(19)
(11) EP 1 458 968 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.07.2007 Bulletin 2007/29

(21) Application number: 02783945.5

(22) Date of filing: 15.11.2002
(51) International Patent Classification (IPC): 
F02K 9/64(2006.01)
F02K 9/97(2006.01)
(86) International application number:
PCT/SE2002/002085
(87) International publication number:
WO 2003/052255 (26.06.2003 Gazette 2003/26)

(54)

A COMPONENT FOR BEING SUBJECTED TO HIGH THERMAL LOAD DURING OPERATION AND A METHOD FOR MANUFACTURING SUCH A COMPONENT

BAUTEIL ZUR BEAUFSCHLAGUNG MIT HOHER THERMISCHER BELASTUNG BEIM BETRIEB UND VERFAHREN ZUR HERSTELLUNG EINES SOLCHEN BAUTEILS

COMPOSANT DESTINE A ETRE SOUMIS A UNE CHARGE THERMIQUE ELEVEE AU COURS DE SON UTILISATION ET PROCEDE DE FABRICATION D'UN TEL COMPOSANT


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

(30) Priority: 18.12.2001 SE 0104273
18.12.2001 US 340490 P

(43) Date of publication of application:
22.09.2004 Bulletin 2004/39

(73) Proprietor: Volvo Aero Corporation
46181 Trollhättan (SE)

(72) Inventor:
  • HÄGGANDER, Jan
    S-461 32 Trollhättan (SE)

(74) Representative: Fröhling, Werner Otto 
Volvo Technology Corporation, Corporate Patents, 06820, M1.7
405 08 Göteborg
405 08 Göteborg (SE)


(56) References cited: : 
US-A- 3 224 678
US-A- 4 055 044
US-A- 5 765 360
US-A- 3 695 515
US-A- 4 369 920
US-A- 6 107 596
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to a component for being subjected to high thermal load during operation, comprising a wall structure, which defines an inner space for gas flow, wherein the component comprises a first part, which comprises an inner wall, an outer wall and at least one cooling channel between the walls, wherein an end portion of said inner wall is joined to a second part. The invention is further related to a method for manufacturing such a component.

    [0002] The component is in operation actively cooled by a coolant flowing in said cooling channels. The coolant may further be used for combustion after having served as a coolant.

    [0003] The component will in the following be described for being used as a rocket engine component. This application should be regarded as preferred. However, also other applications are possible, such as for a jet motor or gas turbine.

    [0004] The rocket engine component in question forms a part of a combustion chamber and/or a nozzle for expansion of the combustion gases. The combustion chamber and the nozzle are together commonly reffered to as a thrust chamber.

    [0005] The thrust chamber is, due to manufacturing limitations, normally formed by several sections, which are joined in the axial direction of the chamber. The present invention may be applied for such joining. The invention may also be applied for joining the thrust chamber to some other rocket engine member, such as a manifold.

    PRIOR ART



    [0006] A previously known rocket engine component in the form of a thrust chamber has several sections joined to each other in the axial direction. Each of the sections are formed by a wall structure with an inner wall, an outer wall parallell to the inner wall and cooling channels formed between the walls. The wall structure is continuous in the circumferential direction of the section.

    [0007] The inner wall of each of the two sections to be joined projects longer in the extension direction of the wall structure than the outer wall. The projecting end portion of the inner wall of one section is joined to the adjacent projecting end portion of the inner wall of the other section by a weld joint. In this way, a substantially continuous inner wall is achieved. Therafter, a ring-shaped element is arranged radially outside the weld joint and said element is joined to the end portions of the adjacent outer walls. In this way, the cooling channels of one of the sections can communicate with the cooling channels of the adjacent section.

    [0008] Even though the above described rocket engine component is working well, there is a desire to increase the life of the component so that it may be used for an increased number of engine cycles.

    [0009] US 6 107 596 teaches a method for producing a welded-brazed casing for a combustion chamber, the combustion chamber comprising an injector head jointed to the chamber casing made of separate units.

    [0010] US 5 765 360 teaches a process for cooling engine walls with fuel and a wall structure for carrying out the process, wherein the wall structure has an inner wall to which hot gas is admitted during, a colder outer wall and a plurality of webs which connect the walls.

    [0011] US 4 055 044 teaches a rocket engine construction and connection for closed and opened fluid cooling circuits for the walls thereof.

    SUMMARY OF THE INVENTION



    [0012] One purpose of the invention is to provide a component for being subjected to high thermal load during operation with an increased life compared to prior art.

    [0013] This purpose is achieved in that the joint is located at a distance from the interior of the component. In this way, the joint is located remote from the hot gases flowing on the inside of the component during operation. The joint is thereby subjected to less thermal stresses than the joints according to previously known rocket engine components.

    [0014] According to a preferred embodiment of the invention said end portion of said inner wall projects outwards from the interior of the component, and that the joint to said second part is located at a distance from the edge of the inner wall defining said end portion. By arranging the end portion so that it projects a suitable distance from the edge, the joint may be located at such a distance from the interior of the component that the thermal stresses during opration will be considerably reduced. Further, by a suitable construction, during operation, the joint will have a temperature close to the temperature of the coolant.

    [0015] Further, due to the joint remote from the inner wall, the inner wall will not be continuous across the joint. Instead there will be a slight gap or slit between two adjacent sections. Axial thermal stresses will therefore be reduced in the area of the joint. More specifically, the inner wall is isolated from axial mechanical stresses imposed on the wall structure.

    [0016] According to a further development of the previous embodiment said end portion of said inner wall projects substantially perpendicular from the adjacent portion of the inner wall of said first section. This configuration makes the first section especially suitable for being connected to a further section in the axial direction of the component.

