(19)
(11) EP 1 304 401 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
21.06.2006 Bulletin 2006/25

(21) Application number: 01124823.4

(22) Date of filing: 18.10.2001
(51) International Patent Classification (IPC): 
D01D 4/06(2006.01)

(54)

Synthetic fiber forming apparatus and an associated process for spinning synthetic fibers

Vorrichtung und Verfahren zum Spinnen von synthetischen Fasern

Dispositif et procédé pour le filage de fibres synthétiques


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

(43) Date of publication of application:
23.04.2003 Bulletin 2003/17

(73) Proprietor: Fiber Innovation Technology
Johnson City, Tennessee (US)

(72) Inventors:
  • Dugan, Jeffrey S.
    Erwin, Tennessee (US)
  • Harris, Frank O.
    Rogersville, Tennessee (US)

(74) Representative: Maisch, Thomas 
Ullrich & Naumann, Patent- und Rechtsanwälte, Luisenstrasse 14
69115 Heidelberg
69115 Heidelberg (DE)


(56) References cited: : 
DE-A- 4 211 398
US-A- 4 738 607
US-A- 3 847 524
US-A- 5 575 063
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF INVENTION



    [0001] The present invention relates to an apparatus and process for the production of synthetic fibers. In particular, the invention relates to an apparatus and process for the production of spun synthetic fibers having improved uniformity and production efficiencies.

    BACKGROUND OF THE INVENTION



    [0002] The expanding use of synthetic fibers has had a significant impact on the textile industry. Synthetic fibers are now used in many textile applications where natural fibers were traditionally used. This movement to the use of synthetic fibers mainly has been facilitated by their typically superior physical properties and relatively low manufacturing costs. In addition, synthetic fibers can be tailor-made to have a variety of different properties in order to enhance their applicability in numerous types of applications such as clothing, roping, industrial materials, and many other applications. For example, the material used, the fiber cross-sectional shape, the fiber size, etc. can be pre-selected to form a fiber which has the requisite features preferred for its intended end use. Further, where varieties of features or properties are required, multi-component synthetic fibers can be produced and utilized, with the individual fiber components being selected to provide specific features. In the production of such multi-component fibers, the manufacturer can control the cross-sectional shape of each of the various components as well as their relative proportions in the fiber structure. In this way, multi-component fibers enable a user to capitalize on the particular features of multiple different synthetic materials simultaneously, often with synergistic results.

    [0003] The most common methods for producing synthetic filaments are spinning processes. Relatedly, such spinning processes also form intermediate stages in the production of nonwoven fabrics such as during spunbonding and meltblowing nonwoven fabric production processes. In these spinning processes, a flowable material (e.g., a solution-dissolved or molten polymer) is fed in a selected manner to a spinneret. The liquified material passes through the spinneret where it emerges in a plurality of thin material streams which are quenched (e.g., by a gaseous or liquid medium) in order to solidify the flowable material streams, thereby forming spun filaments.

    [0004] Typically, when a plurality of synthetic fibers are produced, it is desirable for the individual fibers of the plurality to have relatively uniform cross-sectional dimensions, in order that uniform properties are consistently provided by each fiber. In commercial manufacturing environments, however, irregularities in fiber structures are commonly and undesirably introduced during fiber production, and variations can occur between the individual fibers relative to each other as well as along the length of each individual fiber.

    [0005] One example of synthetic fiber production is described in U.S. Patent Nos. 5,162,074 and 5,344,297 to Hills. In the manufacturing processes described in those patents, flowable polymer material is passed under pressure to etched distribution plates containing horizontal flow paths. The polymer material flows from an inlet point through these flow paths on the etched plate, where it is directed into the backholes of a spinneret. These horizontal flow paths can present several problems in the manufacturing process.

    [0006] First, because the etched plate is designed to receive the flowable polymer material and to distribute it to the spaced backholes of the spinneret, the individual flow paths of the etched plate would thus, absent any intentional modification to their design, generally have different lengths and/or dimensions. This difference in the path lengths can cause the flowable polymer material in the longer flow paths to experience a larger drop in pressure than the polymer material in the shorter flow paths. This pressure differential between the materials in the different flow paths can thus cause the feed rate of the flowable polymer material to the spinneret backholes to vary, which can adversely affect the shape of the polymer streams exiting the spinneret. These pressure differentials can represent an even greater problem in the production of multi-component fibers, since the feeding of the flowable materials to form particular multi-component fibers typically needs to be very precise.

    [0007] Because in the prior art methods the pressure irregularities are introduced downstream of the pressure regulating means (i.e., generally a metering plate proximate the material supply point), the pressure irregularities tend to manifest themselves directly in the form of irregularities in the spun fibers. To combat this problem, prior art methods have employed distribution plates where the shorter path lengths are intentionally lengthened so as to equalize the lengths for all of the flow paths. In other words, some channels are made longer than necessary, to achieve a particular fiber construction. This lengthening of the channel increases the dwell time of the flowable material, which can lead to undesirable and otherwise unnecessary polymer degradation. In addition, the extended length channels consume plate area which might be otherwise beneficially used. As a result of this loss of space, cross-sectional design complexity of the fibers can be limited, since more complex designs typically require more channels (and thus more plate space). In addition, the hole density in the spinneret must be correspondingly reduced, since the holes must be located farther apart when the channels take up a greater proportion of plate space. As a result, the through-put rate (and thus productivity) can be undesirably reduced.

    [0008] Another problem can be experienced when the flow paths of a distribution plate are connected to exit holes with large cross-sectional dimensions. As the polymer material flows from the flow path into the distribution plate exit hole, more of the polymer material is distributed to the area of the exit hole nearest to the flow path outlet than to the opposite sides of the exit hole. This causes an uneven distribution of flowable polymer material to be fed to the spinneret, and as a result, generally precludes the use of the shape and size of the exit hole of the distribution plate in helping to determine the cross-sectional distribution of the respective polymers in the resulting fiber. Consequently, distribution plate designers generally must avoid the use of large and shaped exit holes. Instead, the cited art allows only the positioning of exit holes relative to each other to determine the multi-component cross-section, which is a less certain method than the one of the instant invention, which allows the use of the size and shape of the exit holes to determine the fiber configuration as well.

    [0009] US-A-3 847 524 is showing a conventional apparatus for forming synthetic fibers. The known apparatus does not comprise a metering plate having at least two orifices positioned immediately downstream to each exit hole of a distribution plate.

    [0010] Accordingly, there exists a need for a process and apparatus for producing synthetic fibers having improved uniformity and for providing improved control over fiber croas-sectional shape.

    SUMMARY OF THE INVENTION



    [0011] The above problems are solved by an apparatus and process according to claims 1, 19 and 28.

    [0012] In light of the above, it would be advantageous to provide a process and apparatus for improving the uniformity of synthetic fibers, while increasing the ease of achieving complexity of the design of a multi-component fiber cross-section. The present invention provides such consistent uniform fiber spinning by generally restoring and/or initiating a pressure equilibrium to the flowable material streams as they are delivered to the spinneret. This in turn allows the spinneret to produce synthetic fibers with more uniform structures and properties. Because the apparatus in one embodiment of the present invention can be used to actually create the requisite pressure for the spinning process, in that embodiment the pressure equipment located upstream of the distribution plate, such as the pressure and metering plates often utilized to provide pressure in conventional spin pack arrangements, can essentially be eliminated.

    [0013] These and other advantages are provided according to the present invention by an apparatus for forming synthetic fibers which includes a distribution plate for distributing flowable material in a direction perpendicular to the spinning direction, and one or more metering plates positioned downstream of the distribution plate and likewise oriented perpendicular to the spinning direction. (For purposes of this disclosure, elements described as being "perpendicular" are oriented perpendicular relative to the spinning direction, while those described as "parallel" are oriented parallel to the spinning direction, e.g., in a vertical spinning operation, elements oriented perpendicularly would be in a horizontal position relative to the vertical spinning direction.)

    [0014] The distribution plate contains at least one flow path which is in fluid flow connection with at least one generally parallel exit hole which forms a portion of a downstream surface of the distribution plate. It is to be noted that the term "exit hole", as used in connection with the instant invention, is meant in its broadest sense to encompass the downstream orifice(s) of a plate or cooperating combination of plates, and is intended to encompass all such downstream cavities regardless of whether larger or smaller than the upstream supply channel opening, and regardless of their shape relative to that of the supply channel. Furthermore, while the term "distribution plate" appears in singular form, it is intended to encompass all distribution plate arrangements which perform a flowable material distribution function in the manner described in the instant application. For example, the distribution plate can comprise several plate elements which cooperatively function to direct at least one flowable material to a location other than that in which it would be located when exiting the material supply arrangement located immediately upstream of the distribution plate by either directing it perpendicularly relative to its feed position and/or expanding or shaping the flowable material stream from its input dimensions and configuration. Additionally, it is to be noted that the term "parallel" is intended to describe the axis of the exit hole as compared with the general overall flow direction (i.e., upstream towards downstream) of the spinning assembly.

    [0015] The metering plate contains at least one, and preferably at least two orifices which are desirably positioned immediately downstream of an exit hole of the distribution plate. At least a portion of the metering plate orifice (i.e., preferably the downstream portion of the orifice) has a combination of diameter and length sufficient to moderate the pressure of flowable material flowing through the metering plate. In this way, the metering plate achieves a greater degree of equilibration of the pressures of the flowable material(s).

    [0016] In some instances, the size of the metering plate orifice(s) and the thickness of the metering plate can be specially dimensioned to produce a defined pressure increase in the flowable material. In fact, the metering plate orifice(s) and/or the thickness of the metering plate can be sized to produce a pressure on the flowable material as it exits the metering plate which is alone sufficient for balanced-pressure feed to the spinneret, thereby essentially obviating the need for upstream pressurization means. Furthermore, selected portions of the metering plate can have different orifice configurations, in order to moderate material streams exiting their respective corresponding distribution plate exit holes at different levels.

