine signal at a first output 98 and a sine signal at a second output 99. Coefficients c of the operational amplifiers 90 and 92, as well as coefficients s and -s of the operational amplifiers 91 and 93 can be calculated as follows:





    [0043] The original values in the delay circuits 94 and 95 should be set to 0 and 1. The output signal of the control path, being a correction of the mismatching, is used to adapt the coefficients c and s by linear Taylor sequences, in which en is the output signal of the control path 17, which controls the DCO 19:





    [0044] The complex oscillator 19 with the oscillation frequency Θ may be formed in software as a limit-stable oscillating filter.

    LIST OF REFERENCE NUMERALS:



    [0045] 
    1
    stereo decoder
    2
    FIR filter
    3
    complex modulator
    4
    second FIR filter
    5
    complex modulator
    6
    down-sampling-by-2 filter
    7
    filter circuit
    8, 9
    FIR filter
    10, 11
    complex modulator
    12, 13
    down-sampling-by-2 filter
    14, 15
    converter
    16
    low-pass filter
    17
    control path
    18
    interpolation filter
    19
    oscillator
    20
    delay member
    21
    down-sampling-by-2 filter
    22
    second delay member
    23
    down-sampling-by-2 filter
    24
    third delay member
    25,26,27, 28,29,30,31, 32, 33, 34, 35, 36
    signal connections
    37,38
    output
    39, 40, 41
    signal connections
    42, 43, 44, 45,46,47
    connections
    48
    input
    49
    tuning arrangement
    50
    antenna
    51
    frequency demodulator
    52
    A/D converter
    53
    connection
    54
    converter
    55, 56
    loudspeaker
    57
    L+R signal
    58
    pilot
    59
    L-R signal first sideband
    60
    L-R signal second sideband
    61
    L+R signal side-inverted
    62
    pilot, side-inverted
    63
    L-R signal first band, side-inverted
    64
    L-R signal second band, side-inverted
    65
    frequency response
    66
    slope
    67
    L+R sideband, reduced
    68
    second L+R sideband, reduced
    69
    second slope
    70
    second frequency response
    71
    L-R sideband, reduced
    72
    second L-R sideband, reduced
    73, 74
    frequency response
    75, 76
    real L+R sideband
    77, 78
    real L-R sideband
    79
    80
    phase-locked loop
    81
    amplifier
    82
    delay member
    83
    amplifier
    84
    forward control
    85
    delay member
    86
    feedback
    87,88
    adder
    89
    90, 91, 92, 93
    operational amplifier
    94, 95
    delay member
    96, 97
    adder
    98, 99
    output



    Claims

    1. A stereo decoder for decoding a time-discrete stereo multiplex signal with a baseband stereo sum signal (L+R), a 19 kHz stereo pilot and a stereo difference signal (L-R) double-sideband amplitude-modulated on a blanked 38 kHz subcarrier, the decoder comprising:

    a phase-locked loop (80) comprising an oscillator (19) for providing complex modulation signals and

    a first filter (2) for filtering the stereo multiplex signal, in which one of the two stereo signals (L+R, L-R) is complex-filtered by means of a slope obtaining a first filtered signal and

    a first modulator (3) for complex-modulating the first filtered signal obtaining a first modulated signal and

    a second filter (4) for filtering the first modulated signal, in which the other one of the two stereo signals (L+R, L-R) is complex-filtered by means of a slope obtaining a second filtered signal and

    a second modulator (5) for complex-modulating the second filtered signal obtaining a second modulated signal, wherein the second modulated signal is used for extracting on the one hand the stereo sum signal (L+R) and stereo difference signal (L-R) and on the other hand for the pilot for controlling the oscillator (19).


     
    2. A decoder as claimed in claim 1, comprising
    an extraction unit (16) for extracting from the second modulated signal the pilot for controlling the oscillator (19) and
    a filter circuit (7, 8, 9) for separating from the second modulated signal the baseband stereo sum signal (L+R) and the stereo difference signal (L-R) and
    modulator units (10, 11) for complex modulating said baseband stereo sum signal (L+R) and the stereo difference signal (L-R) obtaining complex stereo signals and
    a converter unit (14, 15) for converting said complex stereo signals from complex signals to real signals.
     
    3. A decoder as claimed in claim 1 or 2, characterized in that the filters (2, 4, 7, 8, 9) are adapted as finite impulse response filters (2, 4, 7, 8, 9).
     
