(19)
(11) EP 1 725 337 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
18.07.2007 Bulletin 2007/29

(21) Application number: 05706812.4

(22) Date of filing: 08.03.2005
(51) International Patent Classification (IPC): 
B04B 1/20(2006.01)
(86) International application number:
PCT/DK2005/000151
(87) International publication number:
WO 2005/084814 (15.09.2005 Gazette 2005/37)

(54)

A CENTRIFUGE FOR THE SEPARATION OF A SUPPLIED LIQUID COMPRISING AN EMULSION OF TWO LIQUID PHASES WITH DIFFERENT DENSITIES INTO A LIGHT LIQUID PHASE AND A HEAVY LIQUID PHASE

ZENTRIFUGE ZUR TRENNUNG EINER EINE EMULSION AUS ZWEI FLÜSSIGEN PHASEN MIT VERSCHIEDENEN DICHTEN ENTHALTENDEN ZUGEFÜHRTEN FLÜSSIGKEIT IN EINE LEICHTE FLÜSSIGE PHASE UND EINE SCHWERE FLÜSSIGE PHASE

CENTRIFUGEUSE PERMETTANT DE SEPARER UN LIQUIDE AMENE COMPRENANT UNE EMULSION DE DEUX PHASES LIQUIDES DE DENSITES DIFFERENTES EN UNE PHASE LIQUIDE LEGERE ET UNE PHASE LIQUIDE LOURDE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(30) Priority: 09.03.2004 DK 200400388

(43) Date of publication of application:
29.11.2006 Bulletin 2006/48

(73) Proprietor: Alfa Laval Copenhagen A/S
2860 Soeborg (DK)

(72) Inventors:
  • NICOLAJSEN, Carl, Aage
    DK-3310 Ølsted (DK)
  • NIELSEN, Tue, Korremann
    DK-3600 Frederikssund (DK)
  • MADSEN, Bent
    DK-2820 Gentofte (DK)

(74) Representative: Joergensen, Bjoern Barker et al
Internationalt Patent-Bureau A/S Rigensgade 11
1316 Copenhagen K
1316 Copenhagen K (DK)


(56) References cited: : 
EP-A- 0 785 029
US-A- 4 362 620
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a centrifuge for the separation of a supplied liquid comprising an emulsion of two liquid phases with different densities into a light liquid phase and a heavy liquid phase, comprising an elongated drum adapted for rotation about its longitudinal axis, the drum having a substantially cylindrical separation chamber with an inlet for the supply of liquid for the separation chamber; first and second outlets from the separation chamber for the light and heavy liquid phases, respectively, the outlet for the light liquid phase being arranged at a first radial distance from the longitudinal or rotational axis, and the outlet for the heavy liquid phase being arranged at a second, greater radial distance from the rotational axis; and the separation chamber having arranged in it several radially extending barrier plates between the inlet and outlets in order to guide the flow of liquid from the inlet to the outlets, the barrier plates having respective overflow and/or underflow edges at different radial distances from the rotational axis, where a first barrier plate extends from a level above, or closer to the rotational axis than, the highest level of filling for the liquid in the separation chamber to a third radial distance from the rotational axis, the third radial distance being smaller than the distance from the rotational axis to the inner wall in the separation chamber of the drum and greater than the second radial distance in order to define a first separation area in the separation chamber, in that, during operation of the centrifuge, the first barrier plate determines the greatest distance from the rotational axis for an interface between the light and heavy liquid phases in the separation chamber, and where a second barrier plate is placed between the first barrier plate and the outlet for the heavy liquid phase, in relation to the flow, and has an underflow edge at a fourth radial distance from the rotational axis greater than the second radial distance in order to force the heavy liquid phase to pass the fourth radial distance before reaching its outlet. Usually, the rotational axis will be horizontal. The first barrier plate ensures that the liquid entering the centrifuge passes through the first separation area.