    [0017] In the action of the spinneret, it is typically advantageous to have the flowable material oriented in a parallel condition relative to the spinning direction before it enters the spinneret. Thus the metering plate orifice, in a preferred embodiment, orients the flowable material to produce a parallelly-oriented flowable material which is distributed to the spinneret.

    [0018] In one embodiment of the invention, a second metering plate is also positioned upstream of the distribution plate. In this embodiment, the upstream metering plate provides flowable material to the distribution plate at an initial consistent pressure, with material pressure being re-equilibrated upon exit from the distribution plate by the downstream metering plate.

    [0019] Typically, a spinneret has a plurality of backholes and mating exit orifices in order that a number of fibers can be spun simultaneously. Therefore, the downstream metering plates used in the present invention desirably have at least one, and preferably two orifices which mate with each of the spinneret backholes which are intended to be active during the spinning process. For some applications, it is advantageous to provide a plurality of flowable material streams to a single spinneret backhole. In light of this, in certain embodiments of the invention, the downstream metering plate has a plurality of orifices which direct flowable material into each of the active individual spinneret backholes. Preferably, at least a portion of each orifice of the plurality is smaller than the distribution plate exit hole to which it corresponds. The plural orifices of the metering plate receive the flowable material from the distribution plate exit hole(s) and output plural flowable material streams. The metering function of the orifices causes the material to flow at equilibrated pressure through each metering orifice fed by the larger, corresponding distribution plate exit hole, rather than flowing preferentially through the metering orifice nearest the channel feeding the distribution plate exit hole. In this way, the plural material streams can be fed to a single spinneret backhole as desired, thereby enabling the pattern of stream feeding to approximate the shape of areas of particular materials in the particular fiber configuration sought to be produced. Such a feeding arrangement has particular advantages in the production of multi-component fibers, as it provides a high degree of precision in the feeding of the stream to the backhole of the spinneret while at the same time, maintaining consistent pressure between the plural streams.

    [0020] In many applications using this multi-stream embodiment, it is advantageous to have equilibrium between each individual stream of the plurality of flowable material streams. Therefore, in this embodiment, the size of the individual orifices of the plurality of metering plate orifices and the thickness of the metering plate are desirably sufficiently uniform such that the pressure of any one of the plurality of streams is approximately equilibrated to the pressure of any other stream of the plurality of flowable material streams as they exit the metering plate and flow toward the spinneret.

    [0021] Some synthetic fiber forming applications require the flowable material to be distributed to different areas of the spinneret. In this embodiment, the distribution plate may contain at least two flow paths which each distribute the flowable material(s) to at least one distribution plate exit hole located at a desired position on the distribution plate. Due to this configuration, the flow paths may be of differing lengths and thus provide different pressure losses to the flowable polymer streams. This problem, left unmodified, would result in flowable polymer streams with differing pressures. To counteract this, in one embodiment of the invention, the shape, configuration and dimensions of orifices in the metering plate and the thickness of the metering plate are such that the pressure increase through any exit hole of the plurality of exit holes in the metering plate is large enough to thereby produce a plurality of flowable material streams where the pressure of one stream of the plurality of flowable material streams is approximately equilibrated to the pressure of any other stream of the plurality. In a particularly preferred form of this embodiment, each flow path in the distribution plate includes at least one exit hole such that the individual streams are combined downstream of the distribution plate. For example, the material streams may be combined in shaped cavities immediately upstream of the metering plate, although in most cases they will be combined in the spinneret backhole just downstream of the metering plate. This embodiment of the invention has particular applicability to the production of multi-component fibers, as it enables precise positioning of each of the fiber components.

    [0022] In some synthetic fiber constructions, it is advantageous to produce synthetic fibers where the fiber contains many shaped aspects, such as a shaped core and shaped outer sheath. In this instance, the distribution plate exit hole(s) can be formed in predetermined shape(s) for producing and distributing a flowable material stream with a predetermined shape. In this embodiment, the metering plate is desirably configured such that a plurality of metering plate orifices correspond to at least one of the distribution plate exit holes. The plurality of orifices of the metering plate which receive each of the shaped flowable material streams then output to the spinneret a plurality of flowable material streams which collectively substantially maintain the predetermined shape. In a particularly preferred embodiment, the plurality of orifices in the metering plate outputs to a spinneret backhole a plurality of flowable material streams, wherein the pressure of one flowable material stream is approximately equilibrated to the pressure of any of the other flowable material streams.

    [0023] In addition, the invention involves a process for increasing the consistency of synthetic fibers produced in a spinneret. The process involves directing a flow of material across a distribution plate and thereafter through a hole to an adjacent metering plate which moderates and more consistently controls the pressure of the flowable material. Generally this is performed by providing a metering plate which has a downstream orifice that is smaller than the exit hole of the distribution plate, although other forms of metering plate could be used, such as a metering plate having metering orifices which are larger than the distribution plate exit hole, but with the metering holes being long enough for drag from the hole walls to produce the desired pressure drop. After this moderation, the equilibrated pressure flowable material streams are directed from the exit holes of the metering plate orifices to the backhole(s) of a downstream spinneret.

    [0024] Thus, in the apparatus and process of the present invention, the metering plate downstream of the distribution plate can serve to improve the balance of pressures between a plurality of flowable material streams (whether they are being fed to a single or to plural spinneret backholes) and to create pressure in the flowable material streams, in some cases to an extent sufficient to obviate the need for upstream pressure means.

    [0025] In another embodiment of the invention, the distribution plate exit hole dispenses a flowable material having a predetermined cross-sectional shape to a plurality of orifices in the metering plate. The higher resistance met by the polymer trying to flow through the metering orifices causes it to fill the upstream shaped cavity before it is able to flow steadily through the metering orifices. Thus, in this embodiment, the plurality of orifices in the metering plate desirably adjust the pressure of the shaped flowable material and produce a plurality of flowable material streams which collectively maintain the predetermined shape such that the flowable material is fed to the downstream spinneret backholes at relatively balanced pressures in a shape which approximates that desired for a particular portion of the cross-section of the spun fiber. As a result, more precisely defined and uniform fiber cross-sections can be produced along the entire fiber length.

    [0026] Further, the apparatus of the present invention also promotes efficiency in the forming of synthetic fibers. The orifices of the metering plate can be designed with appropriate dimensions such as to create the requisite pressure for the spinning process. This in turn would alleviate the need for the conventional metering plates which are placed upstream of the distribution plate, which is particularly desirable due to the high costs typically associated with these plates. Because the feeding of the flowable material can be more consistent in the apparatus and process of the present invention, better uniformity in fiber-to-fiber cross-sections and better control over the cross-section of each individual fiber can be achieved.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0027] 

    Fig. 1 is a perspective view of a synthetic fiber forming apparatus in accordance with the present invention;

    Fig. 2 is a cross-sectional view of a composite fiber which is exemplary of those which might be made according to the present invention;

    Fig. 3 is a top view of a distribution plate which can be used in the present invention, which could be used to produce a fiber like that shown in Fig. 2;

    Fig. 4 is a top view of a metering plate which can be used in the present invention, with the material flow paths and shaped exit holes of the distribution plate shown in Fig. 3 appearing in dashed lines as they would overlie the metering plate;

    Fig. 5 is a perspective exploded view which illustrates the distribution plate of Fig. 3 as it appears when it is positioned upstream of and in fluid flow connection with the metering plate of Fig. 4;

    Fig. 6 is a perspective top view of an alternative distribution/metering plate embodiment;

    Fig. 7 is a cross-sectional view of an alternative embodiment of the distribution plate shown in Fig. 6, with the distribution plate being in the form of a single plate rather than plural plate sections;

    Fig. 8 is a cross-sectional view of an alternative arrangement for the junction of a metering plate with a spinneret which can be used in the instant invention;

    Fig. 9 is a cross-sectional view of a further alternative arrangement for the junction of a metering plate with a spinneret which can be used in the instant invention;

    Fig. 10 is an exploded partial cross-sectional, partial top view of a distribution plate/ metering plate arrangement which can be used in the instant invention;

    Fig. 11 is a cross-sectional view of a distribution plate, as taken along line 11-11 in Fig. 10;

    Fig. 12 illustrates an embodiment of the invention similar to that shown in Fig. 6, with the distribution plate and metering plate being integrally formed as a single unit; and

    Fig. 13 is an illustration of an alternative metering plate construction which has differently-sized orifices in selected areas of the plate.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0028] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, this embodiment is provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art. Like reference characters designate like or corresponding parts throughout the several views. For the sake of clarity of the illustration, the flowable material is not specifically included in the drawings, but will be understood to flow through the illustrated embodiments of the invention as further described herein.

    [0029] The synthetic fiber forming apparatus of the present invention may be used to produce a variety of synthetic fibers (e.g., polyester, nylon, rayon, etc.) including both single and multi-component material configurations.

    [0030] Figure 1 is a perspective view of a synthetic fiber forming apparatus 10 for forming a variety of synthetic fibers according to the instant invention. The upper material supply portion of the apparatus 10 according to the present invention can be formed in a conventional manner. For example, the supply portion of the apparatus 10 can include a conventional-type top plate 11 which receives one or more materials through inlet bores and transfers the material to a screen support plate 12, which filters the flowable material and forwards it towards a distribution plate.

