(19)
(11) EP 1 587 965 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
18.07.2007  Patentblatt  2007/29

(21) Anmeldenummer: 03789376.5

(22) Anmeldetag:  20.12.2003
(51) Internationale Patentklassifikation (IPC): 
C22C 21/10(2006.01)
(86) Internationale Anmeldenummer:
PCT/EP2003/014696
(87) Internationale Veröffentlichungsnummer:
WO 2004/063407 (29.07.2004 Gazette  2004/31)

(54)

ALUMINIUMLEGIERUNG MIT HOHER FESTIGKEIT UND GERINGER ABSCHRECKEMPFINDLICHKEIT

ALUMINIUM ALLOY WITH INCREASED RESISTANCE AND LOW QUENCH SENSITIVITY

ALLIAGE D'ALUMINIUM A DURETE ELEVEE ET SENSIBILITE A LA TREMPE FAIBLE


(84) Benannte Vertragsstaaten:
AT BE BG CH CZ DE DK ES FI FR GB GR HU IT LI LU MC NL PT RO SE SI SK TR

(30) Priorität: 16.01.2003 EP 03405013

(43) Veröffentlichungstag der Anmeldung:
26.10.2005  Patentblatt  2005/43

(73) Patentinhaber: Alcan Technology & Management Ltd.
8212 Neuhausen am Rheinfall (CH)

(72) Erfinder:
  • HÖLLRIGL, Günther
    CH-8260 Stein am Rhein (CH)
  • JAQUEROD, Christophe
    CH-3976 Noës (CH)


(56) Entgegenhaltungen: : 
FR-A- 2 341 661
US-A- 3 694 272
   
  • PATENT ABSTRACTS OF JAPAN Bd. 1996, Nr. 02, 29. Februar 1996 (1996-02-29) -& JP 07 252573 A (KOBE STEEL LTD), 3. Oktober 1995 (1995-10-03)
  • PATENT ABSTRACTS OF JAPAN Bd. 017, Nr. 394 (C-1088), 23. Juli 1993 (1993-07-23) -& JP 05 070910 A (SUMITOMO LIGHT METAL IND LTD), 23. März 1993 (1993-03-23)
  • PATENT ABSTRACTS OF JAPAN Bd. 1998, Nr. 11, 30. September 1998 (1998-09-30) -& JP 10 168553 A (SUMITOMO LIGHT METAL IND LTD), 23. Juni 1998 (1998-06-23)
  • HUFNAGEL W: "Key to Aluminium Alloys, 4th Edition" 1991, ALUMINIUM-SCHLUESSEL = KEY TO ALUMINIUM ALLOYS, PAGE(S) 195-205 , XP002194851 Seite 203; Beispiel 7017GB
  • HOELLRIGL, G.: "Relation between microstructure and exfoliation corrosion in aluminum-zinc-magnesium alloys" INTERNATIONALE LEICHTMETALLTAGUNG (1981), 7TH, 133-5, 1981, XP009008474
   
Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


Beschreibung


[0001] Die Erfindung betrifft eine Aluminiumlegierung mit hoher Festigkeit und geringer Abschreckempfindlichkeit. Im Rahmen der Erfindung liegt auch ein Verfahren zur Herstellung dicker Platten aus der Aluminiumlegierung.

[0002] Insbesondere in der Automobilindustrie besteht zunehmend ein Bedarf an grossen Kunststoffbauteilen, wie z.B. integrale Stossstangen. Zur Herstellung der entsprechend grossen Spritzgiessformen werden Platten benötigt, deren Dicke sehr oft 150 mm übersteigt und in gewissen Fällen sogar mehr als 500 mm beträgt.

[0003] Das Dokument FR-A-2 341 661 offenfart eine Aluminium-Legierung, deren Zusammensetzung Zn 4,0-6,2 Gew.-%, Mg 0,8-3,0 Gew.-%, Cu 0-1,5 Gew.-%, Zr 0,05-0,30 Gew.-%, Fe 0-0,2 Gew.-%, Si 0-0,15 Gew.-%, Mn 0-0,25 Gew.-%, Ti 0-0,1 Gew.-%, Rest Al, enthält.