    [0002] A centrifuge of this type is known from US-A-4 362 620, which describes a centrifuge (Figure 6 of the document) having a drum, through which a central co-axial body extends, in which the inlet is placed. The first and second barrier plates extend radially from the body and the outlet for the light liquid phase is placed between the two barrier plates. The first barrier plate together with an end wall in the separation chamber form an inlet compartment or first separation area, which is closed radially inwardly but open radially outwardly towards the remaining part of the separation chamber. An emulsion guided into the inlet compartment through the inlet will have a certain residence time there and will be separated into the light and the heavy liquid phases. The light liquid phase will accumulate radially at the innermost of the inlet compartment and force the inflowing emulsion out at a greater radius and thus to an area with greater G force, which will accelerate the separation of the heavy and the light liquid phases. While the heavy liquid phase can flow freely out of the inlet compartment, the light liquid phase will be trapped therein, until the inlet compartment is filled with light-phase-liquid. Thus, when the inlet compartment is filled with light liquid phase, this will begin to flow "under" the edge of the first barrier plate and "up" into a discharge compartment for the light liquid phase defined by the first and second barrier plates, in that the light liquid phase thus flows some of the way through an area with heavy liquid phase to an interface between the light and heavy liquid phases in this discharge compartment. The fact that the light liquid phase must flow some of the way through the heavy liquid phase renders this prior art disadvantageous, since a risk of re-mixing of the two liquid phases is involved which would impair the efficiency of the separation.

    [0003] US-A-4 362 620 corresponds to EP-A-18 474, the novelty report of which mentions US-A-1 870 608, which disclose a centrifugal separator with a separation chamber, from the inner area of which a separated liquid phase is guided some of the way radially outwards through a tube discharging into a small chamber in flow communication with the part of the separation chamber containing the heavy liquid phase. From the small chamber, the light liquid phase is guided back towards the centre of the separator to an outlet.

    [0004] Other examples of centrifuges for the separation of emulsions are known from US-A-5 156 751 and US-A-5 624 371.

    [0005] US-A-5 156 751 discloses a centrifuge where the light liquid phase is discharged directly from the inlet compartment in accordance with the above-mentioned technique. The centrifuge disclosed in this document is a decanter centrifuge with a transportation worm for guiding a heavier solid phase to a third outlet located outside the separation chamber, as this is defined by a baffle plate at its one end, which is thus located between the separation chamber and the third outlet, and is defined by a barrier plate at its other end.

    [0006] Baffle plates of the type disclosed in US-A-5 156 751 are known in many forms, among others from WO-A-97/22411.

    [0007] US-A-5 624 371 discloses a centrifuge with no central body in the drum, in which light and heavy liquid phases are guided from an inlet compartment above or below barrier plate edges, respectively, to discharge compartments, from which the liquid phases are removed by means of scoop elements.

    [0008] It is an object of the invention to provide a centrifuge enabling more reliable separation of a heavy and a light liquid phase in an emulsion.

    [0009] This is achieved by a centrifuge of the kind mentioned in the introduction, which is characterized in that a third barrier plate between the first barrier plate and the outlet for the light liquid phase extends from a fifth radial distance from the rotational axis, which is smaller than the first radial distance but greater than the radius of the highest level of filling, to a sixth radial distance from the rotational axis, which is greater than the third radial distance, whereby the third barrier plate and the first barrier plate define a second separation area in the separation chamber, and in that the outlet for the light liquid phase is arranged downstream from the third barrier plate from a third separation area in the separation chamber.

    [0010] By this arrangement of the third barrier plate a space or second separation area between the first and the third barrier plate is achieved, from which the light and the heavy liquid phases flow in separate directions on to the remaining separation chamber or the third separation chamber, and the interface between the heavy and the light liquid phases in the second separation area may be brought close to the underflow edge of the first barrier plate, by means of appropriate dimensioning of said radial distances relative to the densities of the two liquid phases, thus avoiding the light liquid phase having to flow far through the heavy liquid phase.

    [0011] The inlet may appropriately be placed at one end of the separation chamber and the outlets may appropriately be placed at the other end of the separation chamber. This results in the emulsion having to flow through the separation chamber, whereby a certain uniform residence time in the separation chamber is achieved for each emulsion volume.

    [0012] The centrifuge may be a decanter centrifuge with an elongated central body located in the separation chamber and co-axial in relation to the drum, the body containing the inlet and carrying a transportation worm for the transportation of a heavy relatively solid phase towards a third outlet. Thus, the body preferably carries a baffle plate between the inlet and the third outlet, the baffle plate bridging the space between two adjacent worm windings and blocking part of this space, as it extends from the body to a radial distance from the rotational axis, which is greater than the third radial distance over the entire extent of the baffle plate from one worm winding to the other. Thus, flow of light liquid phase out of the required end of the inlet compartment is ensured.