    [0031] As illustrated, the apparatus 10 desirably includes a distribution plate 14 which has at least one flow path 16 oriented in a direction perpendicular to the spinning direction and at least one exit hole 18. The apparatus 10 also includes a metering plate 22 which has at least one orifice 24 which desirably extends in a direction substantially parallel to the spinning direction, and a common flow path with at least one exit hold of the distribution plate 14. For example, in the apparatus 10, the metering plate 22 is positioned downstream of the distribution plate 14 such that plural orifices 24 of the metering plate 22 are immediately downstream of each of the distribution plate exit holes 18. The orifices 24 in the metering plate 22 are adapted to moderate the pressure of a material flowing from an exit hole of the distribution plate through the metering plate. For example, the diameter of at least a portion of the metering plate orifice 24 (shown at 26) is desirably smaller than the diameter of the distribution plate exit hole 18 (shown at 20) such that it moderates the pressure of a material flowing from the distribution plate 14 through the metering plate 22, to thereby provide a flow of material to a downstream spinneret 32 at a relatively more consistent pressure. For example, the exit holes 18 of the distribution plate 14 can be about 0.6 mm in diameter, while the exit holes of a mating metering plate 22 could be about 0.2 mm in diameter. While throughout the specification and claims it is described that the metering plate feeds flowable material to the backholes of a spinneret, it is noted that this is to include set-ups where the metering plate directly feeds the spinneret, and those where it feeds a transition plate which in turn feeds the spinneret backholes, as will be discussed further herein.

    [0032] The distribution and metering plates 14, 22 can be made using any known shaping means including, but not limited to, etching, electroforming, laser-cutting, milling, LIGA-technique, casting, stamping, punching, drilling or otherwise machining, molding, engraving, reaming, or the like. In a preferred form of the invention, the distribution plate holes 18 are "shaped" (i.e., non-circular) in order to produce multi-component fibers having selectively shaped regions of specific components. Similarly, the flow paths 16 can assume any configuration chosen by the plate designer to achieve the desired fiber shape, composition and cross-section, and can be of greater complexity than practicable using prior art spin pack assemblies, as will be readily recognized by those having ordinary skill in the art.

    [0033] In a preferred form of the invention, the diameter of each of the metering plate orifices 24 is consistent along the length of the orifice (i.e., through the entire thickness of the metering plate.) Alternatively, a downstream or outlet end of the exit orifice 24 could be formed to have a smaller diameter than that of the downstream end of the exit hole of the distribution plate 14, to thereby provide a pressure increase to flowable material flowing therethrough. As a further alternative, the diameter of the orifices 24 of the metering plate can have a narrowed diameter between its upstream and downstream ends to form a neck.

    [0034] In certain embodiments of the present invention, the thickness 28 of the metering plate 22 and/or the diameter of the metering plate orifices 24 are sized sufficiently to moderate the pressure on the flowable material stream through the metering plate orifice 24, thereby providing a flowable material stream with a determinable pressure to the spinneret 32. In a further aspect of the present invention, the metering plate orifice 24 orients a flowable material stream to produce an oriented flowable material stream for output to the spinneret 32.

    [0035] The metering plate 22 of the apparatus 10, shown in more detail in Figure 4, desirably has a plurality of orifices 24. The metering plate 22 may be constructed so that it has a single orifice 24 corresponding to each exit hole 18 of the distribution plate 14, or such that plural orifices 24 of the metering plate correspond to one or more of the exit holes 18, as shown, for example, in Figures 4-5. Each orifice 24 of the plurality of orifices 24 is desirably smaller than the corresponding distribution plate exit hole 18, although other orifice designs can be used within the scope of the invention, as discussed above. A spinneret 32 is desirably positioned downstream of the metering plate 22 such that the plurality of orifices 24 deliver a plurality of flowable material streams to one or more backholes 30 thereof. The metering plate can be in the form of a conventional punched, stamped, milled, laser-cut, drilled, reamed, etched or otherwise machined plate, can be made by casting, molding, or LIGA process, engraving or electroforming or can be in the form of a screen formed of fibers, filaments, wires, or the like. For example, a mesh screen having about 125 holes per inch could be used to meter the flowable material through the apparatus of the instant invention. Alternatively, the metering plate can be made by selectively plugging holes in an existing plate or screen. As will be recognized by those having ordinary skill in the art, the dimensions of the orifices, number of orifices adapted to correspond to each of the distribution plate exit holes, shape of the orifices, etc. will be selected to provide the desired degree of metering for the particular desired fiber construction to be produced. For example, for the arrangement illustrated in Fig. 4, it may be desirable to have as many as 500 orifices in the metering plate corresponding to the single shaped triangular shaped exit hole in the center of that distribution plate.

    [0036] In a further aspect of the invention, the size of each orifice 24 of the metering plate 22 and the thickness 28 of the metering plate 22 across its width are designed so that the pressure of any single stream of flowable material of the plurality of flowable material streams is substantially equilibrated to the pressure of any other stream of the plurality.

    [0037] In an embodiment of the invention which is particularly well-suited for the production of multi-component fibers, the distribution plate 14, illustrated in Figure 3, has at least two flow paths 16 which are designed to feed to a single spinneret backhole 30 (i.e., flowable material exiting from several of the exit holes 18 is designed to ultimately feed to a single spinneret backhole). In this embodiment, the pressure increase through any one of the orifices 24 of the metering plate 22 is sufficiently large in comparison to the difference in pressure drop between the flow paths 16, to thereby produce a plurality of flowable material streams in which the pressure of each material stream is substantially equilibrated to the pressure of any other material stream of the plurality. The pressure increase through the metering orifices is also desirably greater than the pressure required to fill the shaped distribution plate exit hole, so this shaped area is filled before material flows steadily through the metering orifices. This insures that flowable material flows consistently through all the metering orifices downstream of each of the shaped exit holes.

    [0038] It is understood that the apparatus of the current invention can be used to form a variety of different synthetic fibers. For illustration purposes, Figure 2 shows the cross-sectional dimension of a synthetic fiber 36 which is exemplary of one which might be formed by the synthetic fiber forming apparatus 10. In the production of this fiber 36, the synthetic fiber forming apparatus 10 has a distribution plate 14 which has shaped exit holes 18 which approximate the cross-sectional shape of the fiber to be produced. The shapes of the exit holes 18 are designed such that their combined shape roughly approximates the cross-sectional shape 38, shown in Figure 2, of the desired synthetic fiber 36. In the embodiment illustrated, the cross-sectional shape of the fiber includes a substantially triangular core and a round sheath surrounding the core. However, as will be clear to those skilled in the art, the invention will have applicability to fibers of many different shapes other than the one specifically described for purposes of illustration of the invention.

    [0039] In this configuration, the flow paths 16 distribute flowable material to the distribution plate shaped exit holes 18 where, due in part to the metering action of the downstream metering plate 22, the flowable material roughly fills the cross-sectional dimension of each of the distribution plate exit holes 18. The distribution plate exit holes 18 produce and distribute shaped, flowable material streams to the plurality of orifices 24 of the metering plate 22, which is desirably positioned beneath the distribution plate 14.

    [0040] In the embodiment of the invention illustrated in Figs. 3-5, the plurality of orifices 24 of the metering plate 22 receive the shaped material stream and output a plurality of material streams which collectively substantially maintain the predetermined shape 38. Because the material may have traveled through flow paths of various different lengths on the distribution plate, the material streams which exit the distribution plate 14 may be at varying pressures. Because all of the streams are then caused to travel through the metering plate 22, each of the streams which emerges from the metering plate tends to emerge at a pressure which approximates that of each of the other material streams. The streams emerge from the metering plate 22 in a configuration approximating that desired for the spun fiber, and are fed into the backhole of the spinneret.

    [0041] In operation, the process involves the step of directing a flow of material across a distribution plate 14, and thereafter through at least one exit hole 18 to an adjacent metering plate 22 having at least two downstream orifices 24 which act to meter the flow of the material therethrough. In embodiments where the metering plate is used simply to balance the pressures between individual streams rather than maintain a specific shape imparted by a shaped exit hole, it will be appreciated that a single metering hole could be used to correspond with each of two or more exit holes to meter the flow of a material flowing therethrough and substantially equilibrate the flow of each of the respective flowable material streams. Preferably, the metering plate is positioned immediately downstream of the distribution plate, though it is to be noted that one or more plates could be positioned intermediate the distribution plate 14 and the metering plate 22. In other words, the word "thereafter" is used to define that the metering plate is located in the spinning arrangement at a position downstream of one or more distribution plates in order to increase the equilibration and/or improve the pressure of one or more flowable material streams subsequent to travel through a distribution plate and prior to entering the backhole of the spinneret. As noted above in the discussion of the apparatus, the orifice in the metering plate is desirably relatively smaller than the exit hole 18 in the distribution plate, as the arrangement has been found to effectively moderate and control the pressure of the flowable material. Thereafter the moderated pressure flowable material from the downstream end of the orifice 24 is directed to a spinneret 32. In alternate embodiments, the directing step comprises either directing a flowable material or a shaped, flowable material stream into a plurality of orifices 24 in a metering plate 22, and thereafter to a spinneret 32.

    [0042] Thus, the process of the present invention can serve to equilibrate the pressure of the flow of the plurality of flowable materials and therefore to increase the ease of achieving uniformity of fibers, including those of complex cross-sections. In certain embodiments of the present invention, the pressure created by the metering plate 22 can be sufficient to operate the spinning process, thereby obviating the need for a conventional metering plate upstream of the distribution plate 14. Alternatively, a second metering plate 34 can be provided upstream of the distribution plate 14, to feed the material to the distribution plate 14 at an initially equilibrated pressure, with the downstream metering plate 22 securing, among other things, to reduce pressure irregularities imparted between the upstream metering plate 34 and the downstream metering plate.

