[0001] This invention relates to a novel and improved process for the preparation of sulphonated
phenols.
[0002] Sulphonated phenols are widely used as dyes, medical intermediates, photo-developing
chemicals and cosmetic preparations. In particular, 4-alkoxy-2-hydroxybenzophenone-5-sulphonic
acids are suitable as UV absorbers in sun screening preparations.
[0003] It is known that phenols can be readily sulphonated with sulphuric acid, sulphur
trioxide gas, dialkyl sulphuric acid and chlorosulphonic acid etc. The reaction is
usually carried out in a solvent.
[0004] Solvents which have been used in the sulphonation of phenols include nitrobenzene,
nitromethane, alkyl ethers, cyclic ethers, aliphatic hydrocarbons, chlorohydrocarbons
and dialkyl carbonates, all of which present undesirable problems. For example, nitro
solvents and alkyl ethers have a high risk of explosion and some cyclic ethers are
extremely harmful and are not suited for the above mentioned uses of sulphonated phenols.
[0005] US Patent No 3468938 and
US Patent No 3696077 disclose that 4-alkoxy-2 hydroxybenzophenones are reacted with chlorosulphonic acid
in a chlorohydrocarbon solvent, e.g. 1,2 dichlorethane. However, this process has
a number of disadvantages. For example, the toxicity of the stated solvents causes
problems.
[0006] Japanese Patent Application Publication Number
H9-227499 describes a method of sulphonating phenols using chlorosulphonic as sulphonating
agent and dialkyl carbonates as solvent, e.g. dimethyl carbonate, diethyl carbonate
and di-isopropyl carbonate. French Patent Application Number
2791057 also describes the use of dialkyl carbonates as a solvent in the preparation of 4-alkoxy-2-hydroxybenophenone-5-sulphonic
acids. Aryl sulphonic acids are, however, thermally unstable when dissolved in hot
dialkyl carbonates leading to degradation, loss of yield and contamination of the
product. Moreover, French Patent Application Number
2791057 also states that the use of aliphatic hydrocarbons of 5-8 carbon atoms cause problems
of colouration and the formation of by-products which affect the purity of the final
product.
[0007] US Patent Number 5072034 describes a method of preparing-4-alkoxy-2-hydroxybenzophenone-5-sulphonic acids
by reacting a 4-alkoxy-2-hydroxybenzophenone with chlorosulphonic acid wherein the
reaction is carried out in carboxylic ester solvents, e.g. ethyl acetate. These are
not satisfactory solvents because degradation leads to the formation of carboxylic
acids which impart undesirable odour to the product.
[0008] It is an object of the present invention to provide a novel and improved process
for the preparation of sulphonated phenols which overcomes the disadvantages of the
known processes.
[0009] According to the present invention there is provided a process for the preparation
of sulphonated phenols of the general formula I

where R
1 is hydrogen, a C
1-C
20 alkyl group which is unsubstituted or substituted by halogen, cyano, hydroxyl, C
1-C
20 alkoxy, C
2-C
20 alkoxycarbonyl, acyloxy and/or phenyl which is unsubstituted or substituted by C
1-C
4 alkyl, C
1-C
4 alkoxy and/or halogen, R
2 is hydrogen, C
1-C
20 alkyl or benzoyl of the general formula II

where R
3 and R
4 independently of one another are each hydrogen, halogen, C
1-C
12 alkyl, C
1-C
12 alkoxy, C
1-C
4 haloalkyl, C
3-C
8 cycloalkyl, C
4-C
12 cycloalkylalkyl, cyano, hydroxyl, or hydroxyethyl or are each phenoxy, C
7-C
10 phenylalkyl or phenyl which is unsubstituted or substituted by C
1-C
4 alkyl, C
1-C
4 alkoxy and/or halogen, and R
5 is hydrogen or the group SO
3X where X can be hydrogen, a monovalent metal or a group-N(R
6)
3, where each of the radicals R
6 can be independently of one another hydrogen C
1-C
6 alkyl or C
1-C
6 hydroxy alkyl, which process comprises reacting a phenol of the general formula III

where R
1 and R
2 are as defined above, with a halosulphonic acid in a solvent which is a mixture of
a C
5-C
10 aliphatic or cycloaliphatic hydrocarbon and a dialkyl carbonate of the general formula
IV
R
7-O-CO-O-R
8 IV
where R
7 and R
8 each represent independently a C
1-C
4 alkyl group.