    [0013] Preferably, the barrier plates are substantially imperforated, and in case a central body is present, the first barrier plate may be tightly fitted to the body.

    [0014] Preferably, along the flow path of the emulsion, surface members are provided for the provision of a larger area of friction. These surface members are thus members whose only function in relation to the emulsion is to increase the area it sweeps (the area of friction) on its way from the inlet to the outlets. Such an increased area of friction will enhance the emulsion separating attributes of the centrifuge.

    [0015] In the following, the invention will be explained by means of examples of embodiments with reference to the schematic drawings, in which:

    Figure 1 illustrates the principles of a centrifuge in accordance with the invention;

    Figure 2 shows a section through a decanter centrifuge in accordance with the invention;

    Figure 3 shows a section through a variant of the decanter centrifuge of Figure 2;

    Figure 4 shows a section through another decanter centrifuge in accordance with the invention; and

    Figure 5 illustrates another embodiment of a centrifuge with no transportation worm.



    [0016] The figures all show a centrifuge for the separation of a light liquid phase and a heavy liquid phase in a supplied liquid, the liquid containing or being an emulsion of two liquid phases with different densities. In all the examples shown, the centrifuge has an elongated drum 1, which in a manner known per se is journalled and provided with a drive in order for it to be able to rotate about its horizontal longitudinal axis CL.

    [0017] In the following, reference is made to Figure 1 in order to explain the invention in general.

    [0018] In the drum 1, a cylindrical separation chamber 2 with an inlet 3 for the supply of liquid is located. There are outlets 4 and 5 from the separation chamber 2 for the light and the heavy liquid phases, respectively, and the outlet 4 for the light liquid phase is arranged at a first radial distance R1 from the longitudinal or rotational axis CL, whereas the outlet 5 for the heavy liquid phase is arranged at a second, greater radial distance R2 from the rotational axis CL.

    [0019] In the separation chamber 2, between the inlet 3 and the outlets 4 and 5, several barrier plates 6, 9, 10 with different radial extents are arranged in order to block the flow path of the liquid from the inlet to the outlets at different distance intervals from the rotational axis CL to thereby guide the flow of liquid from the inlet to the outlets. The barrier plates have respective overflow and/or underflow edges at different radial distances from the rotational axis CL.

    [0020] As can be seen, an elongated central body 16 located in the separation chamber 2 and co-axial relative to the drum 1 carries, at least indirectly, some of the barrier plates and the inlet 3 discharges from the body 16.

    [0021] Thus, a first barrier plate 6 extends from a level above, or closer to the rotational axis CL than, the highest level of filling R0 for liquid in the separation chamber 2 and to an underflow edge at a third distance R3 from the rotational axis CL, which third radial distance R3 is smaller than the distance from the rotational axis CL to the inner cylindrical wall 7 in the separation chamber 2 of the drum and greater than the second radial distance R2. The first barrier plate 6 may selectively be tightly fitted to the body 16. Thus, the first barrier plate 6 defines a first separation area 8 in the separation chamber at the inlet 3. During operation of the centrifuge, the first barrier plate 6 determines the greatest distance from the rotational axis CL for an interface between the light and heavy liquid phases in the separation chamber 2.

    [0022] The first barrier plate 6 may extend into the body 16 or have an extension within the body 16, the highest possible level of filling being within the body.

    [0023] A second barrier plate 9 is placed between the first barrier plate 6 and the outlet 5 for the heavy liquid phase, and this second barrier plate 9 has an underflow edge located at a fourth radial distance R4 from the rotational axis CL, which at least is greater than the second radial distance R2, as the second barrier plate 9 must ensure that the light liquid phase is not permitted access to the outlet 5 of the heavy liquid phase.

    [0024] A third barrier plate 10 is arranged between the first barrier plate 6 and the outlet 4 of the light liquid phase. This third barrier plate 10 extends from an overflow edge at a fifth radial distance R5 from the rotational axis, which is smaller than the first radial distance R1 but greater than the radius of the highest level of filling R0, to an underflow edge at a sixth radial distance R6 from the rotational axis, which is greater than the third radial distance R3.

    [0025] The outlet 4 for the light liquid phase is arranged downstream from the second barrier plate 9.