    [0043] Figure 6 illustrates an alterative distribution/metering plate arrangement useful in performing the instant invention. In this embodiment, a distribution plate, shown generally at 50, directs a flowable material from an upstream supply source (not shown) to a downstream metering plate 55 having a plurality of exit orifices 56. The distribution plate 50 is provided as two separate plate sections: in the illustrated embodiments the first plate section 51 includes a channel 53 which extends through its full thickness to define a flow path in the distribution plate, while a second plate section 52 includes an opening 54, which forms the exit hole of the distribution plate. The respective distribution plate sections 51, 52 collectively define a flow path and exit hole arrangement similar to that provided by the single distribution plate 14 illustrated in Figs. 1, 3 and 5. The plate sections are preferably designed to fit closely together such that material flowing though the channel 53 and opening 54 does not have a tendency to seep between the plate sections. Furthermore, the plate sections 51, 52 can be specially configured to facilitate their tight securement together (e.g., by forming one of the plate sections with a protrusion and the other with a mating depression, such that the plate sections are properly aligned relative to each other, the protrusion and depression are mated together). A metering plate 54 is positioned immediately downstream of the distribution plate 50, and includes a plurality of orifices 56 in fluid flow connection with the orifice 54 in the second distribution plate section 52. These orifices 56 are adapted to regulate the flow of material therethrough and into the spinneret; in the illustrated embodiment, the orifices 56 are substantially smaller than the orifice 54 in the second distribution plate section, so that they act to meter the flow of material through the metering plate, as well as material through the distribution plate sections 51 and 52. While only a single distribution plate 50 and metering plate 55 are shown, it is noted that plural distribution and metering plates can be provided to achieve the fiber configuration desired.

    [0044] It is to be noted that while for purposes of illustration the individual distribution plates have been depicted as separate elements, they can be integrally formed as a single unit within the scope of the instant invention. For example, Figure 7 illustrates a distribution plate 60 designed to provide substantially the same flow path pattern as that shown in Figure 6, through the use of a single plate having overlying flow path 61 and exit hole 63 portions of different configurations. In this way, the single distribution plate can provide substantially the same flow pattern as the dual plate system shown in Figure 5.

    [0045] In the spinning assembly illustrated in Fig. 1, the metering plate 22 is positioned immediately upstream of the spinneret backholes, so that it feeds the flowable material stream directly into one or more of the spinneret backholes. However, a further alternative arrangement of the metering plate relative to the spinneret backholes useful in performing the instant invention is shown in Figure 8. In this arrangement, shown generally at 70, a transition plate 74 is positioned intermediate the metering plate 72 and the spinneret 76. The transition plate 74 desirably includes an orifice 75 which is relatively larger than the backhole 77 of the spinneret, so as to effectively expand the diameter of the backhole. In this way, a greater number of exit holes 73 of the metering plate 72 can be directed to a single backhole 77, thereby enabling the production of fibers having even greater degrees of complexity. Although the orifice 75 of the transition plate is illustrated as having substantially straight walls 75a which extend substantially parallel to the walls of the spinneret backhole, it is to be noted that the orifice can also be substantially conical or otherwise shaped, so as to have a relatively wider diameter upstream (adjacent to the metering plate) and a relatively narrower diameter downstream (adjacent to the backhole of the spinneret). For example, Fig. 9 illustrates an alternative spinning arrangement, shown generally at 80, having a transition plate 84 positioned intermediate a metering plate 82 and a spinneret 86. Like the arrangement shown in Figure 8, the transition plate 84 includes an orifice 85 which is relatively larger than the backhole 87 of the spinneret 86, so as to effectively expand the diameter of the backhole and enable a greater area of the metering plate 82 (and thus a correspondingly greater number of orifices 83) to feed a single spinneret backhole. In this arrangement, the orifice on the transition plate has tapered walls 84a rather than straight ones like those illustrated at 74a in Fig. 8. In addition, the transition plate 84 in this arrangement has a relatively large thickness T (for example, as shown compared with the thickness t of the metering plate) which enables a gradual combining of the plural material streams exiting the metering plate 82 and entering the backhole 87 of the spinneret 86.

    [0046] Figs. 10 and 11 illustrate another distribution plate/metering plate arrangement according to the instant invention. In this arrangement, a first flowable material (indicated as Polymer A) is provided in a conventional manner through supply channel 90, while a second flowable material (indicated as Polymer B) is provided in a conventional manner through supply channel 92. Preferably, the first flowable material differs from the second flowable material such that a multi-component fiber is produced therefrom.

    [0047] The flowable materials are supplied to a first distribution plate 93 as follows: Polymer A is fed from supply channel 90 to flow path 94, where it is directed through a downstream exit hole 95, while Polymer B is fed from supply channel 92 to flow paths 96, 98, 100, where it is directed through their respective exit holes 97, 99, 101 in the form of strategically located flowable material streams. The exit holes 95, 97, 99, 101 are respectively in fluid flow connection with flow paths 105, 107, 109, and 111 (by way of entry holes 104, 106, 108 and 110) in distribution plate 102, which is positioned adjacent to the first distribution plate 93. As can be seen more readily in Fig. 11, the second distribution plate 102 is formed such that the flow paths 105, 107, 109, and 111 are formed on the downstream surface of the plate, and terminate in exit holes which are substantially the same dimensions as the flow paths. In other words, this second distribution plate appears substantially as an upside-down version of a distribution plate like that of first distribution plate 93 (although in this illustration the exit holes 105, 107, 109, and 111 of the second distribution plate 102 are differently shaped from the flow paths 94, 96, 98 and 100 of the first distribution plate), and the exit holes have substantially the same dimensions as the flow paths.

    [0048] Because of the presence of downstream metering plate 112, the flowable material flowing through the paths 104, 106, 108, and 110 fills the relatively larger, shaped exit holes 105, 107, 109, and 111, thereby flowing to the downstream metering plate 112 in the form of shaped, strategically located flowable material streams. These polymer streams then flow through the orifices 114 in the metering plate 112, such that they exit the metering plate in the form of fine streams of flowable material (i.e., Polymers A and B) which are arranged so as to substantially assume the configuration collectively formed by the exit holes 105, 107, 109, and 111 in the second distribution plate 102. These streams are then directed into one or more backholes of a spinneret at pressures which are substantially equilibrated, despite the difference in the lengths of the different flow paths along distribution plate 93, as a result of the metering action of metering plate 112. Again, while only a single metering plate and two distribution plates have been shown, a greater number of each of these elements can be provided as desired to achieve a specific fiber construction. Furthermore, other intermediate plates (e.g., transition plates) can be provided as desired within the scope of the instant invention.

    [0049] Figure 12 illustrates an alternative embodiment of the invention, in which the distribution plate 122 and downstream metering plate 124 are integrally formed as a single unit 120. Like the embodiments discussed above, the distribution plate 122 includes a flow path 122a and an exit hole 122b through which a flowable material can be output to a metering plate 124. The metering plate 124 portion of the unit 120 includes a plurality of orifices 126 which are in fluid flow connection with the distribution plate 122 portion of the unit, and are adapted to moderate the pressure of a flowable material flowing therethrough.

    [0050] Fig. 13 illustrates an alternative metering plate 130 which can be used in the instant invention. The metering plate is shown as it would appear when it is positioned beneath a distribution plate 132 similar to that shown in Figs. 4 and 5. In this metering plate 130, however, the orifices 134a, 134b of the plate adapted to correspond to different flow paths 133a, 133b, 133c, and 133d in the distribution plate 132 are differently configured to thereby differently moderate the pressure of flowable material flowing through the respective corresponding flow paths in the distribution plate. In the illustrated embodiment, the orifices are differently sized, although it is noted that they could be differently shaped or otherwise differently configured to achieve the desired pressure moderation, within the scope of the instant invention.

    [0051] In the drawings and the specification, there have been set forth preferred embodiments of the invention, and although specific terms are employed, they are used in a generic and descriptive sense only and not for the purposes of limitation, the scope of the invention being defined in the claims.


    Claims

    1. An apparatus (10) for forming synthetic fibers (36) in a spinning direction comprising:

    a first distribution plate(14, 50, 60, 93) oriented substantially perpendicular to the spinning direction, said first distribution plate (14, 50, 60, 93) defining at least one flowpath (16) generally perpendicular to said spinning direction and comprising at least one exit hole (18, 54, 95) adapted to output a flowable material in a direction generally parallel to the spinning direction;

    a metering plate (22, 55, 72, 82) positioned downstream of the distribution plate (14, 50, 60, 93), said metering plate (22, 55, 72, 82) being oriented in a direction generally perpendicular to the spinning direction and including at least two orifices (24, 56, 83) positioned immediately downstream to each exit hole (18, 54, 95) of the distribution plate (14, 50, 60, 93), each orifice (24, 56, 83) extending generally parallel to said spinning direction downstream of the first distribution plate (14, 50, 60, 93) and forming a common flow path with the exit hole (18, 54, 95) of the first distribution plate (14, 50, 60, 93), wherein each of said metering plate orifices (24, 56, 83) has a combination of diameter and length sufficient to increase the pressure of a material flowing from said first distribution plate (14, 50, 60, 93) through said metering plate (22, 55, 72, 82) and to provide a flow of material to a single backhole (30, 77, 87) of a spinneret (32, 76, 80).


     
    2. An apparatus (10) according to claim 1, wherein said exit hole (18) of said distribution plate (14) forms part of the downstream surface of said first distribution plate (14), and wherein said metering plate orifices (24) have peripheral dimensions which are smaller than a peripheral dimension of said first distribution plate exit hole (18).
     
    3. An apparatus (10) according to claim 1, wherein said first distribution plate (14) defines at least two separate flowpaths generally perpendicular to the spinning direction, each of said flowpaths having at least one exit hole for outputting flowable material in the form of a stream, and wherein said metering plate (22) has at least two orifices (24) corresponding to each of said exit holes (18) in said distribution plate (14) such that material flowing from a first of at least two flow paths exits the metering plate (22) at a pressure which is substantially equal to that of the material from a second of the flow paths as it exits the metering plate(22).
     
    4. An apparatus (10) according to claim 3, wherein said metering plate (22) has a plurality of orifices (24) corresponding to each of said exit holes(18) in said distribution plate (14).
     
    5. An apparatus (10) according to claim 3, wherein flowable materials output from each of said at least two flow paths are ultimately fed by the metering plate (22) to either of a single backhole (30) of a spinneret (32) or an orifice transition plate(74) which in turn feeds a single backhole (30) of a spinneret (32).
     