[0004] Für den Bau von Spritzgiessformen mit einer Dicke von beispielsweise 50 bis 300 mm werden heute üblicherweise warmgewalzte und warmausgehärtete Platten eingesetzt. Grössere Formen mit einer Dicke von mehr als 300 mm wurden entweder aus geschmiedeten Blöcken oder auch schon direkt aus Stranggussbarren gefertigt.

[0005] Ein wesentlicher Nachteil der heute für den Formenbau eingesetzten Aluminiumlegierungen ist deren hohe Abschreckempfindlichkeit. Damit die Barren oder Platten bei der Warmaushärtung das für Kunststoff-Spritzgiessformen geforderte Festigkeitsniveau erreichen, muss die Abkühlungsgeschwindigkeit von der Homogenisierungs- oder Lösungsglühtemperatur mit zunehmender Plattendicke erhöht werden. Durch die hierbei auftretenden hohen Temperaturgradienten zwischen der Oberfläche und dem Kern der Barren oder Platten nehmen die schädlichen Eigenspannungen zu, so dass schon aus diesem Grund einer weiteren Erhöhung der Abkühlungsgeschwindigkeit und damit dem letztlich erreichbaren Festigkeitsniveau Grenzen gesetzt sind.

[0006] Der Erfindung liegt die Aufgabe zugrunde, eine zur Herstellung von dicken Platten mit hohem Festigkeitsniveau geeignete Aluminiumlegierung mit geringer Abschreckempfindlichkeit bereitzustellen.

[0007] Ein weiteres Ziel der Erfindung liegt darin, ein geeignetes Verfahren anzugeben, mit dem die Aluminiumlegierung zu dicken Platten mit ausreichend hoher Festigkeit über die gesamte Plattendicke verarbeitet werden kann.

[0008] Zur erfindungsgemässen Lösung der Aufgabe führt eine Aluminiumlegierung mit

4,6 bis 5,2 Gew.-% Zn

2,6 bis 3,0 Gew.-% Mg

0.1 bis 0,2 Gew.-% Cu

0,05 bis 0,2 Gew.-% Zr

max. 0,05 Gew.-% Mn

max. 0,05 Gew.-% Cr

max. 0,15 Gew.-% Fe

max. 0,15 Gew.-% Si

max. 0,10 Gew.-% Ti

und Aluminium als Rest mit herstellungsbedingten Verunreinigungen, einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-%.

[0009] Die Zusammensetzung der Legierung ist erfindungsgemäss so gewählt, dass sie eine sehr geringe Abschreckempfindlichkeit aufweist und trotzdem ein ausserordentlich hohes Festigkeitsniveau besitzt. Dicke Querschnitte können daher mit forcierter Luftabkühlung und durch Ausscheidungshärtung auf ein hohes Festigkeitsniveau gebracht werden.

[0010] Für die einzelnen Legierungselemente gelten die folgenden Vorzugsbereiche:

4,6 bis 4,8 Gew.-% Zn

2,6 bis 2,8 Gew.-% Mg

0,10 bis 0,15 Gew.-% Cu

0,08 bis 0,18 Gew.-% Zr

max. 0,03 Gew.-% Mn

max. 0,02 Gew.-% Cr

max. 0,12 Gew.-% Fe

max. 0,12 Gew.-% Si

max. 0,05 Gew.-% Ti



[0011] Für die Anwendung der erfindungsgemässen Legierung als Werkstoff für den Formenbau ist eine möglichst isotrope Verteilung der Eigenspannungen im Querschnitt der Platte anzustreben. Für den Abbau der Eigenspannungen ist u.a. die Korngrösse und die Kornform in der Platte von Bedeutung. Je feiner und gleichmässiger die Kristalle vorliegen, desto besser können sich die Eigenspannungen im Querschnitt der Platte ausgleichen. Die Korngrenzen wirken dabei als Senken für Versetzungen beim Abbau von lokalen Spannungsspitzen. Wie weiter unten erläutert, kann durch den Zusatz von Zirkonium ein feines Korngefüge in der Platte erreicht werden, indem man die Aufheizgeschwindigkeit der Barren auf die Homogenisierungs- bzw. Lösungsglühtemperatur so wählt, dass eine möglichst homogene Verteilung von submikronen Ausscheidungen von Al3Zr im Gefüge entsteht.