    [0026] In this way, both the outlet 5 for the heavy liquid phase and the outlet 4 for the light liquid phase are arranged downstream from the second barrier plate 9. Therefore, a second separation area 11 is provided between the first and the third barrier plate 6 and 10.

    [0027] With continued reference to Figure 1, the centrifuge operates as follows:

    [0028] During operation, an emulsion containing liquid is guided through the inlet 3 into the first separation area 8, in which the emulsion is separated into a heavy liquid phase seeking towards the wall 7 of the drum 1 and a light liquid phase gathering on top of the heavy liquid phase. Since R3 is greater than R2 (the radius of the outlet 5 for the heavy liquid phase), the heavy liquid phase will fill the separation compartment 2 at the first separation area 8 up to a separation line 12 between the light and the heavy liquid phases. This separation line will position itself at the radius R3, because the light liquid phase will flow under the first barrier plate 6 towards its outlet 4, if that radius is exceeded.

    [0029] From the first separation area 8, the light liquid phase flows to the second separation area 11.

    [0030] By appropriate dimensioning of the above radial distances R1-R6 relative to the densities of the two liquid phases, it is possible for an interface 13 between the two liquid phases in the second separation area 11 to be close to the underflow edge of the first barrier plate 6, which is located at the radius R3. Therefore, the light liquid phase from the underflow edge of the first barrier plate 6 does not have to flow through a thick layer of the heavy liquid phase in order to be united with the amount of light liquid phase in the second separation area 11, and therefore substantially no re-mixing of the two liquid phases occur at that point. From the second separation area 11, the heavy liquid phase flows under the underflow edge of the third barrier plate 10 at the radius R6, and the light liquid phase flows over the overflow edge of the third barrier plate 10 at the radius R5, in their respective paths towards the outlets 5, 4. The paths of the liquid phases do not cross each other, after the second separation area 11.

    [0031] From the second separation area 11, the two liquid phases flow into a third separation area 14, in which an interface 15 positions between them. From the third separation area 14, the light liquid phase flows directly to its outlet 4, whereas the heavy liquid phase passes under the second barrier plate 9 at a distance R4 from the rotational axis CL. This distance must be so dimensioned that it is greater than the distance of the interface 15 from the rotational axis. The fourth radial distance R4 may thus appropriately equal the sixth radial distance R6.

    [0032] It should be understood that in the surfaces of separation 12, 13, 15, yet unseparated emulsion might be present.

    [0033] In the embodiments shown in Figures 1-4, the inlet 3 is placed at one end of the separation chamber 2 and the outlets 4, 5 are placed at the other end of the separation chamber 2 so that the emulsion must pass through the entire separation chamber.

    [0034] In the embodiments shown in Figures 2-4, the centrifuge is formed in a manner known per se as a decanter centrifuge, as the body 16 located in the separation chamber 2 carries a transportation worm 17 for the transportation of a heavy, relatively solid phase 18 towards a third outlet 19, which is also indicated in Figure 1. The body 16 carries a baffle plate 20 between the inlet 3 and the third outlet 19, which baffle plate 20 bridges the space between two adjacent worm windings and blocks part of this space, as it extends from the body 16 to a seventh radial distance R7 from the rotational axis CL, which is greater than the third radial distance R3 over the entire extent of the baffle plate 20 from one worm winding to the other.

    [0035] In the examples described, the barrier plates 6, 9 and 10 as well as the baffle plate 20 are imperforated.

    [0036] In the embodiment shown in Figure 2, the baffle plate 20 is a plane circular disc and the first and the third barrier plate 6 and 10 extend axially between two adjacent windings of the transportation worm 17, which carries the third barrier plate 10 on its own, whereas the first barrier plate is also, besides the windings, fitted tightly to the body 16.

    [0037] In fig. 3, the baffle plate 20 is also a plane circular disc, and the first barrier plate 6 extends axially as in the embodiment of Figure 2. On the other hand, the third barrier plate 10 is formed as part of a worm winding with the opposite direction of pitch relative to the transportation worm 17. The overflow edge is provided at a recess 21 in the barrier plate 10. Furthermore, in the first separation area 8, along the flow path of the emulsion, a friction surface member in the form of a low worm winding 22 is provided for the provision of a larger area of friction for the emulsion between the inlet 3 and the first barrier plate 6. The emulsion from the inlet can flow freely on all sides of the low worm winding 22. Alternatively or additionally, a friction surface member may be provided in the second separation area 11 or even in the third separation area 14.