[0010] The phenol of the general formula III preferably is catechol, resorcinol, hydroquinone
or a benzophenone.
[0011] The preferred benzophenone is a 4-alkoxy-2-hydroxybenzophenone.
[0012] The preferred halosulphonic acid is chlorosulphonic acid.
[0013] Preferably, the dialkyl carbonate in the solvent mixture is dimethyl carbonate, diethyl
carbonate or di-isopropyl carbonate.
[0014] Further preferably, the aliphatic or cycloaliphatic hydrocarbon in the solvent mixture
is hexane, cyclohexane, methylcyclohexane, heptane, isooctane, isononane or decane.
[0015] The process of the invention conveniently is carried out with an excess of the phenol
of general formula III over the halosulphonic acid, preferably an excess of 2 to 5
mol % of the phenol.
[0016] The process of the invention furthermore is conveniently carried out with the concentration
of phenol of the general formula III in the solvent mixture being 5 to 50% w/w, preferably
15 to 30% w/w.
[0017] The dialkyl carbonate solvent and the aliphatic or cycloaliphatic hydrocarbon solvent
are mixed in a weight ratio of from 10:90 to 90:10, preferably 40:60 to 60:40.
[0018] Preferably, the process of the invention is carried out at a temperature between
-10°C to 80°C.
[0019] Conveniently the sulphonation reaction is carried out at a temperature between 0°C
to 30°C and the products from the sulphonation are then raised gradually to 60°C to
70°C to remove acid product from the sulphonation reaction.
[0020] Further preferably, the sulphonation reaction is carried out under a pressure between
2mm and 760mm.
[0021] A particular advantage of using a mixed dialkyl carbonate/aliphatic or cycloaliphatic
hydrocarbon solvent according to the invention is that it allows reflux at lower temperatures
to facilitate removal of biproduct acid (e.g. HCl) from the sulphonation reactor.
A further advantage is that the mixed solvent acts to reduce the solubility of the
sulphonated product in the solvent thereby facilitating easy recovery of the product
and higher yield of the product. An additional very important benefit of the use of
the mixed solvent system is the avoidance of problems of colour and impurities that
are observed when an aliphatic hydrocarbon solvent is used on its own.
[0022] Aryl sulphonates are generally not very stable (with regard to desulphonation) when
dissolved in, for example, dialkyl carbonate solvents. By carrying out the reaction
in the mixed solvent, this leads to reduced degradation due to lower temperatures
and precipitation of the product.
[0023] In the sulphonation of 4-alkoxy-2-hydroxy benzophenones by the process according
to the invention, a sulphonic acid group is, as a rule, introduced into the 4-alkoxy-2-hydroxy
nucleus of the starting compound. If the reactivity of the second nucleus has been
increased by appropriate substitution with electron donor groups, such as hydroxyl
or alkoxy, it is also possible introduce two sulpho radicals. For example, the reaction
of 2,2'-dihydroxy-4,4'-dimethoxybenzophenone with two moles of sulphonating agent
gives 2,2'-dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disulphonic acid.
[0024] With regard to the use of 4-alkoxy-2-hydroxybenzophenone-5-sulphonic acids as UV
absorbers, particularly preferred radicals are those in which R
1 is C
1-C
18-alkyl, R
3 is in the ortho-position to the ketonic carbonyl group and is hydrogen or hydroxyl
and R
5 is hydrogen. Other important compounds are those in which R
1 is C
1-C
18-alkyl, R
3 and/or R
4 are each hydrogen or R
3 is an ortho-hydroxyl group and R
4 is a para-alkoxy group, and R
5 is hydrogen.