[0012] Zur Herstellung von Platten aus der erfindungsgemässen Legierung eignen sich insbesondere die folgenden zwei Verfahren, die je nach gewünschter Dicke der Form zu einer warmgewalzten und warmausgehärteten Platte oder zu einem als Platte verwendeten warmausgehärteten Stranggussbarren führen.

[0013] Zur Herstellung von Platten mit einer Dicke von bis zu 300 mm ist das Verfahren durch die folgenden Schritte gekennzeichnet:
  1. A. Stranggiessen der Aluminiumlegierung zu Barren mit einer Dicke von mehr als 300 mm,
  2. B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,
  3. C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,
  4. D. Warmwalzen der homogenisierten Barren zu Platten,
  5. E. Abkühlen der Platten von einer Temperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,
  6. F. Abkühlen der Platten auf Raumtemperatur,
  7. G. Warmaushärten der Platten.


[0014] Zur Herstellung von Platten mit einer Dicke von mehr als 300 mm und insbesondere von Platten mit einer Dicke von mehr als 500 mm kann ein aus der erfindungsgemässen Legierung hergestellter Stranggussbarren direkt als Platte verwendet werden. Das Verfahren ist in diesem Fall durch die folgenden Schritte gekennzeichnet:
  1. A. Stranggiessen der Legierung zu Barren mit einer Dicke von mehr als 300 mm,
  2. B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,
  3. C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,
  4. D. Abkühlen der Barren auf eine Zwischentemperatur von 400 bis 410 °C,
  5. E. Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,
  6. F. Abkühlen der Barren auf Raumtemperatur,
  7. G. Warmaushärten der Barren,
  8. H. Verwenden der warmausgehärteten Barren als Platten.


[0015] Bevorzugt erfolgt das Abkühlen der Barren von der Homogenisierungstemperatur von 470 bis 490°C auf die Zwischentemperatur von 400 bis 410 °C an ruhender Luft.

[0016] Das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C sollte einerseits so rasch erfolgen, dass der Festigkeitsverlust möglichst gering ist. Andererseits darf die Abkühlungsgeschwindigkeit auch nicht zu hoch sein, da sonst zu hohe Eigenspannungen aufgebaut werden.

[0017] Das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C erfolgt bevorzugt an bewegter Luft (forced air cooling) oder in einem Wasser/Luft-Sprühnebel.

[0018] Bei der Wahl der Abkühlungsbedingungen muss auch die Barrendicke berücksichtigt werden. Es liegt jedoch im Rahmen des fachmännischen Handelns, für ein vorgegebenes Barrenformat die optimalen Abkühlungsbedingungen anhand einfacher Versuche zu ermitteln.

[0019] Die niedrige Aufheizgeschwindigkeit im Temperaturbereich zwischen 170 und 410°C beim Aufheizen der Barren auf die Homogenisierungstemperatur ist ein wesentliches Merkmal des erfindungsgemässen Verfahrens. Im erwähnten Temperaturbereich, der auch als Heterogenisierungsintervall bezeichnet wird, ist die AlZnMg-Gleichgewichtsphase (T-Phase) stabil. Das langsame Durchlaufen des Heterogenisierungsintervalls führt zu einem fein dispersen Ausscheiden der T-Phase, wobei die Phasengrenzflächen der ausgeschiedenen Teilchen der T-Phase bevorzugte Keimstellen für die bei einer Temperatur von etwa 350°C einsetzende Ausscheidung von Al3Zr-Teilchen bilden. Beim weiteren Aufheizen der Barren auf die Homogenisierungstemperatur lösen sich die zuvor ausgeschiedenen Teilchen der T-Phase auf und zurück bleibt eine gleichmässige Verteilung der feinen, submikronen Al3Zr-Ausscheidungen, welche bevorzugt an den ursprünglichen Teilchengrenzen der T-Phase sowie an Subkomgrenzen liegen und damit eine homogene Verteilung ergeben. Diese feinen Al3Zr-Teilchen bewirken eine sowohl eine starke Wachstumshemmung bei der Rekristallisation der Platten bei der Lösungsglühung als auch bei der Homogenisierungsglühung von Gussbarren, und es resultiert das gewünschte isotrope Korngefüge im Barren. Das kornfeinende Zusatzelement Zr wird damit optimal genutzt.