    6. An apparatus (10) according to claim 2, wherein the peripheral dimensions of the metering plate orifices (24) are sufficiently smaller than the size of the distribution plate exit hole (18) to produce a defined pressure increase in the flowable material.
     
    7. An apparatus (10) according to claim 6, wherein the dimensions of the metering plate exit hole and the thickness (28) of the metering plate (22) are sufficiently dimensioned to create a pressure sufficient for the operation of the apparatus (10).
     
    8. An apparatus (10) according to claims 2, wherein said exit hole (18) in said first distribution plate (14) has a predetermined cross-sectional shape and said metering plate (22) has a plurality of relatively smaller orifices (24) which define common flow paths with said exit hole (18) such that material flowing through said apparatus (10) exits said metering plate (22) as a plurality of material streams which collectively substantially define the shape of said distribution plate exit hole (18).
     
    9. An apparatus (10) according to claim 1, wherein each of said at least two orifices (24) in said metering plate(22) defines walls extending substantially parallel to the spinning direction, and said walls are adapted to provide drag to the flowable material, thereby metering its flow therethrough.
     
    10. An apparatus (10) according to claim 1, further comprising a transition plate (74) positioned between a downstream end of said orifice (24) in said metering plate (22) and the backhole (30) of a spinneret (32), said transition plate (74) being adapted to enlarge the effective diameter of the spinneret backhole (30).
     
    11. An apparatus (10) according to claim 1, wherein the thickness of the metering plate (22) is sufficiently sized to produce a defined pressure increase in the flowable material.
     
    12. An apparatus (10) according to claim 1, wherein said apparatus (10) further comprises a second metering plate (34) upstream of said first distribution plate (14) for moderating the pressure of a flowable material supplied to said distribution plate (14).
     
    13. An apparatus (10) according to claim 1, wherein said generally perpendicular flowpath extends along the downstream surface of said first distribution plate (14).
     
    14. An apparatus (10) according to claim 1, wherein said generally perpendicular flowpath extends along the upstream surface of said distribution plate (14).
     
    15. An apparatus (10) according to claim 1, wherein said first distribution plate (14) and said metering plate (22) are integrally formed as a single unit.
     
    16. An apparatus (10) according to claim 1, wherein said first distribution plate (14) comprises a first plate section (51) having a channel (53) which extends through substantially its full thickness to define a flowpath and a second plate section (52) which includes an opening (54) which defines the exit hole in said distribution plate (14).
     
    17. An apparatus (10) according to claim 1, further comprising a second distribution plate (102) positioned between said first distribution plate (14) and said metering plate (22), said second distribution plate (102) having at least one generally perpendicular flowpath relative to the spinning direction in fluid flow connection with said first distribution plate (14) and said metering plate (22).
     
    18. An apparatus (10) according to claim 17, wherein said flowpath in said second distribution plate (102) extends along the downstream surface of said distribution plate.
     
    19. An apparatus (10) for forming synthetic fibers comprising:

    a distribution plate (14) for outputting a flowable material in a spinning direction;

    a metering plate (22) downstream of the distribution plate;

    a flow path (16) in said distribution plate for directing a flowable material in a direction substantially perpendicular to a spinning direction;

    an exit hole (18) forming part of a downstream surface of said distribution plate (14) for directing a flowable material in the form of a shaped flowable stream; and

    a plurality of orifices (24) in said metering plate(22), at least two of said plurality of orifices (24) collectively forming common flow paths with the distribution plate exit hole (18), said plurality of metering plate orifices (24) each being effectively smaller than said distribution plate exit hole (18) for increasing the pressure of a material flowing from said distribution plate exit hole (18) to said plurality of metering plate exit holes to thereby provide to a spinneret (32) a plurality of flowable material streams which collectively substantially maintain the shape of the shaped flowable stream exiting the distribution plate (14) at an enhanced pressure consistency.


     
    20. An apparatus according to claim 19, wherein the size of the orifices (24) of said metering plate (22) and the thickness (28) of the metering plate (22) are formed such that the pressure of any flowable material stream is advantageously equilibrated to the pressure of any other flowable material stream of said plurality of flowable material streams.
     
    21. An apparatus according to claim 20, wherein said distribution plate (14) has at least two flow paths each in fluid flow connection with at least one of at least two distribution plate exit holes (18), wherein the pressure increase through any orifice (24) of the plurality of orifices (24) in the metering plate (22) is larger than the difference in pressure drop between the flow paths, for producing a plurality of flowable material streams where the pressure of one stream of said plurality of flowable material streams is relatively equilibrated to the pressure of any other stream of said plurality.
     
    22. An apparatus according to claim 21, wherein the orifices (24) of the metering plate (22) corresponding to one of the at least two flowpaths in the distribution plate (14) are differently configured from those corresponding to another of the at least two flowpaths.
     
    23. An apparatus according to claim 19, wherein the distribution plate exit hole (18) is of a shape for producing and distributing a flowable material stream with a predetermined cross-sectional shape.
     
    24. An apparatus in accordance with claim 23, wherein said plurality of orifices (24) of the metering plate (22) receive a shaped flowable material stream and output to the spinneret (32) a plurality of flowable material streams, which collectively substantially maintain the predetermined shape.
     
    25. An apparatus in accordance with claim 23, wherein said plurality of orifices (24) of the metering plate (22) receive a shaped flowable material stream and output to the spinneret (32) a plurality of flowable material streams in which the pressure of one flowable material stream is approximately equilibrated to the pressure of any other flowable material stream.
     
    26. An apparatus according to claim 19, wherein said plurality of orifices (24) of said metering plate (22) divide a flowable material stream to produce a plurality of flowable material streams oriented in the spinning direction for output to one of either the backhole (30) of a spinneret (32) or a transition plate (74) which in turns feeds a spinneret backhole.
     
    27. An apparatus according to claim 19, wherein said apparatus further comprises a metering plate (34) upstream of said distribution plate for initially moderating the pressure of a material flowing to said distribution plate.
     
    28. A process for producing synthetic fibers in a spinneret, comprising:

    directing a flow of material in a direction perpendicular to that of the spinning direction by way of a distribution plate (14) and through an exit hole (18) thereof and thereafter through an adjacent metering plate (22) having a plurality of orifices (24) which are dimensioned relative to the exit hole of the distribution plate (14) so as to thereby increase and more consistently control the pressure of the flowable material, wherein at least two of said plurality of orifices (24) collectively form common flow paths with the distribution plate exit hole (18); and thereafter

    directing the increased pressure flowable material from each orifice (24) of the metering plate (22) to a corresponding backhole (30) of a spinneret (32).


     
    29. A process according to claim 28, wherein said step of directing a flow of material from a distribution plate (14) to a metering plate (22) comprises directing a flow of material to a metering plate (22) having a plurality of orifices (24) which are smaller than the exit hole (18) in the distribution plate (14) and producing a plurality of flowable material streams, to thereby moderate and more consistently control the pressure of the flowable material.
     
    30. A process according to claim 29, wherein said step of directing a flow of material through a metering plate (22) comprises adjusting the pressure of a plurality of flowable material streams to a desired pressure.
     
    31. A process according to claim 30, wherein said step of directing a flow of material through a metering plate (22) includes the step of approximately equilibrating the pressure between flowable material streams of the plurality.
     
    32. A process according to claim 28, wherein said step of directing a flow of material through a metering plate (22) comprises dispensing a predetermined cross-sectional shaped, flowable material stream to said plurality of orifices (24) in said metering plate (22).
     
    33. A process according to claim 32, wherein said step of directing a flow of material through a metering plate (22) comprises flowing a shaped, flowable material stream through said plurality of orifices (24) creating a plurality of flowable material streams which collectively substantially maintain the predetermined shape.
     
    34. A process according to claim 32, wherein said step of directing a flow of material through a metering plate (22) comprises flowing a flowable material through said plurality of orifices (24) to create a plurality of flowable material streams, wherein the pressure of one flowable material stream is approximately equilibrated to the pressure of any other flowable material stream.
     
    35. A process according to claim 28, wherein said step of directing a flow of material through a metering plate (22) comprises the step of creating a pressure on a flowable material sufficient for balanced-pressure feed to the spinneret (32).
     


    Ansprüche

    1. Vorrichtung (10) zur Herstellung von synthetischen Fasern (36) in einer Spinnrichtung, wobei die Vorrichtung aufweist:

    eine erste Verteilerplatte (14, 50, 60, 93), die im Wesentlichen senkrecht zur Spinnrichtung ausgerichtet ist, wobei die erste Verteilerplatte (14, 50, 60, 93) zumindest einen im Wesentlichen senkrecht zur Spinnrichtung angeordneten Strömungsweg (16) definiert, und zumindest ein Ausgangsloch (18, 54, 95) aufweist, das dazu eingerichtet ist, ein fließfähiges Material in einer zur Spinnrichtung im Wesentlichen parallelen Richtung auszubringen,

    eine Dosierplatte (22, 55, 72, 82), die stromabwärts der Verteilerplatte (14, 50, 60, 93) angeordnet ist, wobei die Dosierplatte (22, 55, 72, 82) in einer zur Spinnrichtung im Wesentlichen senkrechten Richtung angeordnet ist und zumindest zwei Öffnungen (24, 56, 83) aufweist, die unmittelbar stromabwärts jedes Ausgangslochs (18, 54, 95) der Verteilerplatte (14, 50, 60, 93) angeordnet sind, wobei sich jede Öffnung (24, 56, 83) stromabwärts der ersten Verteilerplatte (14, 50, 60, 93) im Wesentlichen parallel zur Spinnrichtung erstreckt und zusammen mit dem Ausgangsloch (18, 54, 95) der ersten Verteilerplatte (14, 50, 60, 93) einen gemeinsamen Strömungsweg bildet, und wobei jede der Öffnungen (24, 56, 83) der Dosierplatte eine solche Kombination von Durchmesser und Länge aufweist, welche ausreichend ist, um den Druck eines von der ersten Verteilerplatte (14, 50, 60, 93) durch die Dosierplatte (22, 55, 72, 82) fließenden Materials zu erhöhen, und um einen Materialstrom zu einer einzigen hinteren Öffnung (30, 77, 87) einer Spinndüse (32, 76, 80) bereitzustellen.