    [0017] According to another preferred embodiment said outer wall ends at a distance from the end portion of the inner wall in the extension direction of the wall structure, wherein the gap between the outer wall and the end portion of the inner wall forms a passage for a coolant flow from said cooling channel. This is an easy and suitable configuration for conducting the coolant from the first section to the component member.

    [0018] According to an alternative of the previously mentioned embodiment said outer wall is connected to the end portion of the inner wall, and that at least one opening is arranged through the outer wall in the vicinity of the end portion of the inner wall forming a passage for a coolant flow from said cooling channel. There will be an increased support in the radial direction of the section due to that the outer wall is connected to the inner wall and the pressure capacity of the component is thereby increased.

    [0019] Preferably, the first and second parts form two adjacent sections in the axial direction of the component in the form of a rocket engine component. Further, said sections are continuous in the circumferntial direction of the component.

    [0020] A further purpose of the invention is to provide a cost efficient method for manufacturing a rocket engine component with an increased life compared to prior art.

    [0021] This purpose is achieved by a method according to claim 15.

    [0022] Further advantageous embodiments of the rocket engine component and the manufacturing method are described in the further claims and the following description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] The invention will be explained below, with reference to the embodiments shown on the appended drawings, wherein
    FIG 1
    is a partly cut perspective view of a rocket engine thrust chamber comprising the inventive component,
    FIG 2
    is a partly cut perspective view of a part of a rocket engine section according to a first embodiment of the component,
    FIG 3
    is a cross section view of the connection region between two adjacent sections according to the first embodiment of the invention,
    FIG 4
    is a cut, perspective and schematic view of the rocket engine section according to fig 2 and 3,
    FIG 5
    is a cross sectional side view of the rocket engine section according to fig 4 illustrating a step in the manufacture thereof,
    FIG 6-8
    show a second embodiment of the invention corresponding to fig 3-6,
    FIG 9-10
    show a third embodiment of the invention corresponding to fig 3-4,
    FIG 11-12
    show a fourth embodiment of the invention corresponding to fig 3-4,
    FIG 13
    shows a fifth embodiment of the invention corresponding to fig 3,
    FIG 14
    shows a partly cut, perspective view of a sixth embodiment of the invention, wherein the part shown in fig 2 is connected to a manifold, and
    FIG 15
    shows a cross section view of the connection region between the part and the manifold according to fig 14.

    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION



    [0024] In figure 1, a rocket engine component 1 in the form of a thrust chamber for a rocket engine is shown. The thrust chamber wall structure is rotationally symmetrical and has a waist 2. The wall structure defines a combustion chamber 3 on one side of the waist and on the other side of the waist 2, the wall structure extends into a portion with an increasing diameter, which forms a continuation of the combustion chamber merging into an exhaust nozzle 4. The thrust chamber 1 comprises a first, second and third part, in the form of sections 5-7, which are joined to each other in the axial direction of the chamber. Each of said sections 5-7 are continuous in its circumferential direction.

    [0025] The wall structure comprises an inner wall 8 and an outer wall 9 at a radial distance from the inner wall. A plurality of partition walls 10 are arranged between the inner and outer wall 8,9 defining cooling channels 11 running in the axial direction of the thrust chamber.

    [0026] A first embodiment of the invention is illustrated in figures 2-5. In figure 2, a member 105 of said first section 5 is shown. This member 105 has a circular cross section and is continuous in its circumferential direction. Further, the member 105 comprises an inner wall portion 8a and said partition walls 10 extend in the axial direction of the section at mutual distances from each other in the circumferential direction of the section. An end portion 12 of the inner wall in the axial direction extends radially outwards from the interior of the member 105. The inner wall 8a forms an edge 13 defining said end portion 12. Said end portion 12 projects substantially perpendicular from the adjacent portion 14 of the inner wall 8.

    [0027] Valleys 110 are formed between the partition walls 10 and are intended to form said cooling channels. This configuration may be manufactured by machining, for example by milling of one workpiece. The outer wall 9 is thereafter positioned radially outside said part 105, forming a casing or hood, and connected to the partition walls, for example by welding.

    [0028] In figure 3, the connection region between the first section 5 and the second section 6 is shown. The second section 6 also has an inner wall 8b with an end portion 15 extending radially outwards from the interior of the section 6. The inner wall 8b forms an edge 16 defining said end portion 15. Said end portion 15 projects substantially perpendicular from an adjacent portion 17 of the inner wall 8b. The end portions 12,15 of the two sections 5,6 are joined by a weld 18 at a distance from the interior of the sections.

    [0029] In figure 3, the outer walls of the sections are illustrated by the reference numerals 9a,9b. Each of said outer walls 9a,9b ends at a distance from the end portion 12,15 of the inner wall in the extension direction of the wall structure. The gap between the outer wall 9a,9b and the end portion 12,15 of the inner wall forms a passage for a coolant flow from/to the cooling channels in the radial direction of the respective section.

    [0030] The end portions 19 of the outer walls 9a,9b are reinforced by an enlarged thickness. Further, a ring-shaped element 20 is arranged outside the joint 18, around the thrust chamber and bridging the distance between the outer walls 9a,9b. A chamber 24 is formed inside the ring-shaped element 20 communicating with the cooling channels of the first and second sections 5, 6. A passage for a coolant flow 21 is thereby formed from cooling channels of the second section 6 to cooling channels of the first section 5. The ring-shaped element 20 is preferably joined to the outer walls 9a,9b by welding.

    [0031] Figure 4 shows a schematic, cut view of the second section 6 according to figure 3. The drawing is simplified in that the showed part is not curved. The end of each of the partition walls 10 is inclined from the end 21 of the outer wall 9b to the edge 16 of the inner wall 8b. Further, the first section 5 has the corresponding features as is shown and described for the second part 6.