    4. A decoder as claimed in claim 3, characterized in that the filter circuit (7) is adapted as a symmetrical FIR high-pass and low-pass filter which is shifted to the left by (Fs/2)/4 = 22.05 kHz so that the L+R and the L-R signal are separated.
     
    5. A receiver as claimed in claim 1 or 2, characterized in that the oscillator (19) is discrete-controlled.
     
    6. A decoder as claimed in any one of the preceding claims, characterized in that the oscillator (19) supplies a cosine signal and a sine signal
     
    7. A decoder as claimed in any one of the preceding claims, characterized in that the oscillator (19) comprises a limit-stable oscillating filter.
     
    8. A decoder as claimed in any one of the preceding claims, characterized in that the oscillator (19) controls a modulator (3, 5, 10, 11).
     
    9. A decoder as claimed in claim 8, characterized in that the modulator (3, 5, 10, 11) comprises a multiplying member.
     
    10. A decoder as claimed in claim 2, characterized in that the extraction unit is adapted as an elliptic filter (16) having a frequency response around 0 Hz.
     
    11. A decoder as claimed in claim 1, characterized in that the phase-locked loop (80) comprises a control path (17) with an amplifier (81,83).
     
    12. A receiver (1, 49, 51, 52, 54) with a signal path comprising the following elements: a tuning arrangement (49), a demodulator circuit (51) for supplying a stereo multiplex signal with a baseband stereo sum signal (L+R), a 19 kHz stereo pilot and a stereo difference signal (L-R) double-sideband amplitude-modulated on a blanked 38 kHz subcarrier, a sampling arrangement (52) for converting an analog signal into a time-discrete signal, and a stereo decoder (1) according to one of the claims 1 to 11.
     
    13. A decoder as claimed in claim 11, characterized in that the sampling arrangement (52) operates at a fixed clock
     
    14. A decoder as claimed in claim 11, characterized in that the fixed clock is between 4 x 20 kHz and 4 x 80 kHz, advantageously between 4 x 32 kHz and 4 x 64 kHz, particularly at 4 x 44. kHz.
     
    15. A method of decoding a time-discrete stereo multiplex signal with a baseband stereo sum signal (L+R), a 19 kHz stereo pilot and a stereo difference signal (L-R) double-sideband amplitude-modulated on a blanked 38 kHz subcarrier in a decoder of a receiver, characterized by the steps of

    - filtering the stereo multiplex signal by means of a filter, in which one of the two stereo signals (L+R, L-R) is complex-filtered by means of a slope obtaining a first filtered signal,

    - complex-modulating the first filtered signal by means of a modulator obtaining a first modulated signal,

    - filtering the first modulated signal by means of a filter, in which the other one of the two stereo signals (L+R, L-R) is complex-filtered by means of a slope obtaining a second filtered signal,

    - complex-modulating the second filtered signal obtaining a second modulated signal, wherein the second modulated signal is used for extracting on the one hand the stereo sum signal (L+R) and stereo difference signal (L-R) and on the other hand for extracting the pilot


     
    16. A method as claimed in claim 15, characterized by the steps of

    - separating the baseband stereo sum signal (L+R) and the stereo difference signal (L-R),

    - modulating the L-R and the L+R signal obtaining complex stereo signals, and

    - converting the complex stereo signals from complex signals to real signals.


     
    17. A method as claimed in claim 15 or 16, characterized in that the modulated signal is down-sampled by two after the second modulation.
     
    18. A method as claimed in claim 16, characterized in that the signal is down-sampled by two after the third modulation.
     
    19. A method as claimed in claim 15 or 16, characterized in that the real signals are separated into a left and a right stereo signal.
     


    Ansprüche

    1. Stereo Decoder zum Decodieren eines zeitdiskreten Stereo-Multiplexsignals mit einem Basisband-Stereo-Summensignal (L+R), einem 19 kHz-Stereo-Piloten und einem 38 kHz Hilfsträger doppelseitenband-amplitudenaufmodulierten Stereo-Differenzsignal (L-R), wobei der Decoder die nachfolgenden Elemente umfasst:

    - eine phasenverriegelte Schleife (80) mit einem Oszillator (19) zum Liefern komplexer Modulationssignale und

    - ein erstes Filter (2) zum Filtern des Stereo Multiplexsignals, wobei eines der zwei Stereosignale (L+R, L-R) mit Hilfe einer Neigung komplex gefiltert wird, wobei ein erstes gefiltertes Signal erhalten wird, und einen ersten Modulator (3) zur komplexen Modulation des ersten gefilterten Signals, wobei ein erstes moduliertes Signal erhalten wird, und