     
    2. Vorrichtung (10) nach Anspruch 1, wobei das Ausgangsloch (18) der Verteilerplatte (14) einen Teil der stromabwärts angeordneten Oberfläche der ersten Verteilerplatte (14) bildet, und wobei die Öffnungen (24) der Dosierplatte Umfangsmaße aufweisen, die kleiner sind als ein Umfangsmaß des Ausgangslochs (18) der ersten Verteilerplatte.
     
    3. Vorrichtung (10) nach Anspruch 1, wobei die erste Verteilerplatte (14) zumindest zwei separate, im Wesentlichen senkrecht zur Spinnrichtung angeordnete Strömungswege definiert, wobei jeder Strömungsweg zumindest ein Ausgangsloch zum Ausbringen von fließfähigem Material in Form eines Stroms aufweist, und wobei die Dosierplatte (22) zumindest zwei Öffnungen (24) aufweist, die mit jedem der Ausgangslöcher (18) in der Verteilerplatte (14) korrespondieren, so dass aus einem ersten von mindestens zwei Strömungswegen ausfließendes Material die Dosierplatte (22) mit einem Druck verlässt, der im Wesentlichen dem Druck des Materials aus einem zweiten der Strömungswege beim Verlassen der Dosierplatte (22) entspricht.
     
    4. Vorrichtung (10) nach Anspruch 3, wobei die Dosierplatte (22) eine Vielzahl von Öffnungen (24) aufweist, die mit jedem der Ausgangslöcher (18) in der Verteilerplatte (14) korrespondieren.
     
    5. Vorrichtung (10) nach Anspruch 3, wobei von jedem der zumindest zwei Strömungswege ausgebrachte fließfähige Materialien schließlich durch die Dosierplatte (22) einer einzigen hinteren Öffnung (30) einer Spinndüse (32) oder einer mit Öffnungen versehenen Übergangsplatte (74) zugeführt werden, welche wiederum eine einzige hintere Öffnung (30) einer Spinndüse (32) speist.
     
    6. Vorrichtung (10) nach Anspruch 2, wobei die Umfangsmaße der Öffnungen (24) der Dosierplatte ausreichend kleiner sind als das Maß des Ausgangslochs (18) in der Verteilerplatte, um einen definierten Druckanstieg in dem fließfähigen Material zu bewirken.
     
    7. Vorrichtung (10) nach Anspruch 6, wobei die Maße des Ausgangslochs in der Dosierplatte und die Dicke (28) der Dosierplatte (22) ausreichend dimensioniert sind, um einen zum Betrieb der Vorrichtung (10) ausreichenden Druck zu erzeugen.
     
    8. Vorrichtung (10) nach Anspruch 2, wobei das Ausgangsloch (18) in der ersten Verteilerplatte (14) eine bestimmte Querschnittsform aufweist und die Dosierplatte (22) eine Vielzahl vergleichsweise kleinerer Öffnungen (24) aufweist, welche zusammen mit dem Ausgangsloch (18) gemeinsame Strömungswege definieren, so dass durch die Vorrichtung (10) fließendes Material die Dosierplatte (22) als eine Vielzahl von Materialströmen verlässt, die insgesamt im Wesentlichen die Form des Ausgangslochs (18) der Verteilerplatte beschreiben.
     
    9. Vorrichtung (10) nach Anspruch 1, wobei jede der zumindest zwei Öffnungen (24) in der Dosierplatte (22) durch Wände begrenzt wird, die sich im Wesentlichen parallel zur Spinnrichtung erstrecken, und wobei die Wände dazu geeignet sind, dem fließfähigen Material einen Widerstand entgegenzusetzen und dadurch seinen Durchfluss zu dosieren.
     
    10. Vorrichtung (10) nach Anspruch 1, wobei die Vorrichtung ferner eine Übergangsplatte (74) aufweist, die zwischen einem stromabwärts gelegenen Ende der Öffnung (24) in der Dosierplatte (22) und der hinteren Öffnung (30) einer Spinndüse (32) angeordnet ist, wobei die Übergangsplatte (74) so eingerichtet ist, dass sie den effektiven Durchmesser der hinteren Öffnung (30) der Spinndüse vergrößert.
     
    11. Vorrichtung (10) nach Anspruch 1, wobei die Dicke der Dosierplatte (22) ausreichend groß ist, um in dem fließfähigen Material einen definierten Druckanstieg zu bewirken.
     
    12. Vorrichtung (10) nach Anspruch 1, wobei die Vorrichtung (10) stromaufwärts der ersten Verteilerplatte (14) zusätzlich eine zweite Dosierplatte (34) aufweist, um den Druck in einem der Verteilerplatte (14) zugeführten fließfähigen Material abzusenken.
     
    13. Vorrichtung (10) nach Anspruch 1, wobei sich der im Wesentlichen senkrechte Strömungsweg entlang der stromabwärts gerichteten Oberfläche der ersten Verteilerplatte (14) erstreckt.
     
    14. Vorrichtung (10) nach Anspruch 1, wobei sich der im Wesentlichen senkrechte Strömungsweg entlang der stromaufwärts gerichteten Oberfläche der Verteilerplatte (14) erstreckt.
     
    15. Vorrichtung (10) nach Anspruch 1, wobei die erste Verteilerplatte (14) und die Dosierplatte (22) als eine einzige, integrale Einheit ausgebildet sind.
     
    16. Vorrichtung (10) nach Anspruch 1, wobei die erste Verteilerplatte (14) einen ersten Plattenabschnitt (51) mit einem Kanal (53) aufweist, wobei sich der Kanal zur Bildung eines Strömungswegs im Wesentlichen durch die gesamte Dicke des ersten Plattenabschnitts (51) erstreckt, und einen zweiten Plattenabschnitt (52) aufweist, der eine Öffnung (54) umfasst, die das Ausgangsloch in der Verteilerplatte (14) definiert.
     
    17. Vorrichtung (10) nach Anspruch 1, wobei die Vorrichtung (10) ferner eine zweite Verteilerplatte (102) aufweist, die zwischen der ersten Verteilerplatte (14) und der Dosierplatte (22) angeordnet ist, wobei die zweite Verteilerplatte (102) zumindest einen relativ zur Spinnrichtung im Wesentlichen senkrechten Strömungsweg aufweist, der in Flüssigkeitsströmungsverbindung mit der ersten Verteilerplatte (14) und der Dosierplatte (22) steht.
     
    18. Vorrichtung (10) nach Anspruch 17, wobei sich der Strömungsweg in der zweiten Verteilerplatte (102) entlang der stromabwärts gerichteten Oberfläche der Verteilerplatte erstreckt.
     
    19. Vorrichtung (10) zur Herstellung von synthetischen Fasern, wobei die Vorrichtung aufweist:

    eine Verteilerplatte (14) zum Ausbringen eines fließfähigen Materials in einer Spinnrichtung,

    eine Dosierplatte (22), die stromabwärts der Verteilerplatte angeordnet ist,

    einen Strömungsweg (16) in der Verteilerplatte, um ein fließfähiges Material in eine Richtung zu leiten, die im Wesentlichen senkrecht zu einer Spinnrichtung orientiert ist,

    ein Ausgangsloch (18), das einen Teil der stromabwärts gerichteten Oberfläche der Verteilerplatte (14) bildet, um ein fließfähiges Material als einen geformten, fließfähigen Stroms zu leiten, und

    eine Vielzahl von Öffnungen (24) in der Dosierplatte (22), wobei zumindest zwei der Vielzahl von Öffnungen (24) zusammen mit dem Ausgangsloch (18) der Verteilerplatte gemeinsame Strömungswege bilden, wobei jede einzelne der Vielzahl von Öffnungen (24) in der Dosierplatte effektiv kleiner ist als das Ausgangsloch (18) der Verteilerplatte, um den Druck eines Materials zu erhöhen, das vom Ausgangsloch (18) der Verteilerplatte zu der Vielzahl von Ausgangslöchern in der Dosierplatte fließt, um dadurch einer Spinndüse (32) eine Vielzahl von fließfähigen Materialströmen zuzuführen, die gemeinsam im Wesentlichen die Form des die Verteilerplatte (14) verlassenden, geformten fließfähigen Stroms bei einer verbesserten Druckkonsistenz beibehalten.


     
    20. Vorrichtung (10) nach Anspruch 19, wobei die Größe der Öffnungen (24) in der Dosierplatte (22) und die Dicke (28) der Dosierplatte (22) so ausgestaltet sind, dass der Druck eines beliebigen fließfähigen Materialstroms in vorteilhafter Weise dem Druck eines beliebigen anderen fließfähigen Materialstroms aus der Vielzahl von fließfähigen Materialströmen angeglichen wird.
     
    21. Vorrichtung nach Anspruch 20, wobei die Verteilerplatte (14) zumindest zwei Strömungswege aufweist, von denen jeder in Flüssigkeitsströmungsverbindung mit mindestens einem der zumindest zwei Ausgangslöcher (18) in der Verteilerplatte steht, wobei die Druckerhöhung beim Durchströmen einer beliebigen Öffnung (24) der Vielzahl von Öffnungen (24) in der Dosierplatte (22) größer ist als der Unterschied im Druckabfall zwischen den Strömungswegen, um eine Vielzahl von fließfähigen Materialströmen zu erzeugen, wobei der Druck eines Stroms der Vielzahl von fließfähigen Materialströmen im Verhältnis an den Druck eines beliebigen anderen Stroms aus der Vielzahl der Ströme angepasst wird.
     