    [0032] Figure 5 shows one step for manufacturing the section 6. The wall structure of the section is produced in such a way that the inner wall 8b is arranged in parallell with said outer wall 9b and projects a distance from the end 21 of the outer wall. Thereafter, the projecting end portion of the inner wall 8b is folded towards the end 21 of the outer wall, thereby forming said edge 16. The end portion 15 of the inner wall 8b is shown after folding, in an upright position, with dotted lines.

    [0033] Figures 6-8 illustrate a second embodiment of the invention. This embodiment differs from the first embodiment in that partition walls 10c are also arranged on the end portion 15 of the inner wall 8c. In a first step, the piece 106 is manufactured in such a a way that the partition walls extend all the way to the end of the inner wall. Thereafter, a groove 22 is cut through the partition walls towards the inner wall 8c, in the vicinity of the end 21 of the outer wall 9c forming a notch for folding said end portion of the inner wall. Thereafter, the end portion 15 is folded towards said end of the outer wall 9c.

    [0034] Figures 9-10 illustrate a third embodiment of the invention. This embodiment differs from the first embodiment in that the outer wall 9d extends to the inclined and outwards projecting end portion 15 of the inner wall 8d. Further, said outer wall 9d is connected to the end portion 15 of the inner wall, preferably by welding. Two welding operations are thereby performed; a first welding for connecting the end portions 12,15 and forming a first joint 18 and a second welding for connecting the outer wall 9d to the end portions forming a second joint 180. Further, a plurality of openings 23 are arranged through the outer wall 9d at mutual distances in the vicinity of the end portion 15 of the inner wall 8d. Passages for a coolant flow is thereby formed by said openings 23 from said cooling channel in the radial direction of the section.

    [0035] Figures 11-12 illustrate a fourth embodiment of the invention. This embodiment differs from the first embodiment in that each of the partition walls 10e is continuous in its longitudinal direction all the way to the radially outwards projecting end portion 15. The partition walls are here formed integral with the end portion 15 of the inner wall 8d and with the inner wall 8d.

    [0036] The wall structure of the section according to the fourth embodiment is produced by machining, preferably by milling, a plate-shaped starting material with a flat end surface 26 in such a way that a plurality of elongated, substantially parallell and straight valleys 210 are formed at straight angles with the flat end surface. Said valleys 210 stop at a distance from the flat end surface so that the remaining, non-machined part of the starting material forms said inner wall end portion 15.

    [0037] Figure 13 illustrate a fifth embodiment of the invention. This embodiment differs from the first embodiment in that the inner walls 8e,8f of the two sections are made of different materials. For example, the inner wall 8e of the first section is made of stainless steel or a nickel based superalloy and the inner wall 8f of the second section is made of copper. The partition walls are formed integral with the inner wall 8f and are thereby made of the same material as the inner wall. The outer wall 9f is made of a material different from copper and is connected to the partition walls by brazing, see joint 27. The first joint 18' connecting the end portions of the inner walls 8e,8f is also a braze joint, wherein the second joint 180' is a weld joint.

    [0038] Figures 14-15 illustrate a sixth embodiment of the invention. The first rocket engine section 5 is in this case connected to a second part 28 in the form of a conduit for the coolant flow. Said conduit 28 is normally referred to as a manifold. The conduit 28 extends around the end part of the first section on the outside of the same and is arranged to convey the coolant from and to said cooling channels. The manifold 28 is therefore called a turning manifold. The arrows 31 illustrate the coolant flow.

    [0039] Said conduit 28 has a substantially U-shape in cross section, wherein the end portion 12 of the inner wall 8 is joined to one leg 29 of the U, and the other leg 30 of the U is connected to an end 9 of the outer wall.

    [0040] Preferred materials for the sections described above are stainless steel, alloys with high extent of ferro and nickel, and nickel based superalloys.

    [0041] Said first part, in the form of the rocket engine section 5, has a curved shape, wherein the inner wall is arranged on the concave side and the outer wall is arranged on the convex side of the part.

    [0042] The invention is not in any way limited to the above described embodiments, instead a number of alternatives and modifications are possible without departing from the scope of the following claims.

    [0043] For example the partition walls may not be formed integral with the inner wall, but instead formed separately and connected to the inner wall.

    [0044] As an alternative to the plurality of openings 23 arranged through the outer wall 9d at mutual distances in the vicinity of the end portion 15, only one opening in the form of a slot may be arranged in the vicinity of the end portion 15 and extending around the section.

    [0045] The above described two joining operations for obtaining two joints 18,180 and 18',180', respectively, may be replaced by only one joining operation, preferably welding, which thereby forms only one joint.

    [0046] The invention is above described for embodiments where the first part has a circular cross section shape. The invention may however also be used for connecting parts with some other curved shape, and especially also for parts which are discontinuous in the circumferential direction. Further, the invention may be used for connecting parts with a substantially flat shape. One section could in this case be formed by a plurality of plate-shaped parts which are mutually connected in the circumferential direction of the section. The section would in such a case have a polygonal cross section shape.


    Claims

    1. A component (1) for being subjected to high thermal load during operation, comprising a wall structure, which defines an interior for gas working flow, wherein the component comprises a first part (5), which comprises an inner wall (8), an outer wall (9) and at least one cooling channel (11) between the walls, wherein an end portion (12) of said inner wall is joined to a second part (6,28) by a joint (18), the component being
    characterized in that
    the joint (18) is located at a distance from the interior of the component.
     
    2. A component according to claim 1,
    characterized in that
    said end portion (12) of said inner wall (8) projects outwards from the interior of the component, and that the joint (18) to said second part is located at a distance from the edge (13) of the inner wall defining said end portion.
     