[0020] Ein weiteres wesentliches Merkmal des erfindungsgemässen Verfahrens ist die kombinierte Homogenisierungs- und Lösungsglühung mit anschliessender zweistufiger Abkühlung, wogegen bei den üblichen Verfahren nach dem Stand der Technik zur Erzielung einer auch in der Barrenmitte noch akzeptablen Festigkeit eine separate Lösungsglühung mit nachfolgendem Abschrecken bei hoher Abkühlungsgeschwindigkeit erforderlich ist.

[0021] Unter dem Begriff "Abkühlen an bewegter Luft" bzw. "forced air cooling" wird hier eine üblicherweise durch Ventilatoren unterstützte Luftabkühlung verstanden, die zu einem Wärmeübergangskoeffizienten an der Barrenoberfläche von etwa 40 W/m2K führt. Das Abkühlen in einem Wasser/Luft-Sprühnebel führt zu einem etwas höheren Wärmeübergangskoeffizienten an der Barrenoberfläche.

[0022] Die erfindungsgemässe Legierung weist eine geringe Abschreckempfindlichkeit auf. Bei der Herstellung dicker Platten ist der Festigkeitsverlust im Plattenkern trotz der verhältnismässig milden Abkühlungsbedingungen kleiner als bei den Legierungen nach dem Stand der Technik. Es hat sich zudem überraschenderweise herausgestellt, dass dieser Effekt bei direkt aus Stranggussbarren gefertigten Platten noch viel ausgeprägter ist als bei warmgewalzten Platten.

[0023] Bei der Herstellung der dicken Platten hat sich die zweistufige Abkühlung von der Homogenisierungstemperatur auf Raumtemperatur als besonders vorteilhaft zur Erzielung einer Struktur mit geringen Eigenspannungen herausgestellt.

[0024] Zum Warmaushärten wird bevorzugt nacheinander eine Raumtemperaturlagerung, eine erste Wärmebehandlung bei einer ersten Temperatur und eine zweite Wärmebehandlung bei einer gegenüber der ersten Temperatur höheren zweiten Temperatur durchgeführt, z.B.
  • 1 bis 30 Tage Lagerung bei Raumtemperatur,
  • 6 bis 10 h Lagerung bei einer Temperatur von 90 bis 100°C,
  • 8 bis 22 h Lagerung bei einer Temperatur von 150 bis 160°C.


[0025] Besonders bevorzugt ist die Warmaushärtung zum Wärmebehandlungszustand T76.

[0026] Der Anwendungsbereich der erfindungsgemässen Legierung und der aus dieser hergestellten dicken Platten ergibt sich aus dem vorstehend beschriebenen Eigenschaftsspektrum. Die Platten eignen sich insbesondere für den Formenbau, d.h. für die Fertigung von Kunststoff-Spritzgiessformen, aber auch allgemein für den Maschinen-, Werkzeug- und Formenbau.

[0027] Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in
  • Fig. 1 die Verteilung der Brinell-Härte über einen Teil des Querschnitts eines Stranggussbarrens mit einem Querschnitt von 440 mm x 900 mm nach Ventilatorkühlung.
  • Fig. 2 den gemessenen Temperaturverlauf bei einem Stranggussbarren mit einem Querschnitt von 440 mm x 900 mm an der Oberfläche und in der Mitte bei Ventilatorkühlung;
  • Fig. 3 den berechneten Verlauf der inneren Temperaturgradienten beim Temperaturverlauf von Fig. 2;
  • Fig. 4 den berechneten Temperaturverlauf bei einem Stranggussbarren mit einem Querschnitt von 1000 mm x 1200 mm an der Oberfläche und in der Mitte bei Ventilatorkühlung;
  • Fig. 5 den berechneten Verlauf der inneren Temperaturgradienten beim Temperaturverlauf von Fig. 4;

Beispiel



[0028] Eine Legierung mit der Zusammensetzung (in Gew.-%): 0.040 Si, 0.08 Fe, 0.14 Cu, 0.0046 Mn, 2.69 Mg, 0.0028 Cr, 4.69 Zn, 0.017 Ti, 0.16 Zr, Rest Al, wurde in industriellem Massstab zu einem Stranggussbarren mit einem Querschnitt von 440 x 900 mm vergossen. Der Barren wurden innerhalb von 30 h auf eine Temperatur von 480°C aufgeheizt, wobei darauf geachtet wurde, dass die Aufheizgeschwindigkeit im Bereich zwischen 170 und 410°C weniger als 20°C/h betrug. Die Homogenisierung des Barrens zum Ausgleich der erstarrungsbedingten Kristallseigerungen erfolgte durch Halten des Barrens während 12h bei 480°C.

