(19)
(11) EP 1 719 947 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
08.11.2006  Patentblatt  2006/45

(21) Anmeldenummer: 05009937.3

(22) Anmeldetag:  06.05.2005
(51) Internationale Patentklassifikation (IPC): 
F23N 5/24(2006.01)
F23N 5/12(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR LV MK YU

(71) Anmelder: Siemens Building Technologies HVAC Products GmbH
76437 Rastatt (DE)

(72) Erfinder:
  • Obrecht, Klaus
    76534 Baden-Baden (DE)

(74) Vertreter: Weise, Wolfgang 
Postfach 22 16 34
80506 München
80506 München (DE)

   


(54) Verfahren und Vorrichtung zur Flammenüberwachung


(57) Bei dem erfindungsgemässen Verfahren wird ein während einer Ladephase mit einer Spannungsquelle verbundener Kondensator auf einen Spannungswert aufgeladen und während einer Entladungsphase wird der Kondensator über ein mit dem Flammensensor verbundenes Kopplungsglied entladen. Die Zeitdauer für das Aufladen beziehungsweise Entladen des Kondensators wird dabei in Abhängigkeit von der Charakteristik insbesondere der Impedanz des Flammensensors gewählt. Zur Flammenüberwachung wird das Laden und Entladen des Kondensators zyklisch wiederholt, wobei dass dadurch erhaltene Spannungssignal mit Hilfe eines Schwellenwertes einkanalig ausgewertet wird.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Flammenüberwachung gemäss dem Oberbegriff der Ansprüche 1 und 6.

[0002] Ein Verfahren und eine Vorrichtung der eingangs genannten Art ist beispielsweise aus der EP 617 234 A1 bekannt. Diese Druckschrift offenbart einen Ionisationsflammenwächter mit einem Kondensator, der mit einer Referenzspannungsquelle und über ein Koppelglied mit dem Sekundärkreis eines Zündübertragers verbunden ist. Solange zwischen der Zündelektrode und der Masseleitung keine Flamme vorhanden ist, wird der Kondensator über einen Widerstand auf eine Betriebsspannung aufgeladen. Sobald infolge der Flammenbildung ein Ionisationsstrom fliesst, wird der Kondensator entladen. Der Kondensator ist mit einer Überwachungsschaltung verbunden, welche bei Unterschreiten eines vorbestimmten Schwellenwertes ein Ausgangssignal erzeugt, welches das Vorhandensein einer Flamme anzeigt.

[0003] Die EP 1 256 763 A2 offenbart ein Flammenüberwachungsverfahren, bei dem die von der Flamme erzeugte Strahlung von einem Photowiderstand erfasst und das Sensorsignal zweikanalig ausgewertet wird. Der erste Kanal dient zur Erfassung der mittleren Helligkeit und der zweite Kanal dient zur Erfassung von Wechselanteilen, die vom Flackern der Flamme herrühren. Die Flamme wird nur dann als ordnungsgemäss brennend anerkannt, wenn an beiden Kanalausgängen das Signal jeweils in einem vorgegebenen Bereich liegt.

[0004] Der Erfindung liegt die Aufgabe zugrunde ein Verfahren beziehungsweise eine Vorrichtung zur Flammenüberwachung vorzuschlagen, das vielseitig einsetzbar ist und eine einfache Signalauswertung ermöglicht.

[0005] Diese Aufgabe wird durch die in den Ansprüchen 1 und 6 angegebenen Merkmale gelöst.

[0006] Bei dem erfindungsgemässen Verfahren wird ein während einer Ladephase mit einer Spannungsquelle verbundener Kondensator auf einen Spannungswert aufgeladen und während einer Entladungsphase wird der Kondensator über ein mit dem Flammensensor verbundenes Kopplungsglied entladen. Die Zeitdauer für die Lade- und Entladungsphase des Kondensators wird dabei in Abhängigkeit von der Charakteristik insbesondere der Impedanz des Flammensensors gewählt. Das Laden beziehungsweise Entladen des Kondensators wird zyklisch wiederholt und das dadurch erhaltene Spannungssignal wird zur Flammenüberwachung einkanalig ausgewertet.
Zur Signalauswertung wird vorzugsweise ein für verschiedene Sensorimpedanzen einheitlicher Schwellenwert verwendet.