    3. A component according to claim 2,
    characterized in that
    said end portion (12) of said inner wall (8) projects substantially perpendicular from the adjacent portion (14) of the inner wall of said first section.
     
    4. A component according to claim 2 or 3,
    characterized in that
    said outer wall (9) ends at a distance from the end portion (12) of the inner wall (8) in the extension direction of the wall structure, wherein the gap between the outer wall and the end portion of the inner wall forms a passage for a coolant flow from said cooling channel (11).
     
    5. A component according to claim 2 or 3,
    characterized in that
    said outer wall (9) is connected to the end portion (12) of the inner wall, and that at least one opening (23) is arranged through the outer wall in the vicinity of the end portion of the inner wall forming a passage for a coolant flow from said cooling channel.
     
    6. A component according to claim 5,
    characterized in that
    a plurality of openings (23) are arranged through the outer wall at mutual distances along the said joint (18).
     
    7. A component according to any of the preceding claims, characterized in that
    said wall structure comprises a plurality of partition walls (10) arranged between the inner and outer wall (8,9), which extend between an inlet end to an outlet end of the first section for delimiting said cooling channels (11).
     
    8. A component according to any of the preceding claims, characterized in that said first part (5) has a curved shape.
     
    9. A component according to claim 8,
    characterized in that said first part (5) is continuous in its circumferential direction.
     
    10. A component according to any of the preceding claims, characterized in that
    said second part (6) also comprises an inner wall, an outer wall and at least one cooling channel between the walls.
     
    11. A component according to claim 10,
    characterized in that
    said end portion (12) of the inner wall of the first part is joined to an end portion (15) of said inner wall of the second part.
     
    12. A component according to claim 10 or 11,
    characterized in that
    said end portion (15) of said inner wall of the second part projects outwards from the interior of the component, and that the joint is located at a distance from the edge of the inner wall.
     
    13. A component according to claim 12,
    characterized in that
    said end portion (15) of said inner wall of the second part (6) projects substantially perpendicular from the adjacent portion of the inner wall of said second part.
     
    14. A component according to any of the claims 10-13,
    characterized in that said second part (6) has a curved shape.
     
    15. A component according to claim 14,
    characterized in that said second part (6) is continuous in its circumferential direction.
     
    16. A component according to claim 9 and 15,
    characterized in that
    a ring-shaped element (20) is arranged outside said joint (18), around the component and connected to end portions of the outer walls of the first and second parts, thereby forming a passage for a coolant flow from said cooling channel of the first section to said cooling channel of the second section.
     
    17. A component according to claim 9,
    characterized in that
    said component member (28) is formed by a conduit for the coolant flow from and/or to said cooling channel of the first part (5), and that the conduit extends around said first part on the outside of the same.
     
    18. A component according to claim 17,
    characterized in that
    said conduit (28) has a substantially U-shape in cross section, that the end portion of the inner wall is joined to one leg of the U, and that the other leg of the U is connected to an end portion of the outer wall.
     
    19. A component according to any of the preceding claims, characterized in that
    said component (1) has a substantially circular cross section.
     
    20. A component according to any of the preceding claims, characterized in that
    said component (1) is a rocket engine component.
     
    21. A method for manufacturing a component (1) for being subjected to high thermal load during operation, said component comprising a wall structure, which defines an interior for working gas flow, wherein a first part (5) of the component, which comprises an inner wall (8), an outer wall (9) at a distance from the inner wall and at least one cooling channel (11) between the walls, is being joined to a second part (6,28), wherein an end portion (12) of said inner wall of the first part is being joined to said second part
    characterized in that said end portion of said inner wall is being joined to said second part at a distance from the interior of the component.
     
    22. A method according to claim 21
    characterized in that
    the wall structure of the first part (5) is produced in such a way that the end portion (12) of said inner wall projects outwards from the intended interior of the part, and that the joint to said second part is located at a distance from the edge (13) of the inner wall defining said end portion.
     
    23. A method according to claim 22
    characterized in that
    it comprises the steps of

    - producing the wall structure of the first part (5) so that said inner wall (8) is arranged in parallell with said outer wall (9) and projects a distance from the end of the outer wall,

    - folding the projecting end portion (12) of the inner wall towards the end of the outer wall, thereby forming said edge, and

    - joining the inner wall to said second part.


     
    24. A method according to claim 23
    characterized in that
    that partition walls (10) for delimiting adjacent cooling channels (11) are arranged between the inner and outer walls (8,9), that said partition walls are arranged on the end portion of the inner wall, that a groove (22) is cut through the partition walls towards the inner wall, and that said groove is cut in the vicinity of the end (21) of the outer wall forming a notch for folding said end portion of the inner wall.
     
    25. A method according to claim 23
    characterized in that
    that partition walls for delimiting adjacent cooling channels are arranged between the inner and outer walls, that said partition walls end substantially where the outer wall ends, and that the end of said partition walls forms a notch for folding said end portion of the inner wall.
     
    26. A method according to claim 22
    characterized in that
    the wall structure is produced by machining a plate-shaped starting material with a flat end surface (26) in such a way that a plurality of elongated, substantially parallell and straight valleys (210) are formed at straight angles with the flat end surface, and that said valleys stop at a distance from the flat end surface, wherein the remaining, non-machined part of the starting material forms said inner wall end portion.
     
    27. A method according to any of the claims 21-26,
    characterized in that the joining operation is performed from the outside of the first section.
     
    28. A method according to any of the claims 21-27,
    characterized in that said end portion of said inner wall of the first part (5) is joined to said second part (6,28) by welding.
     