[0029] Der homogenisierte Barren wurden in einer ersten Stufe an ruhender Luft von der Homogenisierungstemperatur auf eine Zwischentemperatur von 400°C und anschliessend in einer zweiten Stufe mit Ventilatoren von 400°C auf 100°C abgekühlt. Die weitere Abkühlung auf Raumtemperatur erfolgte wiederum an ruhender Luft.

[0030] Der Barren wurde nach 14 Tagen Lagerung bei Raumtemperatur während 8h bei 95°C und anschliessend während 18h bei 155°C zum überhärteten Zustand T76 warm ausgehärtet.

[0031] An senkrecht zur Barrenlängsrichtung herausgesägten Proben der warmausgehärteten Barren wurde die Brinell-Härte über den Barrenquerschnitt bestimmt. Die in Fig. 1 dargestellten Bereiche gleicher Härte zeigen deutlich den geringen Härte- bzw. Festigkeitsverlust im Barrenkern gegenüber der Barrenoberfläche.

[0032] In Fig. 2 sind die für die Oberfläche (O) und den Kern (K) eines Barrens mit einem Querschnitt von 440 x 900 mm berechneten Temperatur-Zeit-Kurven bei einer Ventilatorabkühlung und in Fig. 3 die daraus abgeleiteten Gradienten zwischen der Temperatur TK im Barrenkern und der Temperatur To an der Barrenoberfläche dargestellt. Zum Vergleich zeigen die Fig. 4 und 5 die entsprechenden Kurven für einen Barren mit einem Querschnitt von 1000 x 1200 mm. Die Ergebnisse zeigen, dass mit dem erfindungsgemässen Verfahren hergestellte Barren mit einer Dicke bis zu 1000 mm immer noch die an Platten zur Fertigung von Kunststoff-Spritzgiessformen bezüglich der mechanischen Festigkeit gestellten Anforderungen erfüllen dürften.


Ansprüche

1. Aluminiumlegierung mit hoher Festigkeit und geringer Abschreckempfindlichkeit, mit

4,6 bis 5,2 Gew.-% Zn

2,6 bis 3,0 Gew.-% Mg

0.1 bis 0,2 Gew.-% Cu

0,05 bis 0,2 Gew.-% Zr

max. 0,05 Gew.-% Mn

max. 0,05 Gew.-% Cr

max. 0,15 Gew.-% Fe

max. 0,15 Gew.% Si

max. 0,10 Gew.-% Ti

und Aluminium als Rest mit herstellungsbedingten Verunreinigungen, einzeln max. 0,05 Gew.%, insgesamt max. 0,15 Gew.-%.
 
2. Aluminiumlegierung nach Anspruch 1, gekennzeichnet durch 4,6 bis 4,8 Gew.-% Zn.
 
3. Aluminiumlegierung nach Anspruch 1 oder 2, gekennzeichnet durch 2,6 bis 2,8 Gew.-% Mg.
 
4. Aluminiumlegierung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch 0,10 bis 0,15 Gew.-% Cu.
 
5. Aluminiumlegierung nach einem der Ansprüche 1 bis 4, gekennzeichnet durch 0,08 bis 0,18 Gew.% Zr.
 
6. Aluminiumlegierung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch max. 0,03 Gew.-% Mn.
 
7. Aluminiumlegierung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch max. 0,02 Gew.-% Cr.
 
8. Aluminiumlegierung nach einem der Ansprüche 1 bis 7, gekennzeichnet durch max. 0,12 Gew.-% Fe.
 
9. Aluminiumlegierung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch max. 0,12 Gew.-% Si.
 
10. Aluminiumlegierung nach einem der Ansprüche 1 bis 9, gekennzeichnet durch max. 0,05 Gew.-% Ti.
 
11. Verfahren zur Herstellung von Platten mit einer Dicke bis zu 300 mm aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch die Schritte