[0007] Durch die Erfindung können verschiedene Flammen, z. B. Pilotflamme oder Flamme bei Maximallast eines Öl-, Gas-, oder Feststoffbrenners überwacht werden, wobei eine Vielzahl unterschiedlicher Flammensensoren, z. B. Photowiderstand, Ionisationsstromelektrode, UV-Röhren, etc. zur Flammenüberwachung eingesetzt werden können.

[0008] Die Erfindung benötigt keine aktive Signalverstärkung zur Auswertung. Dadurch kann die Überwachungsschaltung mit einer geringen Anzahl von Bauelementen aufgebaut werden. Beispielsweise übernimmt der zur Flammenüberwachung vorgesehene Kondensator auch die Funktion einer Signalfilterung mit Tiefpasscharakter.

[0009] Das erfindungsgemässe Verfahren kann im Dauerbetrieb oder im intermittierenden Betrieb eines Brenners zum Einsatz kommen, wobei bei der Signalauswertung unterschiedliche Fehlerszenarien berücksichtigt werden können. Beispielsweise kann die Impedanz des Flammensensors im Fehlerfall oder bei Bestrahlung mit Tageslicht einen statischen Wert annehmen. Dies kann am Ende der Ladephase durch Auswertung des am Kondensator erhaltenen Spannungssignals erkannt werden. Auch können Bauteilfehler der Schaltung oder des Sensors beispielsweise ein Kurzschluss des Flammensensors oder ein Leitungsunterbruch zum Flammensensor festgestellt werden.

[0010] Durch das erfindungsgemässe Verfahren kann auch Fremdlicht erkannt werden. Wird der Flammensensor mit einer Leuchtstofflampe oder Glühbirne bestrahlt, so ändert sich dadurch die Impedanz des Flammensensors im Rhythmus der Netzfrequenz oder deren Vielfache. Die durch die Fremdlichtquelle bedingten netzharmonischen Änderungen der Sensorimpedanz führen bei einer netzsynchronen Auswertung des Spannungssignals zu keiner Signaldynamik. Für eine Erkennung von Fremdlicht im Dauerbetrieb, kann auch der Flackeranteil der Flamme, der z. B. im Frequenzbereich von 8-30 Hertz liegt, überwacht und ausgewertet werden.

[0011] Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung der Erfindung anhand der Ausführungsbeispiele und den Figuren. Es zeigen:
Fig.1
ein prinzipielles Blockschaltbild einer Überwachungsschaltung
Fig. 2
Spannungssignalverlauf in Abhängigkeit von der Sensorimpedanz
Fig.3
eine Weiterbildung der in Fig. 1 dargestellten Schaltung zur Erkennung von Fremdlicht
Fig.4
Spannungssignalverlauf mit Fremdlichtsignal
Fig.5
bis 8 jeweils eine weitere Ausführungsform der erfindungsgemässen Überwachungsschaltung


[0012] Fig. 1 zeigt den prinzipiellen Aufbau der erfindungsgemässen Schaltung zur Flammenüberwachung, die mit geringer Modifikation an unterschiedliche Flammensensoren zur Erfassung der Flammenbildung und Flammenexistenz von Öl-, Gas und Feststoffbrennern angepasst werden kann.

[0013] Der Flammensensor ist z. B. ein Photowiderstand 1, der eine Strahlungsempfindlichkeit in dem zu überwachenden Spektralbereich aufweist. Die Strahlungsempfindlichkeit äußert sich durch unterschiedliche Impedanzwerte bei Bestrahlung des Flammensensors, wobei eine Zunahme der Intensität der Flammenstrahlung eine Abnahme des Impedanzwertes des Photowiderstandes zur Folge hat.