[0025] Regarding their use as UV absorbers, particularly suitable compounds are the following:
2-hydroxy-4-methoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-ethoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-propoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-isopropoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-butoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-isobutoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-sec-butoxybenzophenone-5-sulphonic acid,
2-hydroxy4-n-pentyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-hexyloxybenzophenone-5-sulphonic acid,
2-hydroxy4-isohexyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-heptyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-isoheptyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-octyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-(3,4-dimethyl-1-hexyloxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-(3,5-dimethyl-1-hexyloxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-(4,5-dimethyl-1-hexyloxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-(3-methyl-1-heptyloxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-n-nonyloxybenzophenone-5-sulphonic acid,
2-hydroxy-n-decyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-undecyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-dodecyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-hexadecyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-n-octadecyloxybenzophenone-5-sulphonic acid,
2-hydroxy-4-(2-acetoxyethoxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-(2-phenbenzoyloxyethoxy)-benzophenone-5-sulphonic acid,
2-hydroxy-4-phenylmethyleneoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-(2-phenylethyleneoxy)-benzophenone-5-sulphonic acid,
2,2'-dihydroxy-4,4'-dimethoxybenzophenone-5-sulphonic acid,
2,2'-dihydroxy-4,4'-dimethoxybenzophenone-5,5'-sulphonic acid,
2,2'-dihydroxy-4-methoxybenzophenone-5-sulphonic acid,
2-hydroxy-4'-fluoro-4-methoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-methoxy-4'-methylbenzophenone-5-sulphonic acid,
2-hydroxy-4-methoxy-4'-phenoxybenzophenone-5-sulphonic acid,
2-hydroxy-4-methoxy-4'-chlorobenzophenone-5-sulphonic acid,
2-hydroxy-4-methoxycarbonylmethyleneoxybenzophenone-5-sulphonic acid and
2-hydroxy-4-ethoxycarbonylmethyleneoxybenzophenone-5-sulphonic acid.
Examples of the Invention
Example 1: Preparation of 2-Hydroxy-4-methoxybenzophenone-5-sulphonic Acid
[0026] 145g (0.634 moles) of 2-hydroxy-4-methoxybenzophenone, 480g dimethyl carbonate and
320 g cyclohexane were charged under nitrogen to a 4-necked one litre reactor fitted
with stirrer, thermometer and condenser attached to an HCl scrubber system. The reaction
mixture was heated to 60°C and 70.4g (0.604 moles) of chlorosulphonic acid added over
a period of 4h with removal of hydrogen chloride gas. On completion of the addition,
the reaction mixture is heated to 70-72°C for 1h, and then cooled to 20°C. The product
was collected by filtration and washed with dimethyl carbonate/cyclohexane (2 x 60g/40g)
and dried under reduced pressure at 50°C to give 167.5g (90%) of 2-hydroxy-4-methoxybenzophenone-5-sulphonic
acid.
Example 2: Preparation of 2-Hydroxy-4-methoxybenzophenone-5-sulphonic Acid
[0027] Example 1 was repeated except diethyl carbonate (480g) was used instead of dimethyl
carbonate yielding 158g (85%) of 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid.
Example 3: Preparation of 2-Hydroxy-4-methoxybenzophenone-5-sulphonic Acid
[0028] Example 1 was repeated except heptane (320g) was used instead of cyclohexane yielding
152g (82%) of 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid.
Example 4: Preparation of 2,4-Dihydroxybenzene sulphonic Acid
[0029] 15.0g (0.136 moles) of resorcinol, 102g dimethyl carbonate and 68g cyclohexane were
charged under nitrogen to a 4-necked one litre reactor fitted with stirrer, thermometer
and condenser attached to an HCl scrubber system. The reaction mixture was heated
to 60°C and 15.1g (0.13 moles) of chlorosulphonic acid added over a period of 4h with
removal of hydrogen chloride gas. On completion of the addition, the reaction mixture
is heated to 70-72°C for 1h, and then cooled to 20°C. The reaction mixture separated
into two layers with the lower layer containing 2,4-dihydroxybenzene sulphonic Acid
(63.2% by hplc) and resorcinol (31.5% by hplc).