    29. A method according to any of the claims 21-28,
    characterized in that
    said second part (6) also comprises an inner wall, an outer wall and at least one cooling channel between the walls.
     
    30. A method according to claim 29,
    characterized in that
    an end portion (15) of said inner wall of the second section projects outwards from the interior of the component, and that the parts are joined at a distance from the edge of the inner wall.
     
    31. A method according to claim 29 or 30,
    characterized in that
    said parts (5,6) are continuous in a circumferential direction, that a ring-shaped element (20) is arranged outside said joint (18), around the component and connected to ends of the outer walls of the first and second parts (5,6), thereby forming a passage for a coolant flow from said cooling channel of the first section to said cooling channel of the second section.
     
    32. A method according to any of the claims 21-28,
    characterized in that
    said second part (28) is formed by a conduit for the coolant flow from and/or to said cooling channel(-s), which conduit is arranged so that it extends around said first part on the outside of the same.
     
    33. A method according to claim 32,
    characterized in that
    said conduit (28) has a substantially U-shape in cross section, that the end portion of the inner wall is joined to one leg of the U, and that the other leg of the U is joined to an end portion of the outer wall of the first section.
     


    Ansprüche

    1. Bauteil (1), das während des Betriebs einer hohen thermischen Belastung ausgesetzt wird, wobei das Bauteil

    - einen Wandaufbau, der einen Innenraum für den Arbeitsgasstrom bildet, und

    - einen ersten Teil (5) aufweist, der eine Innenwand (8), eine Außenwand (9) und wenigstens einen Kühlkanal (11) zwischen den Wänden hat, und

    - wobei ein Endabschnitt (12) der Innenwand mit einem zweiten Teil (6, 28) durch eine Verbindung (18) verbunden ist,

    dadurch gekennzeichnet,

    - dass die Verbindung (18) in einer Entfernung von dem Innenraum des Bauteils angeordnet ist.


     
    2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass der Endabschnitt (12) der Innenwand (8) von dem Innenraum des Bauteils nach außen vorsteht und dass die Verbindung (18) für den zweiten Teil in einer Entfernung von dem Rand (13) der Innenwand angeordnet ist, die den Endabschnitt bildet.
     
    3. Bauteil nach Anspruch 2, dadurch gekennzeichnet, dass der Endabschnitt (12) der Innenwand (8) im Wesentlichen senkrecht von dem benachbarten Abschnitt (14) der Innenwand des ersten Teils vorsteht.
     
    4. Bauteil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Außenwand (9) in einer Entfernung von dem Endabschnitt (12) der Innenwand (8) in der Erstreckungsrichtung des Wandaufbaus endet, wobei der Spalt zwischen der Außenwand und dem Endabschnitt der Innenwand einen Durchgang für einen Kühlmittelstrom aus dem Kühlkanal (11) bildet.
     
    5. Bauteil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Außenwand (9) mit dem Endabschnitt (12) der Innenwand verbunden ist und dass durch die Außenwand in der Nähe des Endabschnitts der Innenwand wenigstens eine Öffnung (23) vorgesehen ist, die einen Durchgang für einen Kühlmittelstrom aus dem Kühlkanal bildet.
     
    6. Bauteil nach Anspruch 5, dadurch gekennzeichnet, dass eine Vielzahl von Öffnungen (23) durch Außenwand mit gegenseitigen Abständen längs der Verbindung (18) angeordnet ist.
     
    7. Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wandaufbau eine Vielzahl von zwischen der Innenwand (8) und der Außenwand (9) angeordneten Trennwänden (10) aufweist, die sich zwischen einem Einlassende und einem Auslassende des ersten Teils zum Begrenzen der Kühlkanäle (11) erstrecken.
     
    8. Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Teil (5) eine gekrümmte Form hat.
     
    9. Bauteil nach Anspruch 8, dadurch gekennzeichnet, dass der erste Teil (5) in seiner Umfangsrichtung fortlaufend ist.
     
    10. Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Teil (6) ebenfalls eine Innenwand, eine Außenwand und wenigstens einen Kühlkanal zwischen den Wänden aufweist.
     
    11. Bauteil nach Anspruch 10, dadurch gekennzeichnet, dass der Endabschnitt (12) der Innenwand des ersten Teils mit einem Endabschnitt (15) der Innenwand des zweiten Teils verbunden ist.
     
    12. Bauteil nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Endabschnitt (15) der Innenwand des zweiten Teils von dem Innenraum des Bauteils nach außen vorsteht und dass die Verbindung in einem Abstand von dem Rand der Innenwand angeordnet ist.
     
    13. Bauteil nach Anspruch 12, dadurch gekennzeichnet, dass der Endabschnitt (15) der Innenwand des zweiten Teils (6) im Wesentlichen senkrecht von dem benachbarten Abschnitt der Innenwand des zweiten Teils vorsteht.
     
    14. Bauteil nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der zweite Teil (6) eine gekrümmte Form hat.
     
    15. Bauteil nach Anspruch 14, dadurch gekennzeichnet, dass der zweite Teil (6) in seiner Umfangsrichtung fortlaufend ist.
     
    16. Bauteil nach Anspruch 9 und 15, dadurch gekennzeichnet, dass außerhalb der Verbindung (18) ein ringförmiges Element (20) angeordnet ist, das sich um das Bauteil herum erstreckt und mit den Endabschnitten der Außenwände des ersten und zweiten Teils verbunden ist, wodurch ein Durchgang für einen Kühlmittelstrom aus dem Kühlkanal des ersten Teils zu dem Kühlkanal des zweiten Teils gebildet wird.
     