[0014] Der Photowiderstand 1 ist über ein Kopplungsglied 19 mit einem zur Auswertung vorgesehenen Kondensator 18 verbunden. Der Kondensator 18 ist über einen Schalter 12 mit einer Referenzspannungsquelle 13 verbunden, welche einen Innenwiderstand 11 aufweist.

[0015] Zur Aufladung ist der Kondensator 18 über den Innenwiderstand 11 mittels des Schalters 12 mit der Referenzspannungsquelle 13 verbunden. Dadurch wird der Kondensator 18 auf einen Spannungswert aufgeladen, der abhängig von dem Innenwiderstand 11 der Referenzspannung 13, der Impedanz des Kopplungsgliedes 19 und des Photowiderstandes 1 ist. Nach einer definierten Ladezeit wird ein von der Impedanz des Flammensensors 1 abhängiger Messwert durch einen A/D-Wandler 20 erhalten. Der A/D-Wandler 20 kann über einen Schalter 17 und einen Widerstand 16 mit dem Kondensator 18 verbunden. Der A/D- Wandler 20 kann jedoch auch direkt mit dem Kondensator 18 verbunden werden. Die Schalter 12 und 17 können z. B. Feldeffekttransistoren sein.

[0016] In der Entladungsphase ist die Verbindung zur Referenzspannungsquelle 13 mittels des Schalters 12 unterbrochen und der Kondensator 18 wird über die Kopplungsimpedanz 19 durch den Photowiderstand 1 entladen. Nach einer definierten Entladungszeit liefert der A/D-Wandler 20 einen von der Impedanz des Flammensensors 1 abhängigen durch den Kondensator 18 gefilterten Messwert. Die Steuerung der Lade- und/oder Entladungsphase erfolgt durch eine Steuereinheit 21, welche z. B. als Mikroprozessor oder Logikbaustein mit Komparator ausgeführt ist.

[0017] Figur 2 zeigt den Signalverlauf für die am Kondensator erhaltene Spannung Uc in Abhängigkeit von der Impedanz des Flammensensors und der Zeit. Die Zunahme der Impedanz ist durch einen Pfeil 33 dargestellt. Mit zunehmender Impedanz nimmt die am Ende der Ladungsphase 31 beziehungsweise Entladungsphase 32 am Kondensator erhaltene Spannung Uc einen höheren Wert an. Durch eine zyklische Wiederholung von Ladebeziehungsweise Entladungsphase wird ein für die jeweilige Sensorimpedanz charakteristisches Spannungssignal 30 erhalten, welches zur Flammenüberwachung ausgewertet wird. Zur Auswertung des von der Sensorimpedanz abhängigen Spannungssignals 30 wird vorzugsweise ein einheitlicher Schwellenwert 34 verwendet. Die Definition des Schwellenwertes 34 und der Zeitdauer für Ladebeziehungsweise Entladungsphase kann durch eine Steuereinheit erfolgen. Die Zeitdauer für die Lade- beziehungsweise Entladungsphase wird dabei in Abhängigkeit von der jeweiligen Impedanz beziehungsweise Charakteristik des Flammensensors gewählt. Durch eine Auswertung des Spannungssignals 30 am Ende der Ladephase 31 und/oder am Ende der Entladungsphase 32, können z. B. Bauteilfehler der Überwachungsschaltung oder Fehler des Flammensensors erkannt werden.

[0018] Figur 3 zeigt eine Weiterbildung der in Figur 1 gezeigten Überwachungsschaltung, welche zusätzlich einen Spannungsteiler 27 aufweist, der zur Rückführung der Netzphase an die Steuereinheit 21 dient. Die Spannung am Kondensator 18 wird dadurch synchron zur Netzfrequenz erfasst. Die Ladephase wird hierbei vorzugsweise so lang gewählt, dass nach Aufladung des Kondensators 18 der Schalter 12 noch für mindestens eine Netzperiode geschlossen bleibt. In dieser Zeit wird durch Überwachung der Netzphase und durch Schließen des Schalters 17 die am Kondensator 18 erhaltene Spannung durch den A/D-Wandler 20 zyklisch und synchron zur Netzfrequenz erfasst. Wird der Flammensensor beispielsweise durch eine Leuchtstofflampe bestrahlt, so ändert sich dadurch die Sensorimpedanz im Rhythmus der Netzfrequenz oder deren Vielfache.