Example 5: Preparation of 1,4-Di-hydroxybenzene sulphonic Acid
[0030] 15.0g (0.136 moles) of hydroquinone, 102g dimethyl carbonate and 68g cyclohexane
were charged under nitrogen to a 4-necked one litre reactor fitted with stirrer, thermometer
and condenser attached to an HCl scrubber system. The reaction mixture was heated
to 60°C and 15.1g (0.13 moles) of chlorosulphonic acid added over a period of 4h with
removal of hydrogen chloride gas. On completion of the addition, the reaction mixture
is heated to 70-72°C for 1h, and then cooled to 20°C. The reaction mixture separated
into two layers with the lower layer containing 1,4-dihydroxybenzene sulphonic acid
(60% by hplc) and hydroquinone (38% by hplc).
Example 6: Preparation of 2,4-Di-hydroxy-benzophenone-5-sulphonic Acid
[0031] 29.0g (0.136 moles) of 2,4-dihydroxybenzophenone, 102g dimethyl carbonate and 68g
cyclohexane were charged under nitrogen to a 4-necked one litre reactor fitted with
stirrer, thermometer and condenser attached to an HCl scrubber system. The reaction
mixture was heated to 60°C and 15.1g (0.13 moles) of chlorosulphonic acid added over
a period of 4h with removal of hydrogen chloride gas. On completion of the addition,
the reaction mixture is heated to 70-72°C for 1h, and then cooled to 20°C. The reaction
mixture separated into two layers with the lower layer containing 2,4-dihydroxy-benzophenone-5-sulphonic
acid (94.8% by hplc) and 2,4-dihydroxybenzophenone (3.4% by hplc).
Example 7: Preparation of 2-Hydroxy-4-methoxybenzophenone-5-sulphonic Acid
[0032] 42.4g (0.13 moles) of 2-hydroxy-4-octyloxybenzophenone, 102g dimethyl carbonate and
68 g cyclohexane were charged under nitrogen to a 4-necked one litre reactor fitted
with stirrer, thermometer and condenser attached to an HCl scrubber system. The reaction
mixture was heated to 60°C and 15.1g (0.13 moles) of chlorosulphonic acid added over
a period of 2h with removal of hydrogen chloride gas. On completion of the addition,
the reaction mixture is heated to 70-72°C for 1h, and then cooled to 20°C. The product
was collected by filtration and washed with dimethyl carbonate/cyclohexane (52/34g)
and dried under reduced pressure at 50°C to give 5.8g of 2-hydroxy-4-octyloxybenzophenone-5-sulphonic
acid, and a mother liquor (256g) containing 2-hydroxy-4-octyloxybenzophenone-5-sulphonic
acid (82.4% by hplc) and 2-hydroxy-4-octyloxybenzophenone (16% by hplc).
Examples 8-13
[0033] The following table describes the effect of different ratios of dimethyl carbonate
(DMC) and cyclohexane on the recovered yield of 2-hydroxy-4-methoxybenzophenone-5-sulphonic
acid.
Experimental conditions were as described in Example 1.
Example |
DMC (%) |
Cyclohexane (%) |
Yield (%) |
1 |
60 |
40 |
90 |
8 |
100 |
0 |
73 |
9 |
0 |
100 |
Note 1 |
10 |
10 |
90 |
Note 1 |
11 |
60 |
40 |
92 (Note 2) |
12 |
50 |
50 |
88 |
13 |
40 |
60 |
90 |
Note 1: The product was coloured and very sticky - not isolatable.
Note 2: Repeat of Example 1 |
1. A process for the preparation of sulphonated phenols of the general formula I

where R
1 is hydrogen, a C
1-C
20 alkyl group which is unsubstituted or substituted by halogen, cyano, hydroxyl, C
1-C
20 alkoxy, C
2-C
20 alkoxycarbonyl, acyloxy and/or phenyl which is unsubstituted or substituted by C
1-C
4 alkyl, C
1-C
4 alkoxy and/or halogen, R
2 is hydrogen, C
1-C
20 alkyl or benzoyl of the general formula II

where R
3 and R
4 independently of one another are each hydrogen, halogen, C
1-C
12 alkyl, C
1-C
12 alkoxy, C
1-C
4 haloalkyl, C
3-C
8 cycloalkyl, C
4-C
12 cycloalkylalkyl, cyano, hydroxyl, or hydroxyethyl or are each phenoxy, C
7-C
10 phenylalkyl or phenyl which is unsubstituted or substituted by C
1-C
4 alkyl, C
1-C
4 alkoxy and/or halogen, and R
5 is hydrogen or the group SO
3 X where X can be hydrogen, a monovalent metal or a group -N(R
6)
3, where each of the three radicals R
6 can be independently of one another hydrogen, C
1-C
6 alkyl or C
1-C
6 hydroxy alkyl which process comprises reacting a phenol of the general formula III

where R
1 and R
2 are as defined above, with a halosulphonic acid in a solvent which is a mixture of
a C
5-C
10 aliphatic or cycloaliphatic hydrocarbon and a dialkyl carbonate of the general formula
IV
R
7-O-CO-O-R
8 IV
where R
7 and R
8 each represent independently a C
1-C
4 alkyl group.
2. A process as claimed in claim 1 wherein the phenol of general formula III is catechol,
resorcinol, hydroquinone or a benzophenone.
3. A process as claimed in claim 2 wherein the benzophenone is a 4-alkoxy-2-hydroxybenzophenone.
4. A process as claimed in any one of claims 1 to 3 wherein the halosulphonic acid is
chlorosulphonic acid.
5. A process as claimed in any one of the preceding claims wherein the dialkyl carbonate
in the solvent mixture is dimethyl carbonate, diethyl carbonate or di-isopropyl carbonate.
6. A process as claimed in any one of the preceding claims wherein the aliphatic or cycloaliphatic
hydrocarbon in the solvent mixture is hexane, cyclohexane, methylcyclohexane, heptane,
isooctane, isononane or decane.
7. A process as claimed in any one of the preceding claims carried out with an excess
of the phenol of general formula III over the halosulphonic acid.
8. A process as claimed in claim 7 carried out with a 2 to 5 mol% excess of the phenol
over the halosulphonic acid.
9. A process as claimed in any one of the preceding claims wherein the concentration
of the phenol of general formula III in the solvent mixture is 5 to 50% w/w.
10. A process as claimed in claim 9 wherein the concentration of the phenol in the solvent
mixture is 15 to 30% w/w.
11. A process as claimed in any one of the preceding claims wherein the dialkyl carbonate
solvent and the aliphatic or cycloaliphatic hydrocarbon solvent are mixed in a weight
ratio of from 10:90 to 90:10.
12. A process as claimed in claim 11 wherein the weight ratio of the dialkyl carbonate
solvent to the aliphatic or cycloaliphatic hydrocarbon solvent is 40:60 to 60:40.
13. A process as claimed in any one of the preceding claims carried out a temperature
between -10°C and 80°C.
14. A process as claimed in claim 13 wherein the sulphonation reaction is carried out
at a temperature between 0°C to 30°C and the products of the sulphonation are then
raised gradually to 60°C to 70°C to remove acid biproduct from the sulphonation reaction.
15. A process as claimed in any one of the preceding claims carried out at a pressure
between 2mm and 760mm.
1. Verfahren zur Herstellung sulfonierter Phenole der allgemeinen Formel I

worin R
1 für Wasserstoff, eine C
1-C
20-Alkylgruppe, die unsubstituiert oder substituiert ist mit Halogen, Cyano, Hydroxyl,
C
1-C
20-Alkoxy, C
2-C
20-Alkoxycarbonyl, Acyloxy und/oder Phenyl, das unsubstituiert oder substituiert ist
mit C
1-C
4-Alkyl, C
1-C
4-Alkoxy und/oder Halogen, und R
2 für Wasserstoff, C
1-C
20-Alkyl oder Benzoyl der allgemeinen Formel II steht

worin R
3 und R
4 unabhängig voneinander jeweils für Wasserstoff, Halogen, C
1-C
12-Alkyl, C
1-C
12-Alkoxy, C
1-C
4-Halogenalkyl, C
3-C
8-Cycloalkyl, C
4-C
12-Cycloalkylalkyl, Cyano, Hydroxyl oder Hydroxyethyl stehen oder jeweils für Phenoxy,
C
7-C
10-Phenylalkyl oder Phenyl stehen, das unsubstituiert oder substituiert ist mit C
1-C
4-Alkyl, C
1-C
4-Alkoxy und/oder Halogen, und R
5 für Wasserstoff oder die Gruppe SO
3X steht, worin X für Wasserstoff, ein monovalentes Metall oder eine Gruppe -N(R
6)
3 stehen kann, worin jeder der drei Reste R
6 unabhängig voneinander für Wasserstoff, C
1-C
6-Alkyl oder C
1-C
6-Hydroxyalkyl stehen kann, durch Umsetzung eines Phenols der allgemeinen Formel III

worin R1 und R2 wie oben definiert sind, mit einer Halogensulfonsäure in einem Lösemittel,
das ein Gemisch eines C5-C10-aliphatischen oder cycloaliphatischen Kohlenwasserstoffs
ist, mit einem Dialkylcarbonat der allgemeinen Formel IV
R
7-O-CO-O-R
8 IV
worin R
7 und R
8 jeweils unabhängig für eine C
1-C
4-Alkylgruppe stehen.
2. Verfahren nach Anspruch 1, worin das Phenol der allgemeinen Formel III Catechol, Resorcinol,
Hydrochinon oder ein Benzophenon ist.
3. Verfahren nach Anspruch 2, worin das Benzophenon ein 4-Alkoxy-2-hydroxybenzophenon
ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, worin die Halogensulfonsäure Chlorsulfonsäure
ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, worin das Dialkylcarbonat in dem
Lösemittelgemisch Dimethylcarbonat, Diethylcarbonat oder Diisopropylcarbonat ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, worin der aliphatische oder cycloaliphatische
Kohlenwasserstoff in dem Lösemittelgemisch Hexan, Cyclohexan, Methylcyclohexan, Heptan,
Isooctan, Isononan oder Decan ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, das durchgeführt wird mit einem
Überschuss des Phenols der allgemeinen Formel III gegenüber der Halogensulfonsäure.
8. Verfahren nach Anspruch 7, das durchgeführt wird mit einem 2 bis 5 Mol %igen Überschuss
des Phenols gegenüber der Halogensulfonsäure.
9. Verfahren nach einem der vorhergehenden Ansprüche, worin die Konzentration des Phenols
der allgemeinen Formel III in dem Lösemittelgemisch 5 bis 50 % Gew./Gew. beträgt.
10. Verfahren nach Anspruch 9, worin die Konzentration des Phenols in dem Lösemittelgemisch
15 bis 30 % Gew./Gew. beträgt.
11. Verfahren nach einem der vorhergehenden Ansprüche, worin das Dialkylcarbonatlösemittel
und das aliphatische oder cycloaliphatische Kohlenwasserstofflösemittel in einem Gewichtsverhältnis
von 10:90 bis 90:10 gemischt werden.
12. Verfahren nach Anspruch 11, worin das Gewichtsverhältnis des Dialkylcarbonatlösemittels
zum aliphatischen oder cycloaliphatischen Kohlenwasserstofflösemittel 40:60 bis 60:40
beträgt.
13. Verfahren nach einem der vorhergehenden Ansprüche, das bei einer Temperatur zwischen
-10°C und 80°C durchgeführt wird.
14. Verfahren nach Anspruch 13, worin die Sulfonierungsreaktion bei einer Temperatur zwischen
0°C und 30°C durchgeführt wird und die Produkte der Sulfonierung dann allmählich auf
60°C bis 70°C angehoben werden, um das Säurebiprodukt aus der Sulfonierungsreaktion
zu entfernen.
15. Verfahren nach einem der vorhergehenden Ansprüche, das bei einem Druck zwischen 2
mm und 760 mm durchgeführt wird.
1. Procédé de préparation de phénols sulfonés de la formule générale I :

dans laquelle R
1 représente : hydrogène, groupement alkyle en C
1-C
20, non substitué ou substitué par halogène, cyano, hydroxyle, alkoxy en C
1-C
20, alkoxycarbonyle en C
2-C
20, acyloxy et/ou phényle non substitué ou substitué par alkyle en C
1-C
4, alkoxy en C
1-C
4 et/ou halogène, R
2 représente : hydrogène, alkyle en C
1-C
20 ou benzoyle de la formule générale II :

dans laquelle R
3 et R
4 représentent indépendamment l'un de l'autre : hydrogène, halogène, alkyle en C
1-C
12, alkoxy en C
1-C
12, haloalkyle en C
1-C
4, cycloalkyle en C
3-C
8, cycloalkylalkyle en C
4-C
12, cyano, hydroxyle, ou hydroxyéthyle, ou représentent chacun phénoxy, phénylakyle
en C
7-C
10 ou phényle non substitué ou substitué par alkyle en C
1-C
4, alkoxy en C
1-C
4 et/ou halogène, et R
5 représente l'hydrogène ou le groupement SO
3X, où X peut représenter : hydrogène, métal monovalent ou groupement -N(R
6)
3, où chacun des trois radicaux R
6 peut représenter indépendamment : hydrogène, alkyle en C
1-C
6 ou hydroxyalkyle en C
1-C
6, lequel procédé comprend la réaction d'un phénol de la formule générale III

dans laquelle R
1 et R
2 sont tels que définis plus haut, avec un acide halosulfonique dans un solvant qui
est un mélange d'un hydrocarbure aliphatique ou cycloaliphatique en C
5-C
10 et d'un carbonate de dialkyle de la formule générale IV
R
7-O-CO-O-R
8 IV
dans laquelle R
7 et R
8 représentent chacun indépendamment un groupement alkyle en C
1-C
4.
2. Procédé selon la revendication 1, dans lequel le phénol de formule générale III est
le catéchol, le résorcinol, l'hydroquinone ou une benzophénone.
3. Procédé selon la revendication 2, dans lequel la benzophénone est une 4-alkoxy-2-hydroxybenzophénone.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'acide halosulfonique
est l'acide chlorosulfonique.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le carbonate
de dialkyle dans le mélange solvant est le carbonate de diméthyle, le carbonate de
diéthyle ou le carbonate de diisopropyle.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'hydrocarbure
aliphatique ou cycloaliphatique dans le mélange solvant est : hexane, cyclohexane,
méthylcyclohexane, heptane, isooctane, isononane ou décane.
7. Procédé selon l'une quelconque des revendications précédentes, mis en oeuvre avec
un excès du phénol de formule générale III par rapport à l'acide halosulfonique.
8. Procédé selon la revendication 7, mis en oeuvre avec un excès 2 à 5 % molaires du
phénol par rapport à l'acide halosulfonique.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la concentration
du phénol de la formule générale III dans le mélange solvant est de 5 à 50 masse/masse.
10. Procédé selon la revendication 9, dans lequel la concentration du phénol dans le mélange
solvant est de 15 à 30 masse/masse.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le solvant
carbonate de dialkyle et le solvant hydrocarbure aliphatique ou cycloaliphatique sont
mélangés dans un rapport en masse de 10:90 à 90:10.
12. Procédé selon la revendication 11, dans lequel le rapport en masse du solvant carbonate
de dialkyle par rapport au solvant hydrocarbure aliphatique ou cycloaliphatique est
de 40:60 à 60:40.
13. Procédé selon l'une quelconque des revendications précédentes, mis en oeuvre à une
température entre -10 °C et 80 °C.
14. Procédé selon la revendication 13, dans lequel la réaction de sulfonation est mise
en oeuvre à une température entre 0 °C et 30 °C, et les produits de la sulfonation
sont ensuite amenés progressivement à 60 °C à 70 °C pour éliminer un sous-produit
acide de la réaction de sulfonation.
15. Procédé selon l'une quelconque des revendications précédentes, mis en oeuvre à une
pression entre 2 mm et 760 mm.