    17. Bauteil nach Anspruch 9, dadurch gekennzeichnet, dass ein Bauteilelement (28) von einer Leitung für den Kühlmittelstrom aus dem Kühlkanal des ersten Teils (5) und/oder zu ihm gebildet wird, wobei sich die Leitung um den ersten Teil auf dessen Außenseite erstreckt.
     
    18. Bauteil nach Anspruch 17, dadurch gekennzeichnet, dass die Leitung (28) einen im Wesentlichen U-förmigen Querschnitt hat, dass der Endabschnitt der Innenwand mit einem Schenkel des U verbunden ist und dass der andere Schenkel des U mit einem Endabschnitt der Außenwand verbunden ist.
     
    19. Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bauteil (1) einen im Wesentlichen kreisförmigen Querschnitt hat.
     
    20. Bauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bauteil (1) ein Raketentriebwerkbauteil ist.
     
    21. Verfahren zum Herstellen eines Bauteils (1), das während des Betriebs einer hohen thermischen Belastung ausgesetzt wird und das einen Wandaufbau hat, der den Innenraum für einen Arbeitsgasstrom bildet, wobei ein erster Teil (5) des Bauteils, der eine Innenwand (8), eine Außenwand (9) in einem Abstand von der Innenwand und wenigstens einen Kühlkanal (11) zwischen den Wänden aufweist, mit einem zweiten Teil (6, 28) verbunden wird, und wobei ein Endabschnitt (12) der Innenwand des ersten Teils mit dem zweiten Teil verbunden wird,
    dadurch gekennzeichnet, dass der Endabschnitt der Innenwand mit dem zweiten Teil in einem Abstand von dem Innenraum des Bauteils verbunden wird.
     
    22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass der Wandaufbau des ersten Teils (5) so hergestellt wird, dass der Endabschnitt (12) der Innenwand von dem beabsichtigten Innenraum des Teils nach außen vorsteht und dass die Verbindung mit dem zweiten Teil in einem Abstand von dem Rand (13) der Innenwand angeordnet wird, die den Endabschnitt bildet.
     
    23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass es die Schritte aufweist

    - Herstellen des Wandaufbaus des ersten Teils (5) derart, dass die Innenwand (8) parallel zur Außenwand (9) angeordnet ist und mit einem Abstand von dem Ende der Außenwand vorsteht,

    - Umfalten des vorstehenden Endabschnitts (12) der Innenwand zu dem Ende der Außenwand hin, wodurch der Rand gebildet wird, und

    - Verbinden der Innenwand mit dem zweiten Teil.


     
    24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass zur Begrenzung benachbarter Kühlkanäle (11) Trennwände (10) zwischen der Innenwand (8) und der Außenwand (9) angeordnet werden, dass die Trennwände an dem Endabschnitt der Innenwand angeordnet werden, dass durch die Trennwände zu der Innenwand hin eine Nut (22) geschnitten wird und dass die Nut in der Nähe des Endes (21) der Außenwand geschnitten wird und eine Einkerbung zum Umfalten des Endabschnitts der Innenwand bildet.
     
    25. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Trennwände zum Begrenzen benachbarter Kühlkanäle zwischen der Innenwand und der Außenwand angeordnet werden, dass die Trennwände im Wesentlichen dort enden, wo die Außenwand endet, und dass das Ende der Trennwände eine Einkerbung zum Umfalten des Endabschnitts der Innenwand bildet.
     
    26. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass der Wandaufbau durch maschinelle Bearbeitung eines plattenförmigen Ausgangsmaterials mit einer ebenen Stirnfläche (26) derart hergestellt wird, dass eine Vielzahl von langgestreckten, im Wesentlichen parallelen und geraden Vertiefungen (210) mit geraden Winkeln zu der ebenen Stirnfläche gebildet werden und dass die Vertiefungen in einem Abstand von der ebenen Stirnfläche aufhören, wobei der übrig bleibende maschinell nicht bearbeitete Teil des Ausgangsmaterials den Innenwand-Endabschnitt bildet.
     
    27. Verfahren nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass der Verbindungsarbeitsgang von der Außenseite des ersten Teils aus ausgeführt wird.
     
    28. Verfahren nach einem der Ansprüche 21 bis 27, dadurch gekennzeichnet, dass der Endabschnitt der Innenwand des ersten Teils (5) mit dem zweiten Teil (6, 28) durch Schweißen verbunden wird.
     
    29. Verfahren nach einem der Ansprüche 21 bis 28, dadurch gekennzeichnet, dass der zweite Teil (6) eine Innenwand, eine Außenwand und wenigstens einen Kühlkanal zwischen den Wänden aufweist.
     
    30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass ein Endabschnitt (15) der Innenwand des zweiten Teils von dem Innenraum des Bauteils nach außen vorsteht und dass die Teile in einem Abstand von dem Rand der Innenwand verbunden werden.
     
    31. Verfahren nach Anspruch 29 oder 30, dadurch gekennzeichnet, dass die Teile (5, 6) in eine Umfangsrichtung fortlaufend sind und dass außerhalb der Verbindung (18) ein ringförmiges Element (20) angeordnet wird, das sich um das Bauteil herum erstreckt und mit den Enden der Außenwände des ersten und zweiten Teils (5, 6) verbunden wird, wodurch ein Durchgang für einen Kühlmittelstrom aus dem Kühlkanal des ersten Teils zum Kühlkanal des zweiten Teils gebildet wird.
     
    32. Verfahren nach einem der Ansprüche 21 bis 28, dadurch gekennzeichnet, dass der zweite Teil (28) von einer Leitung für den Kühlmittelstrom aus dem Kühlkanal/ den Kühlkanälen und/oder zum ihm/ihnen hin gebildet wird, wobei die Leitung so angeordnet ist, dass sie sich um den ersten Teil auf dessen Außenseite erstreckt.
     