[0019] In Fig. 4 ist die am Kondensator erhaltene Spannung Uc zusammen mit einem netzsynchronen Fremdlichtsignal 50 in Abhängigkeit von der Zeit dargestellt. Durch eine zyklische Wiederholung von Lade- beziehungsweise Entladungsphase wird ein für die jeweilige Sensorimpedanz charakteristisches Spannungssignal 40, erhalten, welches netzsynchron zu den Zeitpunkten t1, t2, t3, etc. erfasst und ausgewertet werden kann. Dabei werden in diesem Ausführungsbeispiel für ein und dieselbe Sensorimpedanz gleiche Spannungswerte Uc erhalten. Aus diesen Spannungswerten kann z. B. ein Mittelwert gebildet werden, der zur Fremdlichterkennung ausgewertet wird. Liegt der Mittelwert unterhalb eines definierten Schwellenwertes 34, so wird dies als Fremdlichtfehler erkannt.

[0020] Figur 5 zeigt eine Schaltung bei der die Abtastung zu beliebigen Zeitpunkten erfolgen kann. Die von einem Abtast-Halteglied 28 synchron zur Netzfrequenz gelieferten Abtastwerte werden dabei in einem Kondensator 30 zwischengespeichert. Eine Impulsformerstufe 29 erzeugt aus der Netzfrequenz einen Steuerimpuls, der für eine kurze Zeit das Abtast-Halteglied 28 schliesst und dadurch eine Aufladung des Kondensators 30 mit den Abtastwerten bewirkt.

[0021] Figur 6 zeigt eine Schaltung die für zwei unterschiedliche Flammensensoren 1 und 2 verwendet wird. Bei einer Gasflamme 3 findet während der Verbrennung eine chemische Reaktion statt, wodurch freie Ionen auftreten. Diese führen dazu, dass die Flamme 3 leitfähig wird und beim Anlegen einer Spannung ein Strom fließen kann. Die Ionen bewegen sich dabei nur in Flammenrichtung. Legt man eine Wechselspannung zwischen Brennermasse und Ionisationselektrode 2, so erfolgt durch die Ionisation ein Gleichrichteffekt.
Ein Serienglied 22 zeigt eine vereinfachte Ersatzschaltung für den Gleichrichteffekt durch Flammenionisation. Eine Wechselspannung wird über einen Kondensator 25 und einen Widerstand 26 an die Ionisationselektrode 2 gelegt. Durch die Flammenionisation findet eine Gleichrichtung des Ionisationsstromes statt, welcher zu einer Potentialverschiebung an dem Kondensator 25 führt. Über einen Kopplungswiderstand 23 und einen Tiefpassfilter 24 wird die Ladungsverschiebung vom Kondensator 25 zum Kondensator 18 eingekoppelt. Während der Entladungsphase wird dann der Kondensator 18 in Abhängigkeit vom Ionisationsstrom entladen.

[0022] Fig. 7 zeigt eine Weiterbildung der in Figur 6 gezeigten Schaltung, welche zusätzlich einen Spannungsteiler 27 aufweist, der zur Rückführung der Netzphase an die Steuereinheit 21 dient. Die Erfassung der Spannung am Kondensator 18 erfolgt dadurch synchron zur Netzfrequenz. Die Auswertung kann in der gleichen Art und Weise erfolgen, wie dies eingangs in Verbindung mit einem Photowiderstand beschrieben worden ist.