    - ein zweites Filter (4) zum Filtern des ersten modulierten Signals, wobei das andere Signal der zwei Stereosignale (L+R, L-R) mit Hilfe einer Neigung komplex gefiltert wird, wobei ein zweites gefiltertes Signal erhalten wird, und

    - einen zweiten Modulator (5) zur komplexen Modulation des zweiten gefilterten Signals, wobei ein zweites moduliertes Signal erhalten wird, wobei das zweite modulierte Signal einerseits zum Extrahieren des Stereo Summensignals (L+R) und des Stereo Differenzsignals (L-R) und andererseits zum Extrahieren des Pilotsignals zur Steuerung des Oszillators (19) verwendet wird.


     
    2. Decoder nach Anspruch 1, der die nachfolgenden Elemente umfasst:

    - eine Extraktionseinheit (16) zum Extrahieren des Pilotsignals zur Steuerung des Oszillators (19) aus dem zweiten modulierten Signal, und

    - eine Filterschaltung (7, 8, 9) zum Trennen des Basisband Stereo Summensignals (L+R) und des Stereo Differenzsignals (L-R) von dem zweiten modulierten Signal, und

    - Modulatoreinheiten (10, 11) zur komplexen Modulation des genannten Basisband Stereo Summensignals (L+R) und des Stereo Differenzsignals (L-R), wodurch komplexe Stereosignale erhalten werden, und

    - eine Wandlereinheit (14, 15) zum Umwandeln der genannten komplexen Stereosignale von komplexen Signalen in echte Signale.


     
    3. Decoder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Filter (2, 4, 7, 8, 9) als FIR-Filter (2, 4, 7, 8, 9) ausgebildet sind.
     
    4. Decoder nach Anspruch 3, dadurch gekennzeichnet, dass die Filterschaltung (7) als symmetrisches FIR Hochpass- und Tiefpassfilter ausgebildet ist, das um (Funkstation/2)/4 = 22,05 kHz nach links geschoben wird, so dass das L+R-Signal und das L-R-Signal voneinander getrennt sind.
     
    5. Empfänger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Oszillator (19) diskret gesteuert wird.
     
    6. Decoder nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Oszillator (19) ein Kosinussignal und ein Sinussignal liefert.
     
    7. Decoder nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Oszillator (19) ein begrenzt stabiles Schwingungsfilter aufweist.
     
    8. Decoder nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Oszillator (19) einen Modulator (3, 5, 10, 11) steuert.
     
    9. Decoder nach Anspruch 8, dadurch gekennzeichnet, dass der Modulator (3, 5, 10, 11) ein Multiplikationselement aufweist.
     
    10. Decoder nach Anspruch 2, dadurch gekennzeichnet, dass die Extraktionseinheit als ein elliptisches Filter (16) mit einem Frequenzgang um 0 Hz herum.
     
    11. Decoder nach Anspruch 1, dadurch gekennzeichnet, dass die phasenverriegelte Schleife (80) eine Steuerstrecke (17) mit einem Verstärker (81, 83) aufweist.
     
    12. Empfänger (1, 49, 51, 52, 54) mit einer Signalstrecke, welche die nachfolgenden Elemente aufweist:

    eine Abstimmanordnung (49), eine Demodulationsschaltung (51) zum Liefern eines Stereo Multiplexsignals mit einem Basisband Stereo Summensignal (L+R), einem 19 kHz Stereo Piltosignal und einem Stereo Differenzsignal (L-R), doppelseitenband aufmoduliert auf einem ausgetasteten 38 kHz Hilfsträger, eine Abtastanordnung (52) zum Umwandeln eines analogen Signals in ein zeitdiskretes Signal, und einen Stereo Decoder (1) nach einem der Ansprüche 1 bis 11.


     
    13. Decoder nach Anspruch 11, dadurch gekennzeichnet, dass die Abtastanordnung (52) mit einem festen Takt arbeitet.
     
    14. Decoder nach Anspruch 11, dadurch gekennzeichnet, dass der feste Takt zwischen 4 x 20 kHz und 4 x 80 kHz liegt, vorzugsweise zwischen 4 x 32 kHz und 4 x 64 kHz, insbesondere bei 4 x 44,1 kHz.
     