    33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass die Leitung (28) einen im Wesentlichen U-förmigen Querschnitt hat, dass der Endabschnitt der Innenwand mit einem Schenkel des U verbunden wird und dass der andere Schenkel des U mit einem Endabschnitt der Außenwand des ersten Teils verbunden wird.
     


    Revendications

    1. Composant (1) destiné à être soumis à une charge thermique élevée en fonctionnement, comportant une structure de parois, qui définit un intérieur pour un écoulement gazeux actif, dans lequel le composant comporte une première partie (5), qui comporte une paroi intérieure (8), une paroi extérieure (9) et au moins un canal de refroidissement (11) entre les parois, dans lequel une partie d'extrémité (12) de ladite paroi intérieure est reliée à une seconde partie (6, 28) par un joint (18), le composant étant
    caractérisé en ce que
    le joint (18) est situé à une distance de l'intérieur du composant.
     
    2. Composant selon la revendication 1,
    caractérisé en ce que
    ladite partie d'extrémité (12) de ladite paroi intérieure (8) fait saillie vers l'extérieur à partir de l'intérieur du composant, et en ce que le joint (18) sur ladite seconde partie est situé à une distance du bord (13) de la paroi intérieure définissant ladite partie d'extrémité.
     
    3. Composant selon la revendication 2,
    caractérisé en ce que
    ladite partie d'extrémité (12) de ladite paroi intérieure (8) fait saillie sensiblement perpendiculairement à partir de la partie adjacente (14) de la paroi intérieure dudit premier tronçon.
     
    4. Composant selon la revendication 2 ou 3,
    caractérisé en ce que
    ladite paroi extérieure (9) se termine à une distance de la partie d'extrémité (12) de la paroi intérieure (8) dans la direction d'extension de la structure de parois, dans lequel l'espace entre la paroi extérieure et la partie d'extrémité de la paroi intérieure forme un passage pour un écoulement de liquide de refroidissement à partir dudit canal de refroidissement (11).
     
    5. Composant selon la revendication 2 ou 3,
    caractérisé en ce que
    ladite paroi extérieure (9) est reliée à la partie d'extrémité (12) de la paroi intérieure, et en ce qu'au moins une ouverture (23) est agencée à travers la paroi extérieure à proximité de la partie d'extrémité de la paroi intérieure formant un passage pour un écoulement de liquide de refroidissement à partir dudit canal de refroidissement.
     
    6. Composant selon la revendication 5,
    caractérisé en ce que
    une pluralité d'ouvertures (23) sont agencées à travers la paroi extérieure à des distances mutuelles le long dudit joint (18).
     
    7. Composant selon l'une quelconque des revendications précédentes, caractérisé en ce que
    ladite structure de parois comporte une pluralité de parois de séparation (10) agencées entre les parois intérieure et extérieure (8, 9), qui s'étendent entre une extrémité d'entrée et une extrémité de sortie du premier tronçon pour délimiter lesdits canaux de refroidissement (11).
     
    8. Composant selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite première partie (5) a une forme incurvée.
     
    9. Composant selon la revendication 8,
    caractérisé en ce que ladite première partie (5) est continue dans sa direction circonférentielle.
     
    10. Composant selon l'une quelconque des revendications précédentes, caractérisé en ce que
    ladite seconde partie (6) comporte également une paroi intérieure, une paroi extérieure et au moins un canal de refroidissement entre les parois.
     
    11. Composant selon la revendication 10,
    caractérisé en ce que
    ladite partie d'extrémité (12) de la paroi intérieure de la première partie est reliée à une partie d'extrémité (15) de ladite paroi intérieure de la seconde partie.
     
    12. Composant selon la revendication 10 ou 11,
    caractérisé en ce que
    ladite partie d'extrémité (15) de ladite paroi intérieure de la seconde partie fait saillie vers l'extérieur à partir de l'intérieur du composant, et en ce que le joint est situé à une distance du bord de la paroi intérieure.
     
    13. Composant selon la revendication 12,
    caractérisé en ce que
    ladite partie d'extrémité (15) de ladite paroi intérieure de la seconde partie (6) fait saillie sensiblement perpendiculairement à partir de la partie adjacente de la paroi intérieure de ladite seconde partie.
     
    14. Composant selon l'une quelconque des revendications 10 à 13,
    caractérisé en ce que ladite seconde partie (6) a une forme incurvée.
     
    15. Composant selon la revendication 14,
    caractérisé en ce que ladite seconde partie (6) est continue dans sa direction circonférentielle.
     
    16. Composant selon les revendications 9 et 15,
    caractérisé en ce que
    un élément en forme d'anneau (20) est agencé à l'extérieur dudit joint (18), autour du composant, et relié aux parties d'extrémité des parois extérieures des première et seconde parties, en formant ainsi un passage pour un écoulement de liquide de refroidissement à partir dudit canal de refroidissement du premier tronçon vers ledit canal de refroidissement du second tronçon.
     
    17. Composant selon la revendication 9,
    caractérisé en ce que
    ledit élément de composant (28) est formé par un conduit pour l'écoulement de liquide de refroidissement à partir dudit canal de refroidissement de la première partie (5), et/ou vers celui-ci, et en ce que le conduit s'étend autour de ladite première partie sur l'extérieur de celle-ci.
     
    18. Composant selon la revendication 17,
    caractérisé en ce que
    ledit conduit (28) a une forme sensiblement en U en coupe transversale, en ce que la partie d'extrémité de la paroi intérieure est reliée à une première patte du U, et en ce que l'autre patte du U est reliée à une partie d'extrémité de la paroi extérieure.
     
    19. Composant selon l'une quelconque des revendications précédentes, caractérisé en ce que
    ledit composant (1) a une coupe transversale sensiblement circulaire.
     