    [0038] In Figure 4, the barrier plates 6 and 10 are formed in the same manner as in Figure 2, but the baffle plate 20' is formed as a worm winding extending from the upstream side of a transportation worm winding 17', follows the sense of rotation of the transportation worm but has a steeper pitch and joins the downstream side of a second transportation worm winding 17'' placed upstream from the first transportation worm winding 17'. At this point, upstream refers to the transportation direction of the transportation worm for solid phase towards the third outlet 19.

    [0039] In Figure 5, an embodiment with no transportation worm is shown, the outlets 4 and 5 for the light and the heavy liquid phases, respectively, are placed at either end of the drum 1. There is a certain symmetry in this construction of the centrifuge, as the inlet 3 and the first separation area 8 are placed approximately at the centre of the drum 1 relative to the longitudinal direction, the first separation area 8 is defined between two similar barrier plates 6 and 6' and there is a second separation area 11, 11' on either side of the first separation area 8 provided between two third barrier plates 10 and 10' and the first barrier plates 6 and 6'. Thus, two third separation areas 14 and 14' are also provided. In this embodiment, the second barrier plate 9 is placed adjacent the right, third separation area 14' in the figure. The two separation areas 14, 14' are in mutual flow communication: as for the light liquid phase through a tube connection 23 and as for the heavy liquid phase via the free connection along the inner wall 7 of the drum 1.


    Claims

    1. A centrifuge for the separation of a supplied liquid comprising an emulsion of two liquid phases having different densities into a light liquid phase and a heavy liquid phase, comprising an elongated drum (1) arranged to rotate about its longitudinal axis (CL) having
    a substantially cylindrical separation chamber (2) with an inlet (3) for the supply of liquid to the separation chamber (2),
    a first and a second outlet (4 and 5) from the separation chamber (2) for the light and the heavy liquid phase, respectively, the outlet (4) for the light liquid phase being arranged at a first radial distance (R1) from the longitudinal or rotational axis (CL), and the outlet (5) for the heavy liquid phase being arranged at a second, greater radial distance (R2) from the rotational axis (CL), and where several radially extending barrier plates (6, 9, 10) are arranged in the separation chamber (2) between the inlet (3) and the outlets (4 and 5) in order to guide the flow of liquid from the inlet to the outlets, which barrier plates have respective overflow and/or underflow edges at different radial distances from the rotational axis (CL),
    a first barrier plate (6) extending from a level above, or closer to the rotational axis (CL) than, the highest level of filling (R0) for liquid in the separation chamber (2) and to a third radial distance (R3) from the rotational axis (CL), which third radial distance (R3) is smaller than the distance from the rotational axis (CL) to the inner wall (7) in the separation chamber (2) of the drum and greater than the second radial distance (R2) in order to define a first separation area (8) in the separation chamber, in which first separation area (8) the inlet (3) discharges, as the first barrier plate (6) determines the greatest distance from the rotational axis (CL), during operation of the centrifuge, for an interface (12) between the light and the heavy liquid phases in the separation chamber (2), and a second barrier plate (9), which is placed between the first barrier plate (6) and the outlet (5) for the heavy liquid phase relative to the flow and has an underflow edge at a fourth distance (R4) from the rotational axis greater than the second radial distance (R2) in order to force the heavy liquid phase to pass the fourth radial distance (R4) before reaching its outlet (5), characterized in that a third barrier plate (10) between the first barrier plate (6) and the outlet (4) for the light liquid phase extends from a fifth radial distance (R5) from the rotational axis, which is smaller than the first radial distance (R1) but greater than the radius for the highest level of filling (R0), to a sixth radial distance (R6) from the rotational axis, which is greater than the third radial distance (R3), whereby the third barrier plate (10) and the first barrier plate (6) define a second separation area (11) in the separation chamber (2), and in that the outlet (4) for the light liquid phase is arranged downstream from the third barrier plate (9) from a third separation area (14) in the separation chamber (2).
     
    2. The centrifuge of claim 1, characterized in that the inlet (3) is placed at one end of the separation chamber (2).
     
    3. The centrifuge of claims 1 or 2, characterized in that the outlets (4, 5) are placed at the other end of the separation chamber (2).
     