    22. Vorrichtung nach Anspruch 21, wobei die Öffnungen (24) der Dosierplatte (22), die mit einem der zumindest zwei Strömungswege in der Verteilerplatte (14) korrespondieren, unterschiedlich konfiguriert sind als jene Öffnungen (24), die mit einem anderen der zumindest zwei Strömungswege korrespondieren.
     
    23. Vorrichtung nach Anspruch 19, wobei das Ausgangsloch (18) der Verteilerplatte eine geeignete Form aufweist, um einen fließfähigen Materialstrom mit einer vorgegebenen Querschnittsform zu erzeugen und auszugeben.
     
    24. Vorrichtung nach Anspruch 23, wobei die Vielzahl von Öffnungen (24) der Dosierplatte (22) einen geformten, fließfähigen Materialstrom erhalten und an die Spinndüse (32) eine Vielzahl von fließfähigen Materialströmen abgeben, die gemeinsam die vorgegebene Form im Wesentlichen beibehalten.
     
    25. Vorrichtung nach Anspruch 23, wobei die Vielzahl, von Öffnungen (24) der Dosierplatte (22) einen geformten, fließfähigen Materialstrom erhalten und an die Spinndüse (32) eine Vielzahl von fließfähigen Materialströmen abgeben, wobei der Druck eines fließfähigen Materialstroms annähernd an den Druck eines beliebigen anderen fließfähigen Materialstroms angepasst wird.
     
    26. Vorrichtung nach Anspruch 19, wobei die Vielzahl von Öffnungen (24) der Dosierplatte (22) einen fließfähigen Materialstrom aufteilen, um eine Vielzahl von in Spinnrichtung orientierter, fließfähiger Materialströme zu erzeugen, um diese entweder an die hintere Öffnung (30) einer Spinndüse (32) oder an eine Übergangsplatte (74) auszugeben, welche wiederum die hintere Öffnung einer Spinndüse speist.
     
    27. Vorrichtung nach Anspruch 19, wobei die Vorrichtung ferner eine stromaufwärts der Verteilerplatte angeordnete Dosierplatte (34) aufweist, um zunächst den Druck eines Materials abzusenken, das der Verteilerplatte zufließt.
     
    28. Verfahren zur Herstellung von synthetischen Fasern in einer Spinndüse, wobei das Verfahren aufweist:

    Leiten eines Materialstroms in einer zur Spinnrichtung senkrechten Richtung mittels einer Verteilerplatte (14), Leiten des Materialstroms durch ein Ausgangsloch (18) der Verteilerplatte (14) und danach durch eine angrenzende Dosierplatte (22), die eine Vielzahl von Öffnungen (24) aufweist, wobei die Öffnungen (24) relativ zu dem Ausgangsloch der Verteilerplatte (14) so dimensioniert sind, dass der Druck des fließfähigen Materials erhöht und gleichmäßiger geregelt wird, wobei zumindest zwei der Vielzahl von Öffnungen (24) zusammen gemeinsame Strömungswege mit dem Ausgangsloch (18) der Verteilerplatte (14) bilden, und danach

    Leiten des unter einem erhöhten Druck stehenden fließfähigen Materials von jeder Öffnung (24) der Dosierplatte (22) zu einer korrespondierenden hinteren Öffnung (30) einer Spinndüse (32).


     
    29. Verfahren nach Anspruch 28, wobei der Schritt des Leitens eines Materialstroms von einer Verteilerplatte (14) zu einer Dosierplatte (22) das Leiten eines Materialstroms zu einer Dosierplatte (22) aufweist, wobei die Dosierplatte (22) eine Vielzahl von Öffnungen (24) aufweist, welche kleiner sind als das Ausgangsloch (18) in der Verteilerplatte (14), und der Schritt das Erzeugen einer Vielzahl von fließfähigen Materialströmen aufweist, um dadurch den Druck des fließfähigen Materials abzusenken und gleichmäßiger zu regeln.
     
    30. Verfahren nach Anspruch 29, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) das Einstellen des Druckes einer Vielzahl von fließfähigen Materialströmen auf einen gewünschten Druckwert aufweist.
     
    31. Verfahren nach Anspruch 30, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) den Schritt des annähernden Ausgleichens des Druckes zwischen fließfähigen Materialströmen aus der Vielzahl der Materialströme aufweist.
     
    32. Verfahren nach Anspruch 28, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) das Abgeben eines fließfähigen Materialstroms mit einer vorgegebener Querschnittsform an die Vielzahl von Öffnungen (24) in der Dosierplatte (22) aufweist.
     
    33. Verfahren nach Anspruch 32, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) das Strömen eines geformten, fließfähigen Materialstroms durch die Vielzahl von Öffnungen (24) aufweist, wobei eine Vielzahl von fließfähigen Materialströmen erzeugt wird, welche gemeinsam die vorgegebene Form im Wesentlichen beibehalten.
     
    34. Verfahren nach Anspruch 32, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) das Strömen eines fließfähigen Materials durch die Vielzahl von Öffnungen (24) aufweist, um eine Vielzahl von fließfähigen Materialströmen zu erzeugen, wobei der Druck eines fließfähigen Materialstroms annähernd an den Druck eines beliebigen anderen fließfähigen Materialstroms angeglichen wird.
     
    35. Verfahren nach Anspruch 28, wobei der Schritt des Leitens eines Materialstroms durch eine Dosierplatte (22) den Schritt des Erzeugens eines ausreichend großen Druckes in einem fließfähigen Material aufweist, um das Speisen der Spinndüse (32) bei einem gleichmäßigen Druck zu realisieren.
     


    Revendications

    1. Un appareil (10) pour former des fibres synthétiques (36) dans une direction de filage comprenant :

    une première plaque de distribution (14, 50, 60, 93) orientée substantiellement perpendiculaire à la direction de filage, ladite première plaque de distribution (14, 50, 60, 93) définissant au moins une voie d'écoulement (16) généralement perpendiculaire à ladite direction de filage et comprenant au moins un trou de sortie (18, 54, 95) adapté pour faire sortir un matériau capable de fluer dans une direction généralement parallèle à la direction de filage;

    une plaque de calibrage (22, 55, 72, 82) positionnée en aval de la plaque de distribution (14, 50, 60, 93), ladite plaque de calibrage (22, 55, 72, 82) étant orientée dans une direction généralement perpendiculaire à la direction de filage et incluant au moins deux orifices (24, 56, 83) positionnés immédiatement en aval de chaque trou de sortie (18, 54, 95) de la plaque de distribution (14, 50, 60, 93), chaque orifice (24, 56, 83) s'étendant généralement parallèlement à ladite direction de filage en aval de la première plaque de distribution (14, 50, 60, 93) et formant un chemin d'écoulement commun avec le trou de sortie (18, 54, 95) de la première plaque de distribution (14, 50, 60, 93), dans laquelle chacun desdits orifices (24, 56, 83) de la plaque de calibrage a une combinaison d'un diamètre et d'une longueur suffisante pour augmenter la pression d'un matériau s'écoulant depuis ladite première plaque de distribution (14, 50, 60, 93) à travers ladite plaque de calibrage (22, 55, 72, 82) et pour fournir un écoulement de matériau à un trou arrière unique (30, 77, 87) d'une filière (32, 76, 80).


     
    2. Un appareil (10) conforme à la revendication 1,
    dans lequel ledit trou de sortie (18) de ladite plaque de distribution (14) forme une partie de la surface aval de ladite première plaque de distribution (14) et
    dans lequel lesdits orifices (24) de la plaque de calibrage ont des dimensions périphériques qui sont plus petites qu'une dimension périphérique dudit trou de sortie (18) de la première plaque de distribution.
     
    3. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) définit au moins deux voies d'écoulement séparées généralement perpendiculaires à la direction de filage, chacune desdites voies d'écoulement ayant au moins un trou de sortie pour faire sortir le matériau capable de fluer sous la forme d'un jet et dans lequel ladite plaque de calibrage (22) a au moins deux orifices correspondant à chacun desdits trous de sortie (18) dans ladite plaque de distribution (14) de telle manière que le matériau s'écoulant depuis un premier d'au moins deux chemins d'écoulement quitte la plaque de calibrage (22) à une pression qui est substantiellement égale à celle du matériau d'un second des chemins d'écoulement lorsqu'il quitte la plaque de calibrage (22).
     
    4. Un appareil (10) conforme à la revendication 3,
    dans lequel ladite plaque de calibrage (22) a une pluralité d'orifices (24) correspondant à chacun desdits trous de sortie (18) dans ladite plaque de distribution (14).
     
    5. Un appareil (10) conforme à la revendication 3,
    dans lequel la sortie des matériaux capables de fluer depuis chacun desdits au moins deux chemins d'écoulement est finalement envoyée par la plaque de calibrage (22) à l'un quelconque trou arrière unique (30) d'une filière (32) ou à un orifice d'une plaque de transition (74) qui alimente à son tour un trou arrière unique (30) d'une filière (32).
     
    6. Un appareil (10) conforme à la revendication 2,
    dans lequel les dimensions périphériques des orifices (24) de la plaque de calibrage sont suffisamment plus petites que la dimension du trou de sortie (18) de la plaque de distribution pour produire une augmentation de pression définie dans le matériau capable de fluer.
     
    7. Un appareil (10) conforme à la revendication 6,
    dans lequel les dimensions du trou de sortie de la plaque de calibrage et l'épaisseur (28) de la plaque de calibrage (22) sont dimensionnées de manière suffisante pour créer une pression suffisante pour le fonctionnement de l'appareil (10).
     
    8. Un appareil (10) conforme à la revendication 2,
    dans lequel ledit trou de sortie (18) dans ladite première plaque de distribution (14) a une forme en coupe transversale prédéterminée et ladite plaque de calibrage (22) a une pluralité d'orifices (24) relativement plus petits qui définissent des chemins d'écoulement communs avec ledit trou de sortie (18) de telle manière que du matériau s'écoulant à travers ledit appareil (10) quitte ladite plaque de calibrage (22) sous forme d'une pluralité de jets de matériau qui définissent collectivement substantiellement la forme dudit trou de sortie (18) de la plaque de distribution.
     