A. Stranggiessen der Aluminiumlegierung zu Barren mit einer Dicke von mehr als 300 mm,

B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,

C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,

D. Warmwalzen der homogenisierten Barren zu Platten,

E. Abkühlen der Platten von einer Temperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,

F. Abkühlen der Platten auf Raumtemperatur,

H. Warmaushärten der Platten.


 
12. Verfahren zur Herstellung von Platten mit einer Dicke von mehr als 300 mm aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch die Schritte

A. Stranggiessen der Legierung zu Barren mit einer Dicke von mehr als 300 mm,

B. Aufheizen der Barren mit einer Aufheizgeschwindigkeit von max. 20°C/h zwischen 170 und 410°C auf eine Temperatur von 470 bis 490°C,

C. Homogenisieren der Barren während einer Zeitdauer von 10 bis 14 h bei einer Temperatur von 470 bis 490°C,

D. Abkühlen der Barren auf eine Zwischentemperatur von 400 bis 410 °C,

E. Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C,

F. Abkühlen der Barren auf Raumtemperatur,

G. Warmaushärten der Barren,

H. Verwendung der warmausgehärteten Barren als Platten.


 
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Abkühlen der Barren von der Homogenisierungstemperatur von 470 bis 490°C auf die Zwischentemperatur von 400 bis 410 °C an ruhender Luft erfolgt.
 
14. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C an bewegter Luft (forced air cooling) erfolgt.
 
15. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Abkühlen der Barren von der Zwischentemperatur von 400 bis 410°C auf eine Temperatur von weniger als 100°C in einem Wasser/Luft-Sprühnebel erfolgt.
 
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass zum Warmaushärten nacheinander eine Raumtemperaturlagerung, eine erste Wärmebehandlung bei einer ersten Temperatur und eine zweite Wärmebehandlung bei einer gegenüber der ersten Temperatur höheren zweiten Temperatur durchgeführt wird.
 
17. Verfahren nach Anspruch 16, gekennzeichnet durch

- 1 bis 30 Tage Lagerung bei Raumtemperatur,

- 6 bis 10 h Lagerung bei einer Temperatur von 90 bis 100°C,

- 8 bis 22 h Lagerung bei einer Temperatur von 150 bis 160°C.


 
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Warmaushärtung zum Wärmebehandlungszustand T76 erfolgt.
 
19. Verwendung einer mit dem Verfahren nach einem der Ansprüche 11 bis 18 hergestellten Platte für den Maschinen-, Werkzeug- und Formenbau, insbesondere für die Fertigung von Kunststoff-Spritzgiessformen.
 


Claims

1. Aluminium alloy exhibiting high strength and low quench sensitivity having

4.6 to 5.2 wt.% Zn

2.6 to 3.0 wt.% Mg

0.1 to 0.2 wt.% Cu

0.05 to 0.2 wt.% Zr

max. 0.05 wt.% Mn

max. 0.05 wt.% Cr

max. 0.15 wt.% Fe

max. 0.15 wt.% Si

max. 0.10 wt.% Ti

the remainder being impurities due to the manufacturing process, individually at maximum 0.05 wt.%, in total at maximum 0.15 wt.%.
 
2. Aluminium alloy according to claim 1, characterised by way of 4.6 to 4.8 wt.% Zn.
 
3. Aluminium alloy according to claim 1 or 2, characterised by way of 2.6 to 2.8 wt.% Mg.
 
4. Aluminium alloy according to one of the claims 1 to 3, characterised by way of 0.10 to 0.15 wt.% Cu.
 
5. Aluminium alloy according to one of the claims 1 to 4, characterised by way of 0.08 to 0.18 wt.% Zr.
 
6. Aluminium alloy according to one of the claims 1 to 5, characterised by way of a maximum concentration of 0.03 wt.% Mn.
 
7. Aluminium alloy according to one of the claims 1 to 5, characterised by way of a maximum concentration of 0.02 wt.% Cr.
 