    4. The centrifuge of any of the claims 1-3, characterized by an elongated central body (16) arranged in the separation chamber (2) and co-axial in relation to the drum (1), the body containing the inlet (3) and carrying a transportation worm (17) for the transportation of a heavy relatively solid phase (18) towards a third outlet (19).
     
    5. The centrifuge of claim 4, characterized in that the body (16) carries a baffle plate (20, 20') between the inlet (3) and the third outlet (19), which baffle plate (20, 20') bridges the space between two adjacent worm windings and blocks part of this space, as it extends from the body (16) to a seventh radial distance (R7) from the rotational axis (CL) , which is greater than the third radial distance (R3) over the entire extent of the baffle plate (20, 20') from one worm winding to the other.
     
    6. The centrifuge of one of the claims 1-5, characterized in that the barrier plates (6, 9, 10) are substantially imperforated.
     
    7. The centrifuge of one of the claims 4-6, characterized in that the first barrier plate (6) is fitted tightly to the body (16).
     
    8. The centrifuge of one of the claims 1-7, characterized in that a friction surface member (22) is provided along at least part of the flow path of the emulsion for the provision of a larger friction area.
     
    9. The centrifuge of claim 8, characterized in that the friction surface member (22) is provided in the first and/or second separation area (8; 11).
     


    Ansprüche

    1. Zentrifuge zum Trennen einer eingefüllten, eine Emulsion aus zwei flüssigen Phasen mit unterschiedlichen Dichten umfassende Flüssigkeit in eine leichte flüssige Phase und eine schwere flüssige Phase, umfassend eine lang gezogenen Trommel (1), die dafür eingerichtet ist, um ihre Längsachse (CL) zu rotieren, aufweisend
    eine im Wesentlichen zylindrische Trennkammer (2), mit einem Einlass (3) zum Einfüllen der Flüssigkeit in die Trennkammer (2),
    einen ersten und einen zweiten Auslass (4 und 5) in der Trennkammer (2) für die leichte bzw. die schwere flüssige Phase, wobei der Auslass (4) für die leichte flüssige Phase angeordnet ist auf einem ersten radialen Abstand (R1) von der Längs- oder Drehachse (CL), und der Auslass (5) für die schwere flüssige Phase angeordnet ist auf einem zweiten, größeren radialen Abstand (R2) von der Drehachse (CL), und wobei mehrere sich radial erstreckende Barriereplatten (6, 9, 10) in der Trennkammer (2) zwischen dem Einlass (3) und den Auslässen (4 und 5) angeordnet sind, um den Flüssigkeitsstrom von dem Einlass zu den Auslässen zu leiten, wobei die Barriereplatten (6, 9, 10) in unterschiedlichen radialen Abständen von der Drehachse (CL) jeweils Überfluss-und/oder Unterflusskanten aufweisen,
    eine erste Barriereplatte (6), die sich erstreckt von einem Niveau, welches über oder näher bei der Drehachse (CL) liegt als der höchste Füllstand (R0) der Flüssigkeit in der Trennkammer (2), zu einem dritten radialen Abstand (R3) von der Drehachse (CL), wobei der dritte radiale Abstand (R3) kleiner ist als der Abstand von der Drehachse (CL) zu der Innenwand (7) der Trennkammer (2) der Trommel und größer ist als der zweite radiale Abstand (R2), um einen ersten Trennbereich (8) in der Trennkammer (2) auszubilden, in welchen der Einlass (3) einmündet, sodass die erste Barriereplatte (6) im Betrieb der Zentrifuge den größten Abstand einer Grenzfläche (12) zwischen der leichten und schweren flüssigen Phase in der Trennkammer von der Drehachse (CL) bestimmt,
    und eine zweite Barriereplatte (9), welche zwischen der ersten Barriereplatte (6) und dem Auslass (5) für die schwere flüssige Phase in Strömungsrichtung angeordnet ist, und welche in einem vierten Abstand (R4) von der Drehachse (CL), der größer ist als der zweite radiale Abstand (R2), eine Überflusskante aufweist, um die schwere flüssige Phase dazu zu zwingen, vor Erreichen ihres Auslasses (5) den vierten radialen Abstand (R4) zu passieren,
    dadurch gekennzeichnet,
    dass sich zwischen der ersten Barriereplatte (6) und dem Auslass (4) für die leichte flüssige Phase eine dritte Barriereplatte (10) erstreckt von einem fünften radialen Abstand (R5), welcher kleiner ist als der erste radiale Abstand (R1), aber größer ist als der Radius des höchsten Füllstands (R0), bis zu einem sechsten radialen Abstand (R6) von der Drehachse, welcher größer ist als der dritte radiale Abstand (R3), wobei die dritte Barriereplatte (10) und die erste Barriereplatte (6) einen zweiten Trennbereich (11) in der Trennkammer (2) ausbilden,
    und dass der Auslass (4) für die leichte flüssige Phase stromabwärts von der dritten Barriereplatte (10) und von einem dritten Trennbereich (14) in der Trennkammer (2) angeordnet ist.
     
    2. Zentrifuge nach Anspruch 1, dadurch gekennzeichnet, dass der Einlass (3) an einem Ende der Trennkammer (2) angeordnet ist.
     
    3. Zentrifuge nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Auslässe (4, 5) am anderen Ende der Trennkammer (2) angeordnet sind.
     
    4. Zentrifuge nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen lang gestreckten, mittigen Körper (16), der koaxial zur Trommel (1) in der Trennkammer (2) angeordnet ist, wobei der Körper (16) den Einlass (3) enthält und eine Förderschnecke (17) zum Fördern einer schweren, relativ festen Phase (18) in Richtung eines dritten Auslasses (19) aufweist.
     
    5. Zentrifuge nach Anspruch 4, dadurch gekennzeichnet, dass der Körper zwischen dem Einlass (3) und dem dritten Auslass (19) eine Leitplatte (20, 20') trägt, wobei die Leiterplatte (20, 20') den Raum zwischen zwei benachbarten Windungen der Schnecke überbrückt und Teile dieses Raumes sperrt, da sie sich erstreckt von dem Körper (16) zu einem siebten radialen Abstand (R7) von der Drehachse (CL), welcher größer ist als der dritte radiale Abstand (R3) über die gesamte Erstreckung der Leiterplatte (20, 20') von einer Windung der Schnecke zur nächsten.
     
    6. Zentrifuge nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Barriereplatten (6, 9, 10) im Wesentlichen unperforiert sind.
     
    7. Zentrifuge nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die erste Barriereplatte (6) eng auf dem Körper aufgesetzt ist.
     
    8. Zentrifuge nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zum Vorsehen eines größeren Reibungsbereiches zumindest entlang eines Teils des Strömungsweges ein Reibflächenelement (22) vorgesehen ist.
     
    9. Zentrifuge nach Anspruch 8, dadurch gekennzeichnet, dass das Reibflächenelement (22) in dem ersten und/oder zweiten Trennbereich (8, 11) vorgesehen ist.
     


    Revendications

    1. Centrifugeuse permettant de séparer un liquide amené comprenant une émulsion de deux phases liquides possédant des densités différentes en une phase liquide légère et une phase liquide lourde, comprenant un tambour allongé (1) agencé pour tourner autour de son axe longitudinal (CL) possédant :

    une chambre de séparation (2) essentiellement cylindrique dotée d'un orifice d'admission (3) pour l'alimentation en liquide de la chambre de séparation (2),

    un premier et un second orifice d'évacuation (4 et 5) depuis la chambre de séparation (2) respectivement pour la phase liquide légère et la phase liquide lourde, l'orifice d'évacuation (4) pour la phase liquide légère étant agencé au niveau d'une première distance radiale (R1) depuis l'axe longitudinal ou axe de rotation (CL), et l'orifice d'évacuation (5) pour la phase liquide lourde étant disposé au niveau d'une deuxième distance radiale plus importante (R2) depuis l'axe de rotation (CL), et où plusieurs plaques barrières s'étendant radialement (6, 9, 10) sont agencées dans la chambre de séparation (2) entre l'orifice d'admission (3) et les orifices d'évacuation (4 et 5) afin de guider l'écoulement du liquide depuis l'orifice d'admission jusqu'aux orifices d'évacuation, lesdites plaques barrières possédant respectivement des seuil de débordement et/ou de sous-écoulement à différentes distances radiales depuis l'axe de rotation (CL),

    une première plaque barrière (6) s'étendant depuis un niveau au-dessus du niveau de remplissage le plus élevé (R0) du liquide dans la chambre de séparation (2), ou plus proche de l'axe de rotation (CL) que ce dernier niveau, et vers une troisième distance radiale (R3) depuis l'axe de rotation (CL), ladite troisième distance radiale (R3) étant inférieure à la distance depuis l'axe de rotation (CL) jusqu'à la paroi interne (7) dans la chambre de séparation (2) du tambour, et supérieure à la deuxième distance radiale (R2) afin de définir une première zone de séparation (8) dans la chambre de séparation, dans cette première zone de séparation (8) l'orifice d'admission (3) décharge, alors que la première plaque barrière (6) détermine la distance la plus importante depuis l'axe de rotation (CL), lors du fonctionnement de la centrifugeuse, pour une interface (12) entre les phases liquides lourde et légère dans la chambre de séparation (2), et une deuxième plaque barrière (9), qui est placée entre la première plaque barrière (6) et l'orifice d'évacuation (5) pour la phase liquide lourde par rapport à l'écoulement et possède un seuil de sous-écoulement au niveau d'une quatrième distance (R4) depuis l'axe de rotation supérieure à la deuxième distance radiale (R2) afin d'obliger la phase liquide lourde à dépasser la quatrième distance radiale (R4) avant d'atteindre son orifice d'évacuation (5), caractérisée en ce qu'une troisième plaque barrière (10) entre la première plaque barrière (6) et l'orifice d'évacuation (4) pour la phase liquide légère s'étend depuis une cinquième distance radiale (R5) depuis l'axe de rotation, qui est inférieure à la première distance radiale (R1) mais supérieure au rayon du niveau de remplissage le plus élevé (R0), jusqu'à une sixième distance radiale (R6) depuis l'axe de rotation, qui est supérieure à la troisième distance radiale (R3), moyennant quoi la troisième plaque barrière (10) et la première plaque barrière (6) définissent une seconde zone de séparation (11) dans la chambre de séparation (2), et en ce que l'orifice d'évacuation (4) pour la phase liquide légère est agencé en aval de la troisième plaque barrière (9) depuis une troisième zone de séparation (14) dans la chambre de séparation (2).


     
    2. Centrifugeuse selon la revendication 1, caractérisée en ce que l'orifice d'admission (3) est placé à une extrémité de la chambre de séparation (2).
     
    3. Centrifugeuse selon la revendication 1 ou 2, caractérisée en ce que les orifices d'évacuation (4,5) sont placés à l'autre extrémité de la chambre de séparation (2).
     
    4. Centrifugeuse de l'une quelconque des revendications 1 à 3, caractérisée par un corps central allongé (16) disposé dans la chambre de séparation (2) et co-axialement par rapport au tambour (1), le corps contenant l'orifice d'admission (3) et portant une vis sans fin de transport (17) pour le transport d'une phase lourde relativement solide (18) vers un troisième orifice d'évacuation (19).
     
    5. Centrifugeuse selon la revendication 4, caractérisée en ce que le corps (16) porte un déflecteur (20, 20') entre l'orifice d'admission (3) et le troisième orifice d'évacuation (19), ledit déflecteur (20, 20') comblant l'espace entre deux enroulements de vis adjacents et bloquant une partie de cet espace, alors qu'elle s'étend depuis le corps (16) jusqu'à une septième distance radiale (R7) depuis l'axe de rotation (CL), qui est supérieure à la troisième distance radiale (R3) sur toute l'étendue du déflecteur (20, 20') de l'un des enroulements de vis à l'autre.
     
    6. Centrifugeuse de l'une des revendications 1 à 5, caractérisée en ce que les plaques barrières (6, 9, 10) sont essentiellement non perforées.
     
    7. Centrifugeuse selon l'une des revendications 4 à 6, caractérisée en ce que la première plaque barrière (6) est fermement fixée au corps (16).
     
    8. Centrifugeuse selon l'une des revendications 1 à 7, caractérisée en ce qu'un élément surface de frottement (22) est disposé le long au moins d'une partie du trajet d'écoulement de l'émulsion, afin de fournir une zone de frottement plus importante.
     
    9. Centrifugeuse selon la revendication 8, caractérisée en ce que l'élément surface de frottement (22) est disposé dans la première et/ou la deuxième zone de séparation (8 ; 11).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description