    9. Un appareil (10) conforme à la revendication 1,
    dans lequel chacun desdits au moins deux orifices (24) dans ladite plaque de calibrage (22) définit des parois s'étendant substantiellement parallèlement à la direction de filage et lesdites parois sont adaptées pour fournir une rétropulsion au matériau capable de fluer, calibrant de ce fait son écoulement à travers eux.
     
    10. Un appareil (10) conforme à la revendication 1,
    comprenant en outre une plaque de transition (74) positionnée entre une extrémité aval dudit orifice (24) dans ladite plaque de calibrage (22) et le trou arrière (30) d'une filière (32), ladite plaque de transition (74) étant adaptée pour augmenter le diamètre efficace du trou arrière (30) de la filière.
     
    11. Un appareil (10) conforme à la revendication 1,
    dans lequel l'épaisseur de la plaque de calibrage (22) est dimensionnée de manière suffisante pour produire une augmentation de pression définie dans le matériau capable de fluer.
     
    12. Un appareil (10) conforme à la revendication 1,
    dans lequel ledit appareil (10) comprend en outre une seconde plaque de calibrage (34) en amont de ladite première plaque de distribution (14) pour modérer la pression d'un matériau capable de fluer amené à ladite plaque de distribution (14).
     
    13. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite voie d'écoulement généralement perpendiculaire s'étend le long de la surface aval de ladite première plaque de distribution (14).
     
    14. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite voie d'écoulement généralement perpendiculaire s'étend le long de la surface amont de ladite plaque de distribution (14).
     
    15. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) et ladite plaque de calibrage (22) sont formées d'une seule pièce sous forme d'une unité unique.
     
    16. Un appareil (10) conforme à la revendication 1,
    dans lequel ladite première plaque de distribution (14) comprend une première section de plaque (51) ayant un canal (53) qui s'étend à travers substantiellement son épaisseur totale pour définir une voie d'écoulement et une seconde section de plaque (52) qui inclut une ouverture (54) qui définit le trou de sortie dans ladite plaque de distribution (14).
     
    17. Un appareil (10) conforme à la revendication 1,
    comprenant en outre une seconde plaque de distribution (102) positionnée entre ladite première plaque de distribution (14) et ladite plaque de calibrage (22), ladite seconde plaque de distribution (102) ayant au moins une voie d'écoulement généralement perpendiculaire relativement à la direction de filage en relation d'écoulement de fluide avec ladite première plaque de distribution (14) et ladite plaque de calibrage (22).
     
    18. Un appareil (10) conforme à la revendication 17,
    dans lequel ladite voie d'écoulement dans ladite seconde plaque de distribution (102) s'étend le long de la surface aval de ladite plaque de distribution.
     
    19. Un appareil (10) pour former des fibres synthétiques comprenant :

    une plaque de distribution (14) pour faire sortir un matériau capable de fluer dans une direction de filage ;

    une plaque de calibrage (22) en aval de la plaque de distribution;

    une voie d'écoulement (16) dans ladite plaque de distribution pour diriger un matériau capable de fluer dans une direction substantiellement perpendiculaire à une direction de filage ;

    un trou de sortie (18) formant une partie d'une surface aval de ladite plaque de distribution (14) pour diriger un matériau capable de fluer sous la forme d'un jet conformé capable de fluer ; et

    une pluralité d'orifices (24) dans ladite plaque de calibrage (22), au moins deux de ladite pluralité d'orifices (24) formant collectivement des chemins d'écoulement communs avec le trou de sortie (18) de la plaque de distribution, ladite pluralité d'orifices (24) de la plaque de calibrage étant chacun efficacement plus petit que ledit trou de sortie (18) de la plaque de distribution pour augmenter la pression d'un matériau s'écoulant depuis ledit trou de sortie (18) de la plaque de distribution à ladite pluralité de trous de sortie de la plaque de calibrage pour de ce fait fournir à une filière (32) une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme du jet conformé capable de fluer quittant la plaque de distribution (14) à une consistance de pression augmentée.


     
    20. Un appareil conforme à la revendication 19,
    dans lequel la dimension des orifices (24) de ladite plaque de calibrage (22) et l'épaisseur (28) de la plaque de calibrage (22) sont formées de telle manière que la pression d'un quelconque jet de matériau capable de fluer est avantageusement équilibrée à la pression d'un quelconque autre jet de matériau capable de fluer de ladite pluralité de jets de matériau capable de fluer.
     
    21. Un appareil conforme à la revendication 20,
    dans lequel ladite plaque de distribution (14) a au moins deux chemins d'écoulement chacun en liaison d'écoulement de fluide avec au moins un d'au moins deux trous de sortie (18) de la plaque de distribution, dans lequel l'augmentation de pression à travers un orifice quelconque (24) de la pluralité d'orifices (24) dans la plaque de calibrage (22) est plus grande que la différence de chute de pression entre les chemins d'écoulement, pour produire une pluralité de jets de matériau capable de fluer où la pression d'un jet de ladite pluralité de jets de matériau capable de fluer est relativement équilibrée à la pression d'un quelconque autre jet de ladite pluralité.
     
    22. Un appareil conforme à la revendication 21,
    dans lequel les orifices (24) de la plaque de calibrage (22) correspondant à l'une des au moins deux voies d'écoulement dans la plaque de distribution (14) sont configurés différemment de ceux correspondant à une autre des au moins deux voies d'écoulement.
     
    23. Un appareil conforme à la revendication 19,
    dans lequel le trou de sortie (18) de la plaque de distribution a une forme pour produire et distribuer un jet de matériau capable de fluer avec une forme prédéterminée en section transversale.
     
    24. Un appareil conforme à la revendication 23,
    dans lequel ladite pluralité d'orifices (24) de la plaque de calibrage (22) reçoivent un jet conformé de matériau capable de fluer et sortent vers la filière (32) une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme prédéterminée.
     
    25. Un appareil conforme à la revendication 23,
    dans lequel ladite pluralité d'orifices (24) de la plaque de calibrage (22) reçoivent un jet conformé de matériau capable de fluer et sortent vers la filière (32) une pluralité de jets de matériau capable de fluer dans lesquels la pression d'un jet de matériau capable de fluer est approximativement équilibrée à la pression d'un quelconque autre jet de matériau capable de fluer.
     
    26. Un appareil conforme à la revendication 19,
    dans lequel ladite pluralité d'orifices (24) de ladite plaque de calibrage (22) divisent un jet de matériau capable de fluer pour produire une pluralité de jets de matériau capable de fluer orientés dans la direction de filage pour sortir à l'un quelconque trou arrière (30) d'une filière (32) ou à une plaque de transition (74) qui à son tour alimente un trou arrière de filière.
     
    27. Un appareil conforme à la revendication 19,
    dans lequel le dit appareil comprend en outre une plaque de calibrage (34) en amont de ladite plaque de distribution pour modérer initialement la pression d'un matériau s'écoulant vers ladite plaque de distribution.
     
    28. Un procédé pour produire des fibres synthétiques dans une filière, comprenant :

    l'envoi dirigé d'un écoulement de matériau dans une direction perpendiculaire à celle de la direction de filage au moyen d'une plaque de distribution (14) et à travers un trou de sortie (18) de celle-ci et ensuite à travers une plaque de calibrage (22) adjacente ayant une pluralité d'orifices (24) qui sont dimensionnés relativement au trou de sortie de la plaque de distribution (14) de manière à augmenter et contrôler de manière plus consistante de ce fait la pression du matériau capable de fluer, dans lequel au moins deux de ladite pluralité d'orifices (24) forment collectivement des chemins d'écoulement communs avec le trou de sortie (18) de la plaque de distribution ; et ensuite

    l'envoi dirigé du matériau capable de fluer à pression augmentée depuis chaque orifice (24) de la plaque de calibrage (22) vers le trou arrière (30) correspondant d'une filière (32).


     
    29. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau depuis une plaque de distribution (14) à une plaque de calibrage (22) comprend l'envoi dirigé d'un écoulement de matériau à une plaque de calibrage (22) ayant une pluralité d'orifices (24) qui sont plus petits que le trou de sortie (18) dans la plaque de distribution (14) et la production d'une pluralité de jets de matériau capable de fluer pour de ce fait modérer et contrôler de manière plus consistante la pression du matériau capable de fluer.
     
    30. Un procédé conforme à la revendication 29,
    dans lequel ladite étape d'envoi dirigé d'un écoulement d'un matériau à travers une plaque de calibrage (22) comprend l'ajustement de la pression d'une pluralité de jets de matériau capable de fluer à une pression désirée.
     
    31. Un procédé conforme à la revendication 30,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'étape d'équilibrer approximativement la pression entre des jets de matériau capable de fluer de la pluralité.
     
    32. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'envoi d'un jet de matériau capable de fluer, conformé en section transversale de manière prédéterminée, à ladite pluralité d'orifices (24) dans ladite plaque de calibrage (22).
     
    33. Un procédé conforme à la revendication 32,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'écoulement d'un jet de matériau capable de fluer conformé à travers ladite pluralité d'orifices (24) créant une pluralité de jets de matériau capable de fluer qui maintiennent collectivement substantiellement la forme prédéterminée.
     
    34. Un procédé conforme à la revendication 32,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend d'écoulement d'un matériau capable de fluer à travers ladite pluralité d'orifices (24) pour créer une pluralité de jets de matériau capable de fluer, dans lequel la pression d'un jet de matériau capable de fluer est approximativement équilibrée avec la pression de tout autre quelconque jet de matériau capable de fluer.
     
    35. Un procédé conforme à la revendication 28,
    dans lequel ladite étape d'envoi dirigé d'un écoulement de matériau à travers une plaque de calibrage (22) comprend l'étape de création d'une pression sur un matériau capable de fluer suffisante pour alimenter la filière (32) à pression équilibrée.
     




    Drawing