8. Aluminium alloy according to one of the claims 1 to 7, characterised by way of a maximum concentration of 0.12 wt.% Fe.
 
9. Aluminium alloy according to one of the claims 1 to 8, characterised by way of a maximum concentration of 0.12 wt.% Si.
 
10. Aluminium alloy according to one of the claims 1 to 9, characterised by way of a maximum concentration of 0.05 wt.% Ti.
 
11. Process for manufacturing plates of thickness up to 300 mm out of an aluminium alloy according to one of the claims 1 to 10, characterised by way of the steps

A. Continuous casting the aluminium alloy as an ingot with a thickness greater than 300 mm,

B. Heating the ingot at a maximum heating rate of 20°C/h between 170 and 410°C to a temperature of 470 to 490°C,

C. Homogenising the ingot for an interval of 10 to 14 h at a temperature of 470 to 490°C,

D. Hot rolling the homogenised ingot to plate,

E. Cooling the plate from a temperature of 400 to 410°C to a temperature of less than 100°C,

F. Cooling the plate to room temperature

G. Artificially age-hardening the plate.


 
12. Process for manufacturing plate with a thickness of greater than 300 mm out of an aluminium alloy according to one of the claims 1 to 10 is characterised by way of the steps

A. Continuous casting the aluminium alloy as an ingot with a thickness greater than 300 mm,

B. Heating the ingot at a maximum heating rate of 20°C/h between 170 and 410°C to a temperature of 470 to 490°C,

C. Homogenising the ingot for an interval of 10 to 14 h at a temperature of 470 to 490°C,

D. Cooling the ingot to an intermediate temperature of 400 to 410°C,

E. Cooling the ingot from the intermediate temperature of 400 to 410°C to a temperature below 100°C,

F. Cooling the ingot to room temperature,

G. Artificially age-hardening the ingot,

H. Use of the artificially age-hardened ingot as plate.


 
13. Process according to claim 12, characterised in that the cooling of the ingot from the homogenisation temperature of 470 - 490°C to the intermediate temperature of 400 - 410°C takes place in still air.
 
14. Process according to claim 11 or 12, characterised in that the cooling of the ingot from the intermediate temperature of 400 - 410°C to a temperature below 100°C takes place by forced air cooling.
 
15. Process according to claim 11 or 12, characterised in that the cooling of the ingot from the intermediate temperature of 400 - 410°C to a temperature below 100°C takes place in a water-air-mist spray.
 
16. Process according to one of the claims 11 to 15, characterised in that the artificial age-hardening is carried out, after storage at room temperature, in a first heat-treatment at a first temperature, followed by a second heat-treatment at a second temperature which is higher than the first temperature.
 
17. Process according to claim 16, characterised by way of

- 1-30 days storage at room temperature,

- 6 - 10 h at a temperature of 90 - 100°C

- 8 - 22 h at a temperature of 150-160°C.


 
18. Process according to claim 17, characterised in that the artificial age-hardening is carried out resulting in a heat-treatment condition T76.
 
19. Use of a plate manufactured by the process according to one of the claims 11 to 18 for machine, tool and mould production, in particular for plastic injection moulding moulds.
 


Revendications

1. Alliage d'aluminium à dureté élevée et sensibilité à la trempe faible, avec

4,6 à 5,2 % en poids de Zn

2,6 à 3,0 % en poids de Mg

0,1 à 0,2 % en poids de Cu

0,05 à 0,2 % en poids de Zr

max 0,05 % en poids de Mn

max 0,05 % en poids de Cr

max 0,15 % en poids de Fe

max 0,15 % en poids de Si

max 0,10 % en poids de Ti

le reste étant de l'aluminium et les impuretés conditionnées par la préparation, en particulier maximum 0,05% en poids, au total maximum 0,15% en poids.
 