    20. Composant selon l'une quelconque des revendications précédentes, caractérisé en ce que
    ledit composant (1) est un composant de moteur-fusée.
     
    21. Procédé de fabrication d'un composant (1) destiné à être soumis à une charge thermique élevée en fonctionnement, ledit composant comportant une structure de parois, qui définit un intérieur pour un écoulement gazeux actif, dans lequel une première partie (5) du composant, qui comporte une paroi intérieure (8), une paroi extérieure (9) à une distance de la paroi intérieure et au moins un canal de refroidissement (11) entre les parois, est reliée à une seconde partie (6, 28), dans laquelle une partie d'extrémité (12) de ladite paroi intérieure de la première partie est reliée à ladite seconde partie
    caractérisé en ce que ladite partie d'extrémité de ladite paroi intérieure est reliée à ladite seconde partie à une distance de l'intérieur du composant.
     
    22. Procédé selon la revendication 21
    caractérisé en ce que
    la structure de parois de la première partie (5) est produite de telle manière que la partie d'extrémité (12) de ladite paroi intérieure fait saillie vers l'extérieur à partir de l'intérieur prévu de la partie, et en ce que le joint sur ladite seconde partie est situé à une distance du bord (13) de la paroi intérieure définissant ladite partie d'extrémité.
     
    23. Procédé selon la revendication 22
    caractérisé en ce qu'il
    comporte les étapes consistant à

    - produire la structure de parois de la première partie (5) de sorte que ladite paroi intérieure (8) soit agencée parallèlement à ladite paroi extérieure (9), et fasse saillie à une distance de l'extrémité de la paroi extérieure,

    - plier la partie d'extrémité faisant saillie (12) de la paroi intérieure vers l'extrémité de la paroi extérieure, en formant ainsi ledit bord, et

    - relier la paroi intérieure à ladite seconde partie.


     
    24. Procédé selon la revendication 23
    caractérisé en ce que
    ces parois de séparation (10) pour délimiter des canaux de refroidissement adjacents (11) sont agencées entre les parois intérieure et extérieure (8, 9), en ce que lesdites parois de séparation sont agencées sur la partie d'extrémité de la paroi intérieure, en ce qu'une gorge (22) est découpée à travers les parois de séparation vers la paroi intérieure, et en ce que ladite gorge est découpée à proximité de l'extrémité (21) de la paroi extérieure en formant une encoche pour plier ladite partie d'extrémité de la paroi intérieure.
     
    25. Procédé selon la revendication 23
    caractérisé en ce que
    ces parois de séparation pour délimiter des canaux de refroidissement adjacents sont agencées entre les parois intérieure et extérieure, en ce que lesdites parois de séparation se terminent sensiblement là où la paroi d'extrémité se termine, et en ce que l'extrémité desdites parois de séparation forme une encoche pour plier ladite partie d'extrémité de la paroi intérieure.
     
    26. Procédé selon la revendication 22
    caractérisé en ce que
    la structure de parois est produite en usinant un matériau de départ en forme de plaque avec une surface d'extrémité plate (26) de telle manière qu'une pluralité de vallées droites allongées et sensiblement parallèles (210) sont formées perpendiculairement à la surface d'extrémité plate, et en ce que lesdites vallées s'arrêtent à une distance de la surface d'extrémité plate, dans lequel la partie non usinée restante du matériau de départ forme ladite partie d'extrémité de paroi intérieure.
     
    27. Procédé selon l'une quelconque des revendications 21 à 26,
    caractérisé en ce que l'opération de jonction est mise en oeuvre à partir de l'extérieur du premier tronçon.
     
    28. Procédé selon l'une quelconque des revendications 21 à 27,
    caractérisé en ce que ladite partie d'extrémité de ladite paroi intérieure de la première partie (5) est reliée à ladite seconde partie (6, 28) par soudage.
     
    29. Procédé selon l'une quelconque des revendications 21 à 28,
    caractérisé en ce que
    ladite seconde partie (6) comporte également une paroi intérieure, une paroi extérieure et au moins un canal de refroidissement entre les parois.
     
    30. Procédé selon la revendication 29,
    caractérisé en ce que
    une partie d'extrémité (15) de ladite paroi intérieure du second tronçon fait saillie vers l'extérieur à partir de l'intérieur du composant, et en ce que les parties sont jointes à une distance du bord de la paroi intérieure.
     
    31. Procédé selon la revendication 29 ou 30,
    caractérisé en ce que
    lesdites parties (5, 6) sont continues dans une direction circonférentielle, en ce qu'un élément en forme d'anneau (20) est agencé à l'extérieur dudit joint (18), autour du composant, et relié aux extrémités des parois extérieures des première et seconde parties (5, 6), en formant ainsi un passage pour un écoulement de liquide de refroidissement à partir dudit canal de refroidissement du premier tronçon vers ledit canal de refroidissement du second tronçon.
     
    32. Procédé selon l'une quelconque des revendications 21 à 28,
    caractérisé en ce que
    ladite seconde partie (28) est formée par un conduit pour l'écoulement de liquide de refroidissement à partir dudit canal ou desdits canaux de refroidissement, et/ou vers celui-ci ou ceux-ci, lequel conduit est agencé de sorte qu'il s'étend autour de ladite première partie sur l'extérieur de celle-ci.
     
    33. Procédé selon la revendication 32,
    caractérisé en ce que
    ledit conduit (28) a une forme sensiblement en U en coupe transversale, en ce que la partie d'extrémité de la paroi intérieure est reliée à une première patte du U, et en ce que l'autre patte du U est reliée à une partie d'extrémité de la paroi extérieure du premier tronçon.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description