    15. Verfahren zum Decodieren eines zeitdiskreten Stereo Multiplexsignals mit einem Basisband Stereo Summensignal (L+R), einem 19 kHz Stereo Pilotsignal und einem Stereo Differenzsignal (L-R), doppelseitenband-amplitudenmoduliert auf einem ausgetasteten 38 kHz Hilfsträger in einem Decoder eines Empfängers, gekennzeichnet durch die nachfolgenden Verfahrensschritte:

    - das Filtern des Stereo Multiplexsignals mit Hilfe eines Filters, wobei eines der zwei Stereosignale (L+R, L-R) mit Hilfe einer Neigung komplex gefiltert wird, wodurch ein erstes gefiltertes Signal erhalten wird,

    - das komplexe Modulieren des ersten gefilterten Signals mit Hilfe eines Modulators, wodurch ein erstes moduliertes Signal erhalten wird,

    - das Filtern des ersten modulierten Signals mit Hilfe eines Filters, wobei das andere Signal der zwei Stereosignale (L+R, L-R) mit Hilfe einer Neigung komplex gefiltert wird, wodurch ein zweites gefiltertes Signal erhalten wird,

    - das komplexe Modulieren des zweiten gefilterten Signals, wodurch ein zweites moduliertes Signal erhalten wird, wobei das zweite modulierte Signale zum Extrahieren einerseits des Stereo Summensignals (L+R) und des Stereo Differenzsignals (L-R) und andererseits zum Extrahieren des Pilotsignals verwendet wird.


     
    16. Verfahren nach Anspruch 15, gekennzeichnet durch die nachfolgenden Verfahrensschritte:

    - das Trennen des Basisband Stereo Summensignals (L+R) und des Stereo Differenzsignals (L-R),

    - das Modulieren des L-R- und des L+R-Signals, wodurch komplexe Stereosignale erhalten werden, und

    - das Umwandeln der komplexen Stereosignale in echte Signale.


     
    17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das modulierte Signal nach der zweiten Modulation zweifach herunter gemischt wird.
     
    18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das Signal nach der dritten Modulation zweifach heruntergemischt wird.
     
    19. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die echten Signale in ein linkes und ein rechtes Stereosignal getrennt werden.
     


    Revendications

    1. Décodeur stéréo pour décoder un signal multiplexé stéréo discret dans le temps avec un signal somme stéréo en bande de base (L+R), un pilote stéréo à 19 kHz, et un signal différence stéréo (L-R) modulé en amplitude à bande latérale double, sur une sous-porteuse à 38 kHz supprimée, le décodeur comprenant :

    une boucle à verrouillage de phase (80) comprenant un oscillateur (19) pour fournir des signaux de modulations complexes,

    un premier filtre (2) pour filtrer le signal multiplexé stéréo, dans lequel l'un des deux signaux stéréo (L+R, L-R) est soumis à un filtrage complexe au moyen d'une pente pour obtenir un premier signal filtré,

    un premier modulateur (3) pour soumettre à une modulation complexe le premier signal filtré afin d'obtenir un premier signal modulé,

    un second filtre (4) pour filtrer le premier signal modulé, dans lequel l'autre des deux signaux stéréo (L+R, L-R) est soumis à un filtrage complexe au moyen d'une pente afin d'obtenir un second signal filtré, et

    un second modulateur (5) pour soumettre à une modulation complexe le second signal filtré afin d'obtenir un second signal modulé, caractérisé en ce que le second signal modulé est utilisé pour extraire d'une part le signal somme stéréo (L+R) et le signal différence stéréo (L-R), et d'autre part, le signal pilote pour commander l'oscillateur (19).


     
    2. Décodeur selon la revendication 1, comprenant :

    une unité d'extraction (16) pour extraire du second signal modulé le pilote permettant de commander l'oscillateur (19),

    un circuit de filtrage (7, 8, 9) pour séparer du second signal modulé le signal somme stéréo en bande de base (L+R) et le signal différence stéréo (L-R),

    des unités de modulation (10, 11) pour soumettre à une modulation complexe ledit signal somme stéréo en bande de base (L+R) et le signal différence stéréo (L-R) afin d'obtenir des signaux stéréo complexes, et

    une unité de conversion (14, 15) pour convertir lesdits signaux stéréo complexes de signaux complexes en signaux réels.


     
    3. Décodeur selon la revendication 1 ou 2, caractérisé en ce que les filtres (2, 4, 7, 8, 9) sont adaptés en tant que filtres à réponse impulsionnelle finie (2, 4, 7, 8, 9).
     
    4. Décodeur selon la revendication 3, caractérisé en ce que le circuit de filtrage (7) est adapté en tant que filtre FIR passe-haut et passe-bas symétrique qui est décalé vers la gauche de (Fs/2)/4 = 22,05 kHz afin que les signaux L+R et L-R soient séparés.
     
    5. Récepteur selon la revendication 1 ou 2, caractérisé en ce que l'oscillateur (19) est à commande discrète.
     
    6. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oscillateur (19) délivre un signal cosinus et un signal sinus.
     
    7. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oscillateur (19) comprend un filtre oscillant à limite stable.
     
    8. Décodeur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'oscillateur (19) commande un modulateur (3, 5, 10, 11).
     
    9. Décodeur selon la revendication 8, caractérisé en ce que le modulateur (3, 5, 10, 11) comprend un élément multiplieur.
     
    10. Décodeur selon la revendication 2, caractérisé en ce que l'unité d'extraction est adaptée en tant que filtre elliptique (16) ayant une réponse en fréquence voisine de 0 Hz.
     
    11. Décodeur selon la revendication 1, caractérisé en ce que la boucle à verrouillage de phase (80) comprend un trajet de commande (17) ayant un amplificateur (81,83).
     
    12. Récepteur (1, 49, 51, 52, 54) ayant un trajet de signal comprenant les éléments suivants : un dispositif de syntonisation (49), un circuit démodulateur (51) pour délivrer un signal multiplexé stéréo avec un signal somme stéréo en bande de base (L+R), un pilote stéréo à 19 kHz et un signal différence stéréo (L-R) modulé en amplitude à bande latérale double sur une sous-porteuse à 38 kHz supprimée, un dispositif d'échantillonnage (52) pour convertir un signal analogique en un signal discret dans le temps, et un décodeur stéréo (1) selon l'une des revendications 1 à 11.
     
    13. Décodeur selon la revendication 11, caractérisé en ce que le dispositif d'échantillonnage (52) fonctionne avec une horloge fixe.
     
    14. Décodeur selon la revendication 11, caractérisé en ce que l'horloge fixe est comprise entre 4 x 20 kHz et 4 x 80 kHz, et de façon avantageuse, entre 4 x 32 kHz et 4 x 64 kHz, et plus particulièrement, en ce qu'elle est à 4 x 44,1 kHz.
     
    15. Procédé de décodage d'un signal multiplexé stéréo discret dans le temps avec un signal somme stéréo en bande de base (L+R), un pilote stéréo à 19 kHz et un signal différence stéréo (L-R) modulé en amplitude à bande latérale double sur une sous-porteuse à 38 kHz supprimée dans un décodeur d'un récepteur, caractérisé par les étapes suivantes :

    - filtrage du signal multiplexé stéréo au moyen d'un filtre, dans lequel l'un des deux signaux stéréo (L+R, L-R) est soumis à un filtrage complexe au moyen d'une pente pour obtenir un premier signal filtré,

    - modulation complexe du premier signal filtré au moyen d'un modulateur pour obtenir un premier signal modulé,

    - filtrage du premier signal modulé au moyen d'un filtre, dans lequel l'autre des deux signaux stéréo (L+R, L-R) est soumis à un filtrage complexe au moyen d'une pente pour obtenir un second signal filtré,

    - modulation complexe du second signal filtré pour obtenir un second signal modulé, caractérisé en ce que le second signal modulé est utilisé d'une part pour extraire le signal somme stéréo (L+R) et le signal différence stéréo (L-R) et d'autre part pour extraire le pilote.


     
    16. Procédé selon la revendication 15, caractérisé par les étapes suivantes :

    - séparation du signal somme stéréo en bande base (L+R) et du signal différence stéréo (L-R),

    - modulation des signaux L-R et L+R pour obtenir des signaux stéréo complexes, et

    - conversion des signaux stéréo complexes de signaux complexes en signaux réels.


     
    17. Procédé selon la revendication 15 ou 16, caractérisé en ce que le signal modulé est sous-échantillonné d'un facteur 2 après la seconde modulation.
     
    18. Procédé selon la revendication 16, caractérisé en ce que le signal est sous-échantillonné d'un facteur 2 après la troisième modulation.
     
    19. Procédé selon la revendication 15 ou 16, caractérisé en ce que les signaux réels sont séparés en des signaux stéréo gauche et droit.
     




    Drawing