[0023] Figur 8 zeigt eine Überwachungsschaltung für einen UV-Sensor. Bei dieser Schaltung wird über einen Kondensator 25, einen Widerstand 26 und eine Diode 5 eine pulsierende Spannung an einen UV-Sensor 4 gelegt. Bei Bestrahlung mit UV-Licht erfolgt dann ein Durchzünden der W-Röhre. Das zyklische Zünden der W-Röhre treibt einen Impulsstrom durch die Diode 5 und führt zu einer Potentialverschiebung am Kondensator 25. Über einen Kopplungswiderstand 23 und einen Tiefpassfilter 24 wird die Ladungsverschiebung am Kondensator 25 zu dem Kondensator 18 eingekoppelt. Die Ladungsverschiebung am Kondensator 25 ist dabei so polarisiert, dass diese zu einer Entladung des Kondensators 18 während der Entladungsphase führt. Die Auswertung des Spannungssignals am Kondensator 18 zur Flammenüberwachung kann dabei in gleicher Art und Weise erfolgen wie dies in Verbindung mit einem Photowiderstand oder Ionisationselektrode beschrieben worden ist.


Ansprüche

1. Verfahren zur Flammenüberwachung bei dem ein Kondensator (18) während einer Ladephase (31) mit einer Referenzspannung (13) aufgeladen wird und der Kondensator über ein während einer Entladungsphase (32) mit einem Flammensensor(1) verbundenes Kopplungsglied (19) entladen wird, dadurch gekennzeichnet, dass die Zeitdauer für die Ladebeziehungsweise Entladungsphase (31, 32) des Kondensators (18) in Abhängigkeit von der Charakteristik des verwendeten Flammensensors (1) gewählt wird und dass zur Flammenüberwachung das Laden beziehungsweise Entladen des Kondensators zyklisch wiederholt wird, wodurch ein Spannungssignal (30,40) am Kondensator (18) erhalten wird, welches mit Hilfe eines Schwellenwertes (34) einkanalig ausgewertet wird.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zeitdauer für die Lade- beziehungsweise Entladungsphase (31, 32) abhängig von der Impedanz des Flammensensors (1) ist.
 
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Auswertung des Spannungssignals (30,40) am Kondensator (18) mit einem für verschiedene Impedanzen des Flammensensors (1) einheitlichem Schwellenwert (34) erfolgt.
 
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass durch Auswertung des Spannungssignals (30,40) am Kondensator (18) am Ende der Lade- und/oder der Entladungsphase (31,32) Bauteilfehler oder Fehler des Flammensensors erkannt werden.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Auswertung des Spannungssignals am Kondensator (30,40) synchron mit der Netzfrequenz erfolgt.
 
6. Vorrichtung zur Flammenüberwachung mit einem Kondensator (18), der zur Aufladung mit einer Referenzspannungsquelle (13) und zur Entladung über ein Kopplungsglied (19) mit einem Flammensensor (1) verbunden ist, dadurch gekennzeichnet, dass die Referenzspannungsquelle (13) über einen Schalter (12) mit dem Kondensator verbunden ist, der zum Aufladen des Kondensators auf Veranlassung einer Steuereinheit (21) geschlossen beziehungsweise zum Entladen des Kondensators (18) geöffnet wird, wobei die Zeitdauer für das Aufladen beziehungsweise Entladen (31,32) des Kondensators (18) in Abhängigkeit von der Charakteristik des verwendeten Flammensensors (1) von der Steuereinheit (21) bestimmt wird und dass auf Veranlassung der Steuereinheit zur Flammenüberwachung (21) das Aufladen beziehungsweise das Entladen des Kondensators zyklisch wiederholt wird, wodurch ein Spannungssignal (30,40) am Kondensator (18) erhalten wird, welches mittels eines Schwellenwertes (34) einkanalig ausgewertet wird.
 
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Steuereinheit (21) einen A/D-Wandler (20) aufweist, der über einen Schalter (17) oder direkt mit dem Kondensator (18) verbunden ist.
 
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass ein Spannungsteiler (27) zur Rückführung der Netzphase an die Steuereinheit (21)vorgesehen ist.
 
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass ein Abtast- und Halteglied (28) zur netzsynchronen Abtastung des Spannungssignals (30,40) vorgesehen ist.
 
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass eine Impulsformerstufe (29) einen Steuerimpuls zur Zwischenspeicherung der Abtastwerte in einem Kondensator (30) erzeugt.
 




Zeichnung
















Recherchenbericht










Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente