

(11) EP 1 465 970 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
21.05.2008 Bulletin 2008/21

(51) Int Cl.:
C11D 1/62 (2006.01) **C11D 3/40 (2006.01)**

(21) Application number: **03713229.7**

(86) International application number:
PCT/US2003/000792

(22) Date of filing: **10.01.2003**

(87) International publication number:
WO 2003/060047 (24.07.2003 Gazette 2003/30)

(54) LIQUID FABRIC SOFTENER FORMULATIONS COMPRISING HEMICYANINE RED COLORANTS

FLÜSSIGE WEICHSPÜLER MIT HEMICYANINEN ALS ROTE FARBMITTEL

FORMULATION D'ADOUCISSEUR LIQUIDE POUR TISSU COMPRENANT DES COLORANTS ROUGES A BASE D'HEMICYANINE

(84) Designated Contracting States:

**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SI SK TR**

(56) References cited:

EP-A- 0 369 599 **US-A- 4 877 411**
US-A- 4 897 208 **US-A- 5 130 035**

(30) Priority: **15.01.2002 US 47061**
15.01.2002 US 47050

- MATERIAL SAFETY DATA SHEET - ACID RED 52
- MATERIAL SAFETY DATA SHEET - RED 2G
- MATERIAL SAFETY DATA SHEET - FD&C RED 40
- MATERIAL SAFETY DATA SHEET - LIQUITINT PINK
- MATERIAL SAFETY DATA SHEET - LIQUITINT CRIMSON

(43) Date of publication of application:
13.10.2004 Bulletin 2004/42

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

(73) Proprietor: **Milliken & Company**
Spartanburg, SC 29303 (US)

(72) Inventor: **STAVRAKAS, James E.**
Greenville, SC 29605 (US)

(74) Representative: **HOFFMANN EITLE**
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**Field of the Invention**

5 [0001] This invention relates to fabric softener compositions comprising certain red colorants that exhibit excellent deep, dark red colorations (for aesthetic purposes) and mix very well with other colorants to provide differing red shades and tints therein, which simultaneously exhibit very low, if any staining capabilities on fabrics treated therewith. Such deep and dark red colorations have heretofore been unavailable within fabric softener formulations due to the tendency of such prior colorants to exhibit unacceptable staining levels, particularly when formulated at similar deep and dark 10 shades as now provided within the inventive low-staining formulations. Apparently, and quite unexpectedly, the colorants present therein interact favorably with quaternary ammonium salt softening agents in a manner to prevent reaction with the fibers of the treated fabrics themselves, thereby preventing staining thereon and therein. Such novel red-colored or tinted fabric softener formulations, are encompassed within this invention.

15 Discussion of the Prior Art

[0002] Fabric softeners have been provided as colored formulations for aesthetic reasons and brand identity. Although white and/or clear compositions have been commercialized in the past as well, the modern consumer often prefers attractively colored cleaning products.

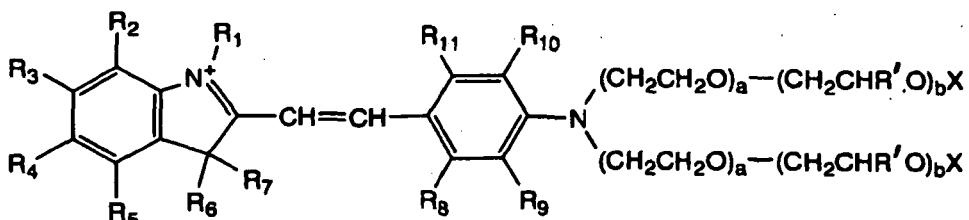
20 [0003] Fabric softener compositions are known in the art and are used in rinse cycles of automatic laundry operations to impart improved hand and anti-static properties to laundered fabrics. The first U.S. concentrated (6-10% active) rinse cycle fabric softener was introduced in the 1960s. These were added during the final rinse of the wash cycle and were usually quaternary types, mainly di(hydrogenated) tallow dimethylammonium chloride (DHTDMAC), although some were based on imidazoline or amido amine derivatives. The products were essentially aqueous solutions or suspensions 25 containing 4-6% active softener, a fabric substantive fragrance and a viscosity modifier.

[0004] In 1990, ultra formulations, (17-28% solids), e.g., "triple concentrates," were introduced in the U.S. and are increasing in the marketplace owing to their reduced packaging and transportation costs. Such formulations require particular care in ingredient formulation, mixing, viscosity control, and final formulation viscosity stability in order to provide stable, low viscosity products.. See, e.g., "Formulation and Production of Concentrated Rinse Cycle Fabric 30 Softeners," Robert O. Keys, *happi*/March 1995, pp. 95-97, and "Fabric Conditioning Agents," George R. Whalley, *happi*/February 1995, pp. 55-58. Recently, formulations have reduced or replaced DHTDMAC, e.g., by ester quats or ester amines, in order to facilitate product breakdown in the ecosystem, particularly in Europe. These formulations also require special considerations to provide a commercial product of the proper viscosity.

[0005] Colorants are generally added to liquid fabric softening compositions for visual appeal to the consumer as well 35 as identity of the product. Fabric staining caused by softener compositions can be permanent; however, initial staining may not always be obvious to the consumer due to potentially and relatively low levels of discoloration during individual laundry cycles. Thus, staining may actually accumulate on target fabrics over a period of time rather than during a single wash.

[0006] Colorants employed in fabric softener compositions are preferably those which are easily removed from fabric 40 if color staining, or possibly staining due to softener compounds themselves, occurs. Such colorants thus must exhibit a very low and reduced tendency to stain commonplace fabrics such as cotton and polyester. Dyes of high color stability in the fabric softener compositions which exhibit minimal complexation or reaction with other fabric softener ingredients and the laundered fabrics themselves are of particular interest in fabric softener composition applications. Among these dyes are certain polymer-bound colorants which are available from Milliken Chemical Co. as Liquitint® colorants whose 45 incorporation in liquid fabric softening compositions is noted in published international application WO 94/10285 as well as direct dyes, acid dyes, F,D & C Dyes (e.g., Red 40), rhodamines, pigments, and the like, which impart red colorations to liquid softener formulations, but also have a tendency to stain targeted fabrics, particularly when present at levels that provide deep and dark red shades. To date, red colorants providing deep and dark red shades, specifically at high L, c, and h values as noted below, within fabric softening compositions have been unavailable to the industry without also 50 exhibiting unacceptable staining levels.

[0007] As alluded to above, it is desirable, to provide aesthetically pleasing red colorations for liquid fabric softener compositions, wherein the colorants are stable in low pH (e.g., from about 1 to 4) cationic compound-containing liquid 55 formulations, non-staining, and capable of high color loading and bright coloration without precipitating out of the composition. In particular, colorants are desired which provide an increase in the ease of stain removal versus the aforementioned commonly used red colorants and dyes within liquid fabric softener compositions. The red colorants traditionally introduced within liquid fabric softener formulations simply cannot provide the low staining properties with simultaneously the aforementioned aesthetically desirable deep and dark red shades or, alternatively, the ability to thoroughly mix with other colorants to provide pink or reddish shades or tints within the target liquid composition. Such traditional


colorants (e.g., acid dyes, pigments, etc.) unfortunately were difficult to incorporate within the low-pH cationic formulations common with liquid fabric softeners. Apparently, such colorants cannot achieve the desired color space characteristics without also exhibiting unacceptably high stain levels on certain fabric substrates. As such, there remains a need to provide such aesthetically useful, non-staining colorations within liquid fabric softeners.

5

Description of the Invention

[0008] It is thus an object of the invention to provide a liquid fabric softener composition which is brightly colored through the utilization of at least one water-soluble non-staining red colorant. It is another object of this invention to provide a red colorant that mixes thoroughly with other colorants within liquid fabric softener formulations to permit production of different brightly colored shades of pink, orange, violet, or, of course, red therein, while simultaneously exhibiting essentially no staining of target fabrics contacted therewith during an aqueous rinse of a standard laundry procedure (e.g., either by hand or within a tumble, rotary, or other type of washing machine). A further object of the invention is to provide a liquid fabric softener formulation that will not exhibit any appreciable staining on target substrates and thus only provides red colorations within and to the target liquid fabric softener composition. Yet another object of this invention is to provide a red colorant that provides color in the presence of cationic softener compounds but will not appreciably react with fiber constituents of target fabrics. Accordingly, this invention is directed to a liquid fabric softener composition comprising

20 (i) at least one fabric softening component selected from cationic quaternary ammonium compounds, and
 (ii) at least one red hemicyanine derivative colorant selected from compounds of formula (I)

wherein

35 R₁ is H or C₁₋₂₀-alkyl;
 R₂-R₁₁ are each individually selected from H, C₁₋₂₀-alkyl, C₁₋₂₀-alkoxy, C₁₋₂₀-hydroxyl, amino, hydroxyl, and C₁₋₂₀-carboxyl;
 R' is C₁₋₁₆ alkyl;
 X is H or COCH₃;
 40 a and b are each individually 0-200, with a+b > 3;
 and any counter ion may be present.

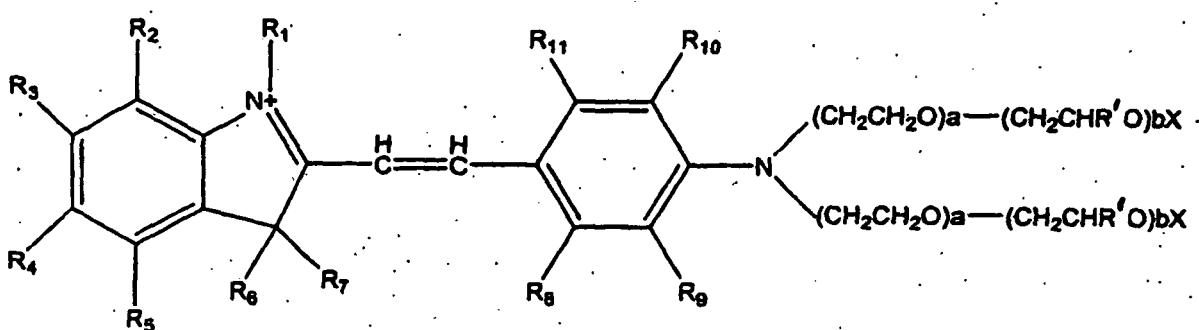
[0009] Also, the invention encompasses a method of conditioning fabrics comprising the steps of (a) providing a fabric; and (b) contacting said fabric with the liquid fabric softener composition of the present invention. Preferably, step (b) occurs during an aqueous rinsing cycle within a standard rotary laundering machine.

45 **[0010]** The present liquid fabric softener composition comprises the at least one water-soluble red hemicyanine derivative colorant either as the sole colorant to provide a red hue, or as a component within a mixture of colorants to provide any number of different hues. According to one embodiment, said liquid fabric softener composition exhibits a red color characterized by a color space in terms of CIELAB values under D65 illumination of an L* value of at least 30, an a* value of at least 20, a b* value of between 20 and 20, a C* value of at least 20, and an h° of between 0 and 30° and 300° and 360, wherein said red-colored liquid fabric softener exhibits a stain level of at least 4 upon contact with a 100% terry cotton fabric substrate pursuant to the AATCC Gray Scale For Evaluating Staining. For example, the liquid fabric softener composition of this invention encompasses a red colorant that exhibits a color space in terms of CIELAB values under D65 illumination of an L* value of at least 30, an a* value of at least 20, a b* value of between -20 and 20, a C* value of at least 20, and an h° of between 0 and 30° and 300° and 360, and exhibits a stain level of at least 55 4 upon contact with a 100% terry cotton fabric substrate pursuant to the AATCC Gray Scale For Evaluating Staining when present within a liquid composition comprising at least 3% by weight of a specific quaternary ammonium cationic fabric softener compound (either Accosoft® 501 or 808, as listed below).

[0011] The colorants used in the compositions have unexpectedly been found to function very well in solution with

5 low pH, cationic fabric softener compounds. To that end, such colorants have been found to provide the above-delineated highly desirable color space characteristics to permit deep and dark red colorations within target liquid fabric softener formulations. Furthermore, such colorants, being polymeric in nature, preferably, exhibit very low, if no, staining properties of fabrics when utilized in combination with such cationic softener compounds. Thus, such fabrics as cotton, polyester, poly/cotton blends, nylon, can be treated (such as, for example, during the rinse cycle of a standard rotary laundering procedure) with liquid fabric softeners comprising such red colorants and not exhibit any appreciable staining caused thereby. Such colorants are thus very compatible with the cationic quaternary ammonium compounds required of the present fabric softener compositions, and also exhibit compatibility with standard fragrances and preservatives, as merely examples, without complexing or destabilizing the resultant mixture. The colorants can withstand the presence of quaternary ammonium compounds (as well as the associated pH levels imparted thereby, particularly between 1 and 4) and thus can be utilized in any liquid media comprising quaternary ammonium compounds, primarily, as noted throughout, fabric softener compositions, but also, to a lesser but possible extent, certain cleaning solutions, antistatic sprays, and the like. Lastly, since the colorants produce true solutions and not emulsions nor dispersions, the formulations made therefrom are homogeneous (not clear) and brilliant in appearance, and can easily mix with other colorants, including 10 traditional red colorants (as well as others) to form different non-staining colorations, shades, tints, (such as pink, orange, purple), within target formulations.

15 [0012] The colorants and thus the inventive formulations made therewith also exhibit excellent light fastness, particularly over a long shelf life. The color space values will generally not become modified over time and upon exposure to standard fluorescent or incandescent lighting such that the desired colorations are retained for long periods of time.


20 [0013] As noted above, the particular hemicyanine derivative colorant is polymeric in nature, and comprises poly(oxyalkylene) pendants groups thereon. Such poly(oxyalkylene) groups are selected from polyethyleneoxy (EO), polypropyleneoxy (PO), and polybutyleneoxy (BO) groups, although longer chain monomers may also be utilized (up to 18 carbons). Preferably these moieties are all EO groups, although combinations of EO and any of the others may be utilized as well. Preferably from 2 to 200 moles of alkyleneoxy groups are present on each separate polyoxyalkylene 25 pendant group; more preferably from 2 to 50 moles; and still more preferably from 5 to 25 moles, and most preferably about 20 moles. The term "polyoxyalkylene" is intended to encompass any pendant group that includes at least two alkyleneoxy moieties.

30 [0014] The addition of polyoxyalkylene groups to the hemicyanine base compound may be accomplished through the reaction of a poly(oxyalkenylated) aniline aldehyde with Fisher's Base to form the needed conjugated system to produce colorations in the visible spectrum as well as the desired polymeric species. Such a reaction is described in greater detail below.

35 [0015] The hemicyanine is most easily understood through the representation of the following formula (I)

Hemicyanine Polymeric Colorant

35 [0016]

50 wherein R₁ is H or C₁-C₂₀ alkyl; R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, and R₁₁ are the same or different and are selected from the group consisting of H, C₁-C₂₀ alkyl, C₁-C₂₀ alkoxy, C₁-C₂₀ hydroxyl, amino, hydroxyl, and C₁-C₂₀ carboxyl; R' is C₁-C₁₆ alkyl; a is 0-200 and b is 0-200, wherein a+b \leq 3; X is H or COCH₃; and any counter ion may be present, such as, without limitation, OFF, Cl, CH₃COO⁻, or HSO₄⁻. Preferably, though not necessarily, such a compound is present 55 wherein R₁ and R₆ are methyl and the remaining R groups are hydrogen, and further wherein a is about 20, b is 0, X is COCH₃, and the counter ion is OH⁻.

55 [0017] The only previous utilizations of hemicyanine type colorants to any great extent have been in the fields of fugitive yarn colorants, as in U.S. Pat. No. 4,877,411 to Hines et al., which permit color to be temporarily applied to target

yarns for identification purposes, or film development, apparently to provide certain hues within the finished picture, such as, taught within U.S. Pat Nos. 5,534,405 to Nishigaki et al., and 6,066,432 to Yanaka. No teachings have been provided of liquid formulations of such types of colorants, let alone polymeric derivatives thereof, in combination with quaternary ammonium compounds or cationic fabric softeners, within the pertinent art to provide an effectively colored liquid formulation which does not exhibit appreciable coloring or staining of target fabrics upon treatment therewith.

[0018] Preferably, the water soluble polymeric hemicyanine derivative colorants are liquid in nature at ambient temperature and pressure and at substantial purity; however, pasty or waxy colorants (which are readily soluble in water) are also encompassed within this invention and may be added to fabric softener formulations, particularly in combination with viscosity modifying agents (such as, without limitation, calcium chloride) to provide the desired viscosity level (of between about 10 to about 1,500 cps to permit sufficient pourability). The term ambient temperature and pressure means from about 20 to about 25°C at a pressure of from about 0.8 to about 1.2 atmospheres. Furthermore, substantial purity means that the colorant is at least 90% free from solvent, diluent, surfactant, and any other compound which may dilute the colorant compound. The target inventive compositions will include at least one cationic quaternary ammonium fabric softener compound, as well as other standard softener additives, such as resins, preservatives, pH adjusters, foam depressants, antistatic compounds, enzymes, bactericides, fungicides, stabilizers, in addition to at least colorant as defined above. However, these additive compounds do not factor into the measure of the liquid state of the target colorants of this, invention and are merely required within the inventive compositions upon production thereof.

[0019] Such inventive compositions may comprise any type of fabric softening formulations and compounds. Formulations of suitable fabric softener compositions of the present invention except the colorant are disclosed in U.S. Patents 5,183,580 to Lew et al., 5,207,933 to Trinh et al., 5,204,010 to Klewsaat, 5,290,475 to Wixon, 5,130,035 to Dell'Armo et al., and 5,089,148 to Van Blarcom et al. The liquid fabric softener composition of the present invention would include from about 3 to about 50% by weight of the total composition, preferably from 15 to about 35 % by weight of a cationic quaternary ammonium fabric-softening compound. The counter ion may be a halide, such as fluoride, chloride, bromide, or iodide. Other counter ions may be employed such as methylsulfate, ethylsulfate, hydroxide, acetate, formate, sulfate, carbonate. Preferably, the counter ion is chloride or methylsulfate, chloride being especially preferred for liquid fabric conditioning compositions of the present invention. Generally, concentrated liquid fabric softener compositions of the present invention can contain 17% to 50% solids (diluted with major amounts of water, either deionized or tap in nature). Particulate fabric softening compositions of the present invention can be prepared according to the formulation set out in U.S. Patent 5,332,513 to Doms et al.

[0020] Examples of cationic quaternary ammonium salts include, but are not limited to:

- (1) Acyclic quaternary ammonium salts having at least two C₈₋₃₀, preferably C₁₂₋₂₂ alkyl chains, such as: ditallow-dimethyl ammonium chloride (Adogen® from Sherex), di(hydrogenated tallow) dimethyl ammonium chloride (Adogen 442® from Sherex), distearyl-dimethyl ammonium chloride (Arosurf TA-1000® from Sherex), dicocodimethyl ammonium chloride (Variquat K300® from Sherex), methyl bis(tallowamido ethyl)-2-hydroxyethyl ammonium methyl sulfate (Accosoft® 501 from Stepan Chemical).
- (2) Cyclic quaternary ammonium salts of the imidazolinium type such as di(hydrogenated tallow)-dimethyl imidazolinium chloride, 1-ethylene-bis(2-tallow-1-methyl) imidazolinium chloride (Varisoft 6112® from Sherex), methyl (1) tallow amidoethyl (2) tallow imidazolinium methyl sulfate (Accosoft® 808 from Stepan Company), and the like;
- (3) Diamido quaternary ammonium salts such as: methyl-bis(hydrogenated tallow amidoethyl)-2-hydroxyethyl ammonium methylsulfate (Varisoft 1100 from Sherex), methyl-bis(tallowamidoethyl)-2-hydroxypropyl ammonium methylsulfate (Varisoft 238® from Sherex);
- (4) Biodegradable quaternary ammonium salts such as N,N-di(tallowoyl-oxyethyl)-N,N-dimethyl ammonium chloride and N,N-di(tallowoyl-oxy propyl)-N,N-dimethyl ammonium chloride.

[0021] When fabric conditioning compositions employ biodegradable quaternary ammonium salts, the pH of the composition is adjusted to between about 2 and 7, preferably from 3 to about 5. Biodegradable ammonium salts are described more fully in U.S. Patents 4,767,547 and 4,789,491.

[0022] Biodegradable cationic diester compounds may be employed of the type which have the formula:

wherein each R is a short chain C₁₋₆, preferably C₁₋₃, alkyl or hydroxyalkyl group, e.g., methyl (most preferred), ethyl, propyl, hydroxyethyl, benzyl, or mixtures thereof; each R² is a long chain C₁₀₋₂₂ hydrocarbyl, or substituted hydrocarbyl substituent, preferably C₁₅₋₁₉ alkyl and/or alkylene, most preferably C₁₅₋₁₇ straight chain alkyl and/or alkylene; and the counter ion, X⁻, can be any softener-compatible anion, for example, chloride, bromide, methylsulfate, formate, sulfate,

nitrate. These cationic diesters are described in greater detail in U.S. Patent 4,137,180.

[0023] The fabric softening compositions of the present invention comprise a water carrier, up to 5% by weight of the total composition organic solvents, such as lower alcohols, which can improve handling, fluidity, and viscosity. From 3 to about 50% by weight of the total composition comprise the active softening compounds discussed above. Preferably, the fabric softeners are acyclic quaternary ammonium salts with ditallowdimethyl ammonium chloride being the most preferred. Also included within these compositions may be other non-cationic fabric conditioning agents such as tertiary fatty amines, reaction products of stearic acid and aminoethylethanolamine, carboxylic acids having from 8 to 30 carbon atoms and one carboxylic acid group per molecule. esters of polyhydric alcohols such as sorbitan esters or glyceryl stearate, fatty alcohols, ethoxylated fatty alcohols, alkylphenols, ethoxylated alkylphenols, ethoxylated fatty amines, ethoxylated monoglycerides, ethoxylated diglycerides, ethoxylated fatty amines, mineral oils, and polyols, such as polyethylene glycol. Furthermore, pH adjusters should be added to adjust the pH of the inventive fabric softening composition to below about 7.0, preferably in the range of 4 to about 6.5. If necessary, any acidic material may be utilized to perform this function, such as hydrochloric acid, citric acid, maleic acid.

[0024] The colorant is added in an amount from about 0.001 to about 3.0% by weight of the total composition; preferably from about 0.003 to about 1.0%; more preferably from about 0.01 to about 0.1%; and most preferably from about 0.015 to about 0.05%. Other additives may be present in amounts from about 0.1 to about 30% by weight of the total composition in order to provide increased softening performance, composition stability, viscosity modifications, dispersibility, and soil release. These additives include silicones, predominantly polydimethylsiloxanes; soil release polymers such as block copolymers of polyethylene oxide and terephthalate fatty amines; amphoteric surfactants; smectite clays; anionic soaps; zwitterionic surfactants; and nonionic surfactants. Such surfactants and soaps mirror those discussed above in the cleaning compositions. Additionally, polymer additives may be present, such as guar gum, polyethylene oxide, and cyclodextrin. Electrolytes may also be added for viscosity control in amounts up to about 5% by weight of the total composition. Such electrolytes include calcium chloride, magnesium chloride, sodium chloride, and other Group IA and IIA halides, as well as alkylene polyammonium salts. Preservatives, such as glutaraldehyde and formaldehyde may also be added, as well as emulsifiers, opacifiers, anti-shrink agents, anti-wrinkle agents, fabric crisping agents, spotting agents, antioxidants, anti-corrosion agents, optical brighteners, buffers, perfumes, germicides, bactericides, and bacteriostatic agents.

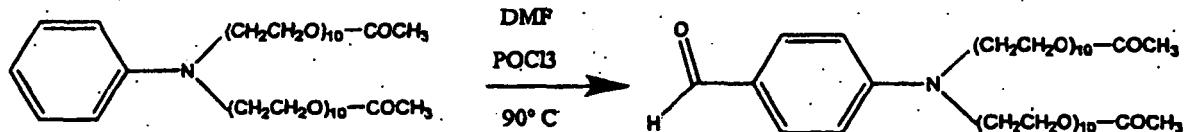
[0025] Liquid fabric softening compositions encompassed within this invention can be prepared through standard techniques. For example, a softening active premix is prepared at 50-80°C, to which is added, with stirring, hot water. The colorant can then be added at any time after the preparation of this mixture while temperature-sensitive compounds must be added at certain times during the cooling down period. Preferably, the colorant is added to the hot water prior to addition to the premix.

[0026] Such liquid compositions can thus be utilized in the rinse cycle of a standard home laundry operation. As noted above, the red colorants used in this invention unexpectedly provide effective non-staining even when present as very deep and dark red colorations therein the target formulations. Also, the red colorants may be mixed with other types of colorants, including acid dyes, other polymeric colorants, pigments, to produce different colorations or shades within target softener formulations.

[0027] As noted previously, color space is extremely important to impart the desired dark and deep red colorations needed for aesthetic purposes. Such desired color space for the target red colorants provide, at wavelengths commensurate with the visible red range, from as low as about 495 nm (for reddish-orange colorations) to about 550 nm (for reddish-purple colorations)(generally, specific red colorations are difficult to delineate with perfect consistency, and, as the ordinarily skilled artisan would understand, such a broad range above (e.g., 495-500 nm) covers most, if not all, reddish colors, while red itself falls between about 510 and 520 nm), characteristics mathematically defined by measuring the individual components of the equation:

$$E^* = ((L^*)^2 + (a^*)^2 + (b^*)^2)^{1/2}$$

wherein E^* represents the total color measurement of either the liquid formulation comprising cationic compound and red colorant, or the red colorant itself. L^* , a^* , and b^* are the color coordinates; wherein L^* is a measure of the lightness and darkness of the formulation or colorant (with 0 being blackest and 100 being whitest); a^* is a measure of the redness or greenness of the formulation or colorant; and b^* is a measure of the yellowness or blueness of the formulation or colorant. A further measurement, defined as h° , measures the hue of the sample in terms of the angle ranging from 0 to 360 degrees, wherein the first 90 degrees represents colors of red, yellow, and orange; the next 90 degrees are yellow, yellow-green, and green; from 180 to 270 degrees, green, cyan, and blue; and above 270, blue, purple, magenta, purple, violet, and a return to red colors. Another measurement, C^* , is utilized to define the chroma (saturation) of a sample, with brightness shown through a distance further from the base axis (e.g., a higher C^* measurement indicates

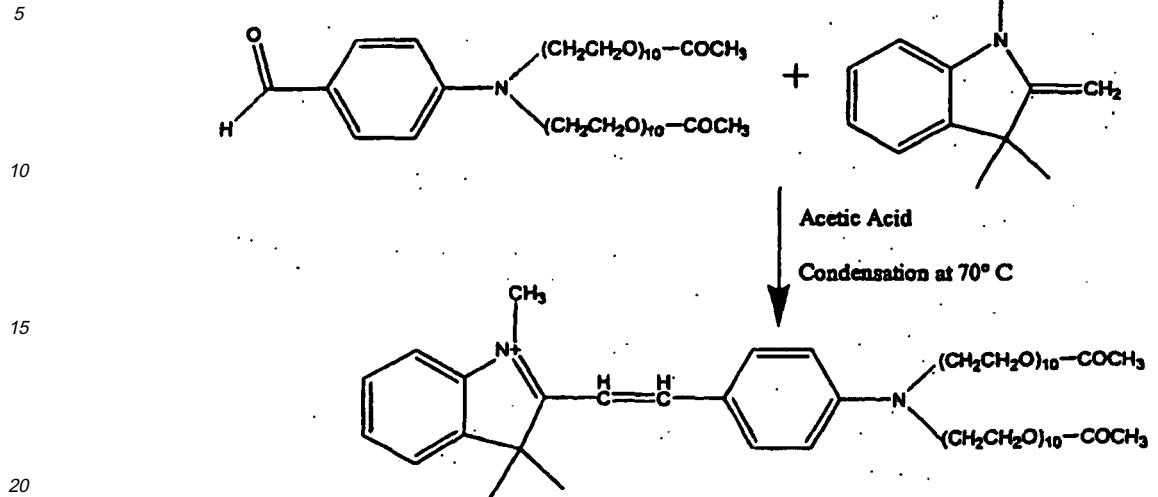

a brighter color). For a further discussion and explanation of this testing procedure, see Billmeyer, F.W., et al., *Principles of Color Technology*, 2nd Edition, pp. 62-64 and 101-04, or *Fundamentals of Color and Appearance*, Section 2, in particular pages 2.12-2.14. Such measurements must exhibit sufficiently high brightness and redness levels, as well as a proper red hue angle and bright chroma (and thus low blueness and yellowness), in order to provide the darkest and deepest red shades possible within the target softener formulations. Of course, as noted throughout, the ultimate formulation may exhibit colorations different from those within the visible red range, such as pink, orange, and/or violet, as examples (and thus exist as mixtures of the desired colorant with other effective coloring agents). However, such differently colored formulations should still comprise at least one of the above-defined hemicyanine red colorants to provide very effective and dark and deep shades of these other colors in mixture with other standard colorants. Furthermore, the non-staining propensity of such polymeric hemicyanines reduces the chances of staining on target fabrics treated with such differently colored fabric softener formulations as well.

[0028] Thus, the preferred red colorant, and thus the preferred red-colored fabric softener formulation, should exhibit CIELAB values under D65 illumination of an L^* value of at least 30, an a^* value of at least 20, a b^* value of between 20 and 20, a C^* value of at least 20, and an h^* of between 300° and 30° (the higher the L^* value, the brighter the color; the higher the a^* value, the redder the color; the lower the b^* value, the less blue the color; the higher the C^* , the brighter the color), when measured by color spectrophotometer in reflectance mode using a D65 incandescent light source, and at a 10 degree observation perspective. The closest art teaches red colorants that do not exhibit such required levels of color space, or which can exhibit such high levels but only when present in amounts within the target fabric softener formulation that cause staining levels on target fabrics that are highly unacceptable. As such, the specifically dark and deep red colorations provided by the hemicyanines used in the present invention are unexpected and beneficial, and attain color space levels heretofore unavailable while also exhibiting very low tendencies to stain. Again, the attainment of such a specific colorant would provide excellent bright and deep colors and effective mixtures with other colorants for the purposes of providing different hues and shades within the target fabric softener (or other low pH, cationic compound-containing) formulation.

Description of the Preferred Embodiment

[0029] The general method of making the preferred colorant is as follows:

Formylation



45

50

55

Condensation

Thus, initially, an aniline including an aldehyde reactive group and poly(oxyalkylene) groups bonded through a linking group, here a nitrogen atom, is provided (such as disclosed within U.S. Pat. No. 4,877,411, Example 18, for example).

The resultant aldehyde aniline compound is then reacted with Fisher's Base (as it is commonly referred to)(a.k.a., 2-methylene-1,3,3-trimethylindoline), to effectuate the needed condensation reaction generating the desired colorant and water. Alternatively, the linking group for the poly(oxyalkylene) group may be O or SO_2 , or other like species.

[0030] Specifically, then, the preferred colorant is produced through the following method:

EXAMPLE 1

[0031] Twenty grams of Aniline (20 EO) diacetate were charged to a 1L 4-neck flask and heated to 50°C while stirring. To that was added 19.5 grams of DMF and 1.4 acetic anhydride. The temperature was then kept between 40 and 50°C for 2 more hours. To this composition was added 17.4 POCl_3 at a rate to keep the temperature from rising. Once the addition was complete, the temperature was elevated to 90°C and held there for an hour-and-a-half. Subsequently, the resultant mixture was cooled to 40°C and 240 grams of water were then added at a rate to keep the temperature below 50°C. After allowing the, mixture to cool again to 40°C, 50% KOH (caustic) was then added (41.7 g) in order to adjust the pH to a level between 4.5 and 5.0. The reaction was then heated to 70°C, at which point the mixture was removed from heat, poured into a separatory funnel and allow to phase separate. The salt layer resulting therefrom was then drained, leaving the product layer of the formylation step.

[0032] Subsequently, 19 grams of Fisher's Base was then charged to the resultant product from above and the mixture was then heated to 50°C. Acetic acid (74 g) was then added to the reaction at a rate to keep the temperature below 60°C, after which the reaction was heated to 70°C and held there for 2 hours. The reaction mixture was then cooled to 50°C for 2 more hours, after which the absorptivity was measured to check for complete reaction of the two components.

The resultant mixture was then neutralized to pH 4-5 with muriatic acid and provided a deep red liquid colorant.

Compositions Including the Colorants from the Examples Above

[0033] The colorant of EXAMPLE 1 was then introduced within different fabric softener compositions for coloration analysis and staining tests. Such compositions included the following:

FORMULATION Y

[0034]

Component	Amount (in parts)
Accosoft® 501	28.3

(continued)

Component	Amount (in parts)
CaCl ₂ (25% solution)	2.5
Water	71.6

5

FORMULATION Z

10 [0035]

Component	Amount (in parts)
Accosoft® 808	10
Water	90

15

EXAMPLES 2-49

20 [0036] The colorant of EXAMPLE 1, above, as well as a number of comparative colorants, and also mixtures of the EXAMPLE 1 colorant and other colorants, were then each individually introduced within samples of the colorless FORMULATIONS A and B (concentrated commercial liquid rinse-cycle fabric softeners). The resultant compositions are listed in tabular form below with amounts (measured by weight of the total softener formulation) of colorants noted as well as CIELAB values provided for each, including the mixtures. For simplicity sake, the colorants added below comply with the following list (with the components of the mixtures listed in terms of the parts per hundred added of each; A-D and P-R produce a red or pink color; E-G and S-U produce an orange; and H-J and V-X produce a purple or violet):

25

- A- EXAMPLE 1
- B- 50.1 parts of A plus 49.9 parts of Liquitint® Yellow LP, from Milliken & Company
- C- 64.2 parts of A plus 35.8 part of Liquitint® Yellow LP
- D- 89.6 parts of A plus 10.4 parts of Liquitint® Yellow LP
- E- 25.4 parts of A plus 74.6 parts of Liquitint® Yellow LP
- F- 34.7 parts of A plus 65.3 parts of Liquitint® Yellow LP
- G- 25.6 parts of A plus 74.4 parts of Liquitint® Yellow LP
- H- 81.7 parts of A plus 18.3 parts of Liquitint® Violet LS, from Milliken & Company
- I- 58:5 parts of A plus 41.5 parts of Liquitint®Violet LS
- J- 96.6 parts of A plus 3.4 parts of Liquitint® Violet LS
- K- Acid Red 52
- L- Liquitint® Pink, from Milliken & Company
- M- Liquitint® Crimson, from Milliken & Company
- N- FD&C Red 40
- O- Acid Red 1
- P- 71.4 parts of N and 28.6 parts of Acid Yellow 23
- Q- 63.3 parts of O and 36.7 parts of Acid Yellow 23
- R- 90.2 parts of O and 9.8 parts of Acid Yellow 23
- S- 29.9 parts of K and 70.1 parts of Acid Yellow 23
- T- 36.3 parts of N and 63.7 parts of Acid Yellow 23
- U- 31.4 parts of N and 68.6 parts of Acid Yellow 23
- V- 84.7 parts of K and 15.3 parts of Acid Blue 9
- W- 70.4 parts of K and 29.6 parts of Acid Blue 9
- X- 98.5 parts of K and 1.5 parts of Acid Blue 9

50

TABLE 1

Types of Colorants Added and Resultant CIELAB Measurements

55

Ex. #	Colorant(s)	Total Amount	Softener (from above)	CIELAB Values				
				L	C	h	a	b
2	A	0.01%	Z	47.36	32.47	335.06	29.437	-13.69

(continued)

Types of Colorants Added and Resultant CIELAB Measurements

CIELAB Values

	Ex. #	Colorant(s)	Total Amount	Softener (from above)	L	C	h	a	b
5	3	A	0.025%	Z	41.83	35.61	342.31	33.924	-10.82
	4	A	0.05%	Z	37.96	33.89	348.90	33.26	-6.528
	5	A	0.10%	Z	35.04	30.61	354.90	30.49	-2.722
	6	A	0.11%	Y	66.84	38.55	344.20	37.10	-10.50
10	7	A	0.01%	Y	82.56	12.57	337.4	11.60	-4.84
	8	A	0.025%	Y	78.41	20.42	339.7	19.15	-7.069
	9	A	0.05%	Y	73.75	28.51	341.6	27.05	-9.013
	10	A	0.10%	Y	65.44	40.63	344.4	39.13	-10.93
15	11	B	0.16%	Z	66.26	37.95	48.50	25.15	28.42
	12	C	0.14%	Z	65.99	34.52	38.69	29.95	21.58
	13	D	0.11%	Z	66.99	31.15	6.782	30.94	3.679
	14	E	0.20%	Z	68.00	44.69	63.26	20.11	39.91
20	15	F	0.13%	Z	70.43	38.27	63.01	17.37	34.10
	16	G	0.12%	Z	72.94	39.60	72.00	12.24	37.67
	17	H	0.04%	Z	60.46	35.45	298.0	14.66	-31.96
	18	I	0.11 %	Z	43.27	54.67	298.4	21.22	-53.13
25	19	J	0.12%	Z	58.38	37.14	321.6	26.3	-22.04
	(Comparatives)								
	20	K	0.001%	Z	54.02	32.48	330.5	28.25	-16.02
	21	K	0.0025%	Z	50.99	41.22	336.4	37.77	-16.51
30	22	L	0.02%	Z	39.02	34.74	321.9	27.33	-21.46
	23	L	0.03%	Z	37.31	34.57	324.5	28.14	-20.09
	24	M	0.015%	Z	50.26	15.09	13.55	14.67	3.535
	25	M	0.03%	Z	46.94	21.13	21.49	19.67	7.741
35	26	N	0.005%	Z	43.69	27.39	20.03	25.73	9.381
	27	N	0.01%	Z	41.20	28.72	23.71	26.29	11.55
	28	O	0.005%	Z	42.65	32.86	341.6	31.18	-10.38
	29	O	0.01 %	Z	39.13	32.21	347.7	31.48	-6.852
40	30	K	0.01%	Z	67.27	61.09	342.6	59.72	-17.58
	31	K	0.001%	Y	79.84	29.23	337.4	26.98	-11.24
	32	K	0.0025%	Y	75.28	42.72	339.0	39.87	-15.34
	33	L	0.02%	Y	67.61	32.89	326.65	27.47	-18.08
45	34	L	0.03%	Y	64.06	36.88	327.7	31.17	-19.71
	35	M	0.015%	Y	77.51	18.59	12.49	18.15	4.021
	36	M	0.03%.	Y	73.94	24.77	14.49	23.98	6.197
	37	N	0.005%	Y	79.84	29.23	337.4	26.98	-11.24
50	38	N	0.01%	Y	71.97	32.99	19.67	31.07	11.11
	39	O	0.005%	Y	70.88	35.91	348.7	35.22	-7.029
	40	O	0.01%	Y	65.74	43.47	351.9	43.04	-6.093
	41	P	0.015%	Z	65.82	46.99	36.37	36.46	19.10
55	42	Q	0.015%	Z	64.12	41.83	25.52	36.06	13.12
	43	R	0.02%	Z	60.20	47.32	6.99	45.2	4.47
	44	S	0.03%	Z	62.93	54.52	49.12	33.69	24.77
	45	T	0.03%	Z	64.73	57.54	50.59	34.89	26.53
55	46	U	0.03%	Z	65.28	59.99	53.66	33.95	28.13
	47	V	0.01%	Z	55.97	47.93	313.1	29.53	-36.13
	48	W	0.02%	Z	49.51	47.69	300.9	20.72	43.26

(continued)

(Comparatives)							
49	X	0.009%.	Z		65.65	54.55	335.7

5

[0037] These inventive and comparative formulations were then tested on various fabric types through a test designed to mimic a worst-case scenario of a consumer leaving the fabric softener formulation in contact with a wet garment for a long period of time. The test was basically as follows:

10 Two multifiber strips (each approximately 15.2 cm (6 inches) wide and 10.2 cm (four inches) long, with each individual fiber strip approximately three-quarters of an inch in width; the individual fibers were spun acetate, bleached cotton, spun nylon, spun Dacron® polyester Type 54, spun Dralon® acrylic, and worsted wool, all white in color originally) and one strip (of similar width and length to the multistrip above) of terry cotton were soaked (immersed) for 15 minutes within the test formulation. The fabric strips were then each individually passed through a nip roller (248.2 kPa (36 psi)) to give uniform wet pick-up of the colored product, and then dried on a drying rack at room temperature overnight. Subsequently, the strips were then rinsed to remove any excess colored formulation therefrom and then 15 soaked in 400 mL water (at room temperature) for 6 to 8 hours (with the water changed several times once the water became too cloudy to see the bottom of the vessel). The strips were then again air-dried and visually rated using the AATCC Gray Scale For Evaluating Staining by giving two sets of treated strips to two different people for 20 individual evaluations, along with a control strip of uncolored product. The evaluators then compared the control with the treated strips and assigned individual numerical values for staining levels, with 1 being the highest degree of staining and 5 being the absolute lowest (substantially non-stained). A 4 rating indicates nearly non-stained, while 25 3 or lower indicates clear staining is evident, with a 2 evincing a greater degree of staining thereon. The results were as follows:

25

TABLE 2
Staining Levels of Inventive and Comparative Formulations

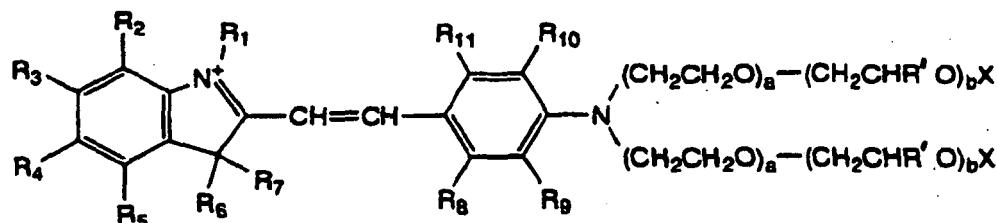
Stain Test Results							
	<u>Ex. #</u>	<u>T. Cotton Wool</u>	<u>Acetate</u>	<u>Bl. Cotton</u>	<u>Nylon</u>	<u>Polyester</u>	<u>Acrylic</u>
30	2	5	4-5	5	5	5	5
	3	4-5	3	4-5	4	5	5
	4	4-5	3	4-5	4	5	4
35	5	4-5	2-3	4-5	4	5	5
	6	4-5	4	4-5	5	5	5
	7	5	5	5	5	5	5
	8	5	4-5	5	5	5	5
	9	5	4	5	5	5	5
40	10	4-5	3-4	4-5	5	5	5
	11	4	3	4	5	5	4.5
	12	4	3.5	4.5	5	5	4.5
	13	4	4	4	5	5	4
45	14	4	3	4.5	5	5	4.5
	15	4.5	3.5	4.5	5	5	4.5
	16	4.5	3.5	4.5	5	5	4
	17	5	4.5	5	5	5	5
	18	2.5	4	3	5	5	5
50	19	4.5	4	4.5	5	5	4.5
	(Comparatives)						
	20	3-4	5	4	5	5	5
	21	2-3	5	3	5	5	5
55	22	2-3	5	4	5	5	5
	23	2	5	2	5	5	5

(continued)

(Comparatives)							
5	24	3-4	5	4	5	5	5
	25	2-3	5	3	5	5	5
	26	3-4	5	4	5	5	5
	27	2-3	5	3	5	5	5
	28	3	5	3-4	5	5	5
10	29	1-2	5	1-2	5	5	5
	30	3	5	3-4	5	5	5
	31	3-4	5	4	5	5	5
	32	2-3	5	3	5	5	5
	33	2-3	5	2-3	5	5	5
15	34	2	5	2	5	5	5
	35	3-4	5	4	5	5	5
	36	2-3	5	3	5	5	5
	37	3	5	3	5	5	5
20	38	1-2	5	5	5	5	5
	39	3	5	3-4	5	5	5
	40	2	5	2-3	5	5	5
	41	2	5	2-3	5	5	5
	42	1	4-5	1-2	5	5	3-4
25	43	2-3	5	3	5	5	4.5
	44	3	5	3	5	5	5
	45	2-3	5	2-3	5	5	5
	46	2	5	2	5	5	5
	47	1-2	5	2-3	5	5	4-5
30	48	1	5	1-2	5	5	4
	49	1	5	2	5	5	4-5

[0038] It is thus evident that the formulations comprising the red colorants of Formula (I) alone and thus exhibiting excellent high red visible color space characteristics also exhibit greater versatility in terms of low staining propensities over a wide array of different fabrics, most notably terry cottons, than the comparatives red colorants. Also, the mixtures comprising such hemicyanine derivative colorants also exhibit excellent colorations (orange, red or pink, or purple or violet, as examples) and exhibit great versatility in terms of low-staining over a myriad of different fabrics as well, particularly as compared with similarly colored mixtures of colorants.

40


Claims

1. A liquid fabric softener composition comprising

45

- (i) at least one fabric softening component selected from cationic quaternary ammonium compounds, and
- (ii) at least one red hemicyanine derivative colorant selected from compounds of formula (I)

50

55

wherein

R₁ is H or C₁₋₂₀-alkyl;

R₂-R₁₁ are each individually selected from H, C₁₋₂₀-alkyl, C₁₋₂₀-alkoxy, C₁₋₂₀-hydroxyl, amino, hydroxyl, and C₁₋₂₀-carboxyl;

5 R' is C₁₋₁₆ alkyl;

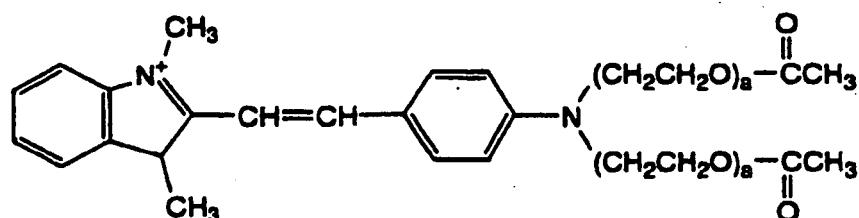
X is H or COCH₃;

a and b are each individually O-200, with a+b > 3;

and any counter ion may be present.

10 2. The liquid fabric softener composition of Claim 1 wherein the counter ion present in the at least one colorant of formula (I) is selected from OH⁻, Cl⁻, CH₃COO⁻ and HSO₄⁻,

15 3. The liquid fabric softener composition of Claim 1 or 2, which further comprises at least one coloring agent other than the at least one colorant of formula (I).


15 4. The liquid fabric softener composition of any of Claims 1-3, wherein in the at least one colorant of formula (I) each polyoxyalkylene pendant group -(CH₂CH₂O)_a-(CH₂CHR'O)_b- comprises 2-200 alkyleneoxy groups.

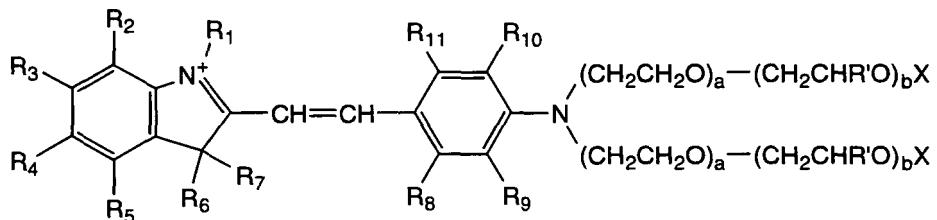
20 5. The liquid fabric softener composition of Claim 4, wherein the number of alkyleneoxy groups in each polyoxyalkylene pendant group is 2-50.

6. The liquid fabric softener composition of Claim 5, wherein the number of alkyleneoxy groups in each polyoxyalkylene pendant group is 5-25.

25 7. The liquid fabric softener composition of Claim 6, wherein the number of alkyleneoxy groups in each polyoxyalkylene pendant group is about 20.

8. The liquid fabric softener composition of Claim 7, wherein the at least one colorant of formula (I) is a compound of the following formula wherein a is about 20, and the counter ion is OH⁻:

(a) providing a fabric; and


(b) contacting said fabric with the liquid fabric softener composition of any of claims 1-8.

45 10. The method of Claim 9 wherein step (b) occurs during an aqueous rinsing cycle within a standard rotary laundering machine.

50 **Patentansprüche**

1. Flüssige Weichspülerzusammensetzung, umfassend

55 i) mindestens eine Weichspülerkomponente, ausgewählt aus kationischen quarternären Ammoniumverbindungen, und
ii) mindestens ein rotes Hemicyaninderivat-Farbmittel, ausgewählt aus Verbindungen der Formel (I)

worin

R₁ H oder C₁₋₂₀-Alkyl ist;

R₂-R₁₁ jeweils einzeln aus H, C₁₋₂₀-Alkyl, C₁₋₂₀-Alkoxy, C₁₋₂₀-Hydroxyl, Amino, Hydroxyl und C₁₋₂₀-Carboxyl ausgewählt werden;

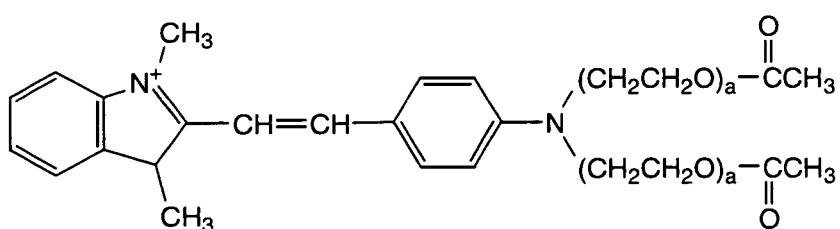
15 R' C₁₋₁₆-Alkyl ist;

X H oder COCH₃ ist;

a und b jeweils einzeln 0-200 sind, wobei a+b > 3 ist und jedes Gegenion vorhanden sein kann.

20 2. Flüssige Weichspülerzusammensetzung gemäß Anspruch 1, worin das in dem mindestens einen Farbmittel der Formel (I) vorhandene Gegenion aus OH⁻, Cl⁻, CH₃COO⁻ und HSO₄⁻ ausgewählt wird.

30 3. Flüssige Weichspülerzusammensetzung gemäß Anspruch 1 oder 2, das ferner mindestens ein Färbemittel enthält, das von dem mindestens einen Farbmittel der Formel (I) verschieden ist.


25 4. Flüssige Weichspülerzusammensetzung gemäß mindestens einem der Ansprüche 1-3, worin in dem mindestens einen Farbmittel der Formel (I) jede anhängende Polyoxyalkylengruppe -(CH₂CH₂O)_a-(CH₂CHR'O)_b-2-200 Alkylenoxygruppen umfasst.

35 5. Flüssige Weichspülerzusammensetzung gemäß Anspruch 4, worin die Zahl der Alkylenoxygruppen in jeder anhängenden Polyoxyalkylengruppe 2-50 beträgt.

6. Flüssige Weichspülerzusammensetzung gemäß Anspruch 5, worin die Zahl der Alkylenoxygruppen in jeder anhängenden Polyoxyalkylengruppe 5-20 beträgt.

35 7. Flüssige Weichspülerzusammensetzung gemäß Anspruch 6, worin die Zahl der Alkylenoxygruppen in jeder anhängenden Polyoxyalkylengruppe etwa 20 beträgt.

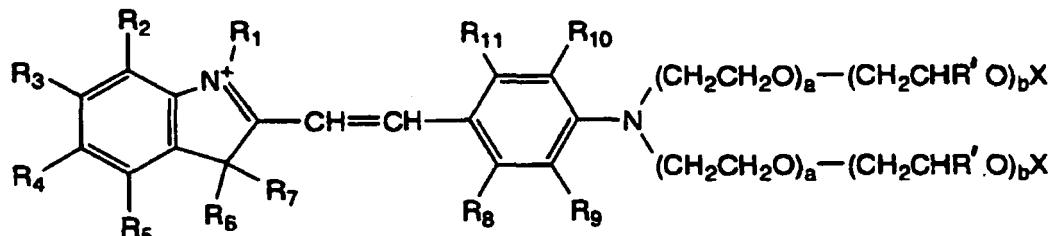
40 8. Flüssige Weichspülerzusammensetzung gemäß Anspruch 7, worin das mindestens eine Farbmittel der Formel (I) eine Verbindung der folgenden Formel ist, worin a etwa 20 ist und das Gegenion OH⁻ ist:

50 9. Verfahren zur Konditionierung von Stoffen, umfassend die folgenden Schritte:

(a) Bereitstellen eines Stoffs und

55 (b) Inkontaktbringen des Stoffs mit der flüssigen Weichspülerzusammensetzung gemäß mindestens einem der Ansprüche 1-8.

10. Verfahren gemäß Anspruch 9, worin Schritt (b) während eines Wasserspülzyklus in einer rotierenden Standardwaschmaschine erfolgt.


Revendications

1. Composition d'adoucisseur liquide pour tissu comprenant :

5 (i) au moins un composé adoucissant pour tissu choisi parmi des composés d'ammonium quaternaire cationique, et
 (ii) au moins un colorant dérivé de l'hémicyanine rouge choisi parmi les composés de formule (I)

10

15

20

dans laquelle

R₁ est H ou un alkyle en C₁₋₂₀ ;

R₂ à R₁₁ sont chacun individuellement choisi parmi H, un alkyle en C₁₋₂₀, un alcoxy en C₁₋₂₀, un hydroxyle en C₁₋₂₀, un amino, un hydroxyle et un carboxyle en C₁₋₂₀ ;

25

R' est un alkyle en C₁₋₁₆ ;

X est H ou COCH₃ ;

a et b valent chacun individuellement de 0 à 200, avec a + b > 3 ;

et n'importe quel contre ion peut être présent.

30

2. Composition d'adoucisseur liquide pour tissu selon la revendication 1, dans lequel le contre ion présent dans le au moins un colorant de formule (I) est choisi parmi OH⁻, Cl⁻, CH₃COO⁻ et HSO₄⁻.

35

3. Composition d'adoucisseur liquide pour tissu selon la revendication 1 ou 2, qui comprend en outre au moins un agent colorant autre que le "au moins un colorant" de formule (I).

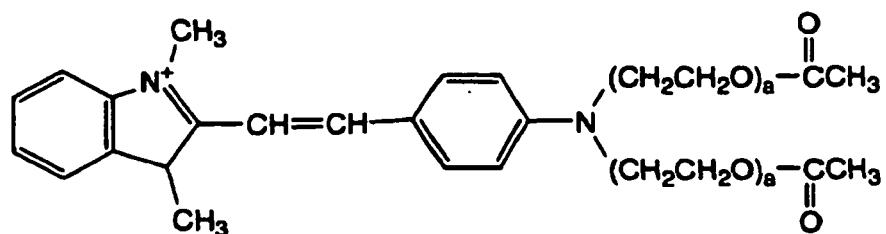
40

4. Composition d'adoucisseur liquide pour tissu selon l'une quelconque des revendications 1 à 3," dans laquelle dans le au moins un colorant de formule (I) chaque groupement pendant polyoxyalkylène -(CH₂CH₂O)_a-(CH₂CHR'0)_b- comprend 2 à 200 groupements alkylènoxy.

45

5. Composition d'adoucisseur liquide pour tissu selon la revendication 4, dans laquelle le nombre de groupements alkylènoxy dans chaque groupement pendant de polyoxyalkylène est de 2 à 50.

6. Composition d'adoucisseur liquide pour tissu selon la revendication 5, dans laquelle le nombre de groupements alkylènoxy dans chaque groupement pendant de polyoxyalkylène est de 5 à 25.


50

7. Composition d'adoucisseur liquide pour tissu selon la revendication 6, dans laquelle le nombre de groupements alkylènoxy dans chaque groupement pendant de polyoxyalkylène est d'environ 20.

55

8. Composition d'adoucisseur liquide pour tissu selon la revendication 7, dans laquelle le au moins un colorant de formule (I) est un composé de la formule suivante dans laquelle a vaut environ 20, et le contre ion est OH⁻ :

55

9. Procédé de conditionnement des tissus comprenant les étapes de :

15 (a) la fourniture d'un tissu ; et
 (b) la mise en contact dudit tissu avec la composition d'adoucisseur liquide pour tissu selon l'une quelconque
 des revendications 1 à 8.

10. Procédé selon la revendication 9, dans lequel l'étape (b) a lieu durant un cycle de rinçage aqueux dans une machine
 à laver rotative normale.

20

25

30

35

40

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9410285 A [0006]
- US 4877411 A [0017] [0029]
- US 5534405 A, Nishigaki [0017]
- US 6066432 A, Yanaka [0017]
- US 5183580 A, Lew [0019]
- US 5207933 A, Trinh [0019]
- US 5204010 A, Klewsaat [0019]
- US 5290475 A, Wixon [0019]
- US 5130035 A, Dell'Armo [0019]
- US 5089148 A, Van Blarcom [0019]
- US 5332513 A, Doms [0019]
- US 4767547 A [0021]
- US 4789491 A [0021]
- US 4137180 A [0022]

Non-patent literature cited in the description

- **ROBERT O. KEYS.** *Formulation and Production of Concentrated Rinse Cycle Fabric Softeners*, March 1995, 95-97 [0004]
- **GEORGE R. WHALLEY.** *Fabric Conditioning Agents*, February 1995, 55-58 [0004]
- **BILLMEYER, F.W. et al.** *Principles of Color Technology*, 62-64101-04 [0027]
- *Fundamentals of Color and Appearance*, 2.12-2.14 [0027]