2. Alliage d'aluminium selon la revendication 1, caractérisé par 4,6 à 4,8% en poids de Zn.
 
3. Alliage d'aluminium selon la revendication 1 ou 2, caractérisé par 2,6 à 2,8% en poids de Mg.
 
4. Alliage d'aluminium selon l'une des revendications 1 à 3, caractérisé par 0,10 à 0,15% en poids de Cu.
 
5. Alliage d'aluminium selon l'une des revendications 1 à 4, caractérisé par 0,08 à 0,18% en poids de Zr.
 
6. Alliage d'aluminium selon l'une des revendications 1 à 6, caractérisé par maximum 0,03% en poids de Mn.
 
7. Alliage d'aluminium selon l'une des revendications 1 à 5, caractérisé par maximum 0,02% en poids de Cr.
 
8. Alliage d'aluminium selon l'une des revendications 1 à 7, caractérisé par maximum 0,12% en poids de Fe.
 
9. Alliage d'aluminium selon l'une des revendications 1 à 8, caractérisé par maximum 0,12% en poids de Si.
 
10. Alliage d'aluminium selon l'une des revendications 1 à 9, caractérisé par maximum 0,05% en poids de Ti.
 
11. Procédé de préparation de plaques ayant une épaisseur de jusqu'à 300 mm en un alliage d'aluminium selon l'une des revendications 1 à 10, caractérisé par les étapes de

A. Coulée continue de l'alliage d'aluminium en lingots avec une épaisseur de plus de 300 mm,

B. Chauffage des lingots à une vitesse de chauffage de maximum 20°C/heure entre 170 et 410°C, jusqu'à une température de 470 à 490°C,

C. Homogénéisation des lingots pendant une période allant de 10 à 14 heures à une température de 470 à 490°C,

D. Laminage à chaud des lingots homogénéisés en plaques,

E. Refroidissement des plaques d'une température de 400 à 410°C jusqu'à une température inférieure à 100°C,

F. Refroidissement des plaques jusqu'à la température ambiante,

H. Traitement par revenu des plaques.


 
12. Procédé de préparation de plaques ayant une épaisseur de plus de 300 mm en un alliage d'aluminium selon l'une des revendications 1 à 10, caractérisé par les étapes de

A. Coulée continue de l'alliage d'aluminium en lingots avec une épaisseur de plus de 300 mm,

B. Chauffage des lingots à une vitesse de chauffage de maximum 20°C/heure entre 170 et 410°C, jusqu'à une température de 470 à 490°C,

C. Homogénéisation des lingots pendant une période allant de 10 à 14 heures à une température de 470 à 490°C,

D. Refroidissement des lingots jusqu'à une température intermédiaire de 400 à 410°C,

E. Refroidissement des lingots de la température intermédiaire de 400 à 410°C jusqu'à une température inférieure à 100°C,

F. Refroidissement des lingots jusqu'à la température ambiante,

G. Traitement par revenu des lingots,

H. Utilisation des lingots traités par revenu comme des plaques.


 
13. Procédé selon la revendication 12, caractérisé en ce que le refroidissement des lingots depuis la température d'homogénéisation de 470 à 490°C jusqu'à la température intermédiaire de 400 à 410°C est réalisé sous air au repos.
 
14. Procédé selon la revendication 11 ou 12, caractérisé en ce que le refroidissement des lingots depuis la température intermédiaire de 400 à 410°C jusqu'à une température inférieure à 100°C est réalisé sous air pulsé (forced air cooling).
 
15. Procédé selon la revendication 11 ou 12, caractérisé en ce que le refroidissement des lingots depuis la température intermédiaire de 400 à 410°C jusqu'à une température inférieure à 100°C est réalisé sous un brouillard de fines gouttelettes d'eau/air.
 
16. Procédé selon l'une des revendications 11 à 15, caractérisé en ce que pour le traitement par revenu, successivement, un stockage à température ambiante, un premier traitement thermique à une première température et un deuxième traitement thermique à une deuxième température supérieure à la première température, sont réalisés.
 
17. Procédé selon la revendication 16, caractérisé par

- 1 à 30 jours à température ambiante,

- stockage de 6 à 10 heures à une température de 90 à 100°C,

- stockage de 8 à 22 heures à une température de 150 à 160°C.


 
18. Procédé selon la revendication 17, caractérisé en ce que le traitement par revenu est réalisé pour l'état de traitement thermique T76.
 
19. Utilisation d'une plaque préparée selon le procédé selon l'une des revendications 11 à 18, pour la construction de machines, d'outils et de moules, en particulier pour l'achèvement des moules pour coulée par injection de matières plastiques.
 




Zeichnung














Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente