(19)
(11) EP 1 494 791 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
17.06.2009 Bulletin 2009/25

(21) Application number: 02728811.7

(22) Date of filing: 17.04.2002
(51) International Patent Classification (IPC): 
B01F 7/00(2006.01)
B01F 3/08(2006.01)
C02F 1/68(2006.01)
C02F 1/74(2006.01)
B01J 19/00(2006.01)
B01F 3/04(2006.01)
B01F 13/06(2006.01)
C02F 1/72(2006.01)
A01K 63/04(2006.01)
(86) International application number:
PCT/US2002/012168
(87) International publication number:
WO 2003/089123 (30.10.2003 Gazette 2003/44)

(54)

DIFFUSER/EMULSIFIER

DIFFUSOR/EMULGATOR

DIFFUSEUR/EMULSIONNEUR


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(43) Date of publication of application:
12.01.2005 Bulletin 2005/02

(60) Divisional application:
08020818.4

(73) Proprietor: REVALESIO CORPORATION
Tacoma, Washington, 98424 (US)

(72) Inventors:
  • WOOTAN, Norman, L.
    Dallas, TX 75231 (US)
  • WOOD, Anthony, B.
    Dallas, TX 75206 (US)

(74) Representative: Lawrence, Malcolm Graham et al
HLBBshaw Merlin House Falconry Court Baker's Lane
Epping, Essex CM16 5DQ
Epping, Essex CM16 5DQ (GB)


(56) References cited: : 
WO-A2-01/87471
DE-B1- 1 557 171
US-A- 4 136 971
US-A- 4 441 823
US-A- 5 263 774
US-A- 5 590 961
US-A- 5 902 042
US-A1- 2003 057 163
US-B1- 6 386 751
WO-A2-20/04013049
US-A- 4 128 342
US-A- 4 361 414
US-A- 5 188 090
US-A- 5 563 189
US-A- 5 865 537
US-A1- 2001 003 291
US-A1- 2003 072 212
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. TECHNICAL FIELD



    [0001] This invention relates in general to diffusers and, more particularly, to a method and apparatus for diffusing or emulsifying a gas or liquid into a material.

    2. DESCRIPTION OF THE RELATED ART



    [0002] In many applications, it is necessary to diffuse or emulsify one material - gas or liquid - within a second material. Emulsification is a subset of the process of diffusion wherein small globules of one liquid are suspended in a second liquid with which the first will not mix, such as oil into vinegar. One important application of the diffusion process is in wastewater treatment. Many municipalities aerate their wastewater as part of the treatment process in order to stimulate biological degradation of organic matter. The rate of biological digestion of organic matter is very dependent upon the amount of oxygen in the wastewater, since the oxygen is necessary to sustain the life of the microorganisms which consume the organic matter. Additionally, oxygen is able to remove some compounds, such as iron, magnesium and carbon dioxide.

    [0003] There are several methods of oxygenating water. First, turbine aeration systems release air near the rotating blades of an impeller which mixes the air or oxygen with the water. Second, water can be sprayed into the air to increase its oxygen content. Third, a system produced by AQUATEX injects air or oxygen into the water and subjects the water/gas to a large scale vortex. Tests on the AQUATEX device have shown an improvement to 200% dissolved oxygen (approximately 20 ppm (parts per million)) under ideal conditions Naturally occurring levels of oxygen in water are approximately 10 ppm maximum, which is considered to be a level of 100% dissolved oxygen. Thus, the AQUATEX device doubles the oxygen content of the water. The increased oxygenation levels last only minutes prior to reverting back to 100% dissolved oxygen levels.
    Greater oxygenation levels, and longer persistence of the increased oxygen levels, could provide significant benefits in treating wastewater. Importantly, the efficiency of the organic digestion would be increased and the amount of time need for biological remediation would decrease, improving on the capacity of wastewater treatment facilities.

    [0004] Accordingly, a need has arisen for a diffusing mechanism capable of diffusing high levels of one or more materials into another material.
    WO 01/87471 discloses a method of mixing two or more dissimilar fluids.
    In a preferred embodiment, cavitation is provided in a chamber having a rotating disk formed with irregularities such as bores.

    BRIEF SUMMARY OF THE INVENTION



    [0005] According to a first aspect of the present invention, there is provided on a diffuse as claimed in claim 1.

    [0006] According to a second aspect of the present invention, there is provided a method of diffusing as claimed in claim 8.

    [0007] Preferred embodiments are disclosed in the dependent claims.

    [0008] The present invention provides significant advantages over the prior art. First, the micro-cavitations generated by the device allow diffusion to occur at a molecular level, increasing the amount of infusion material which will be held by the host material and the persistence of the diffusion. Second, the micro-cavitations and shock waves can be produced by a relatively simple mechanical device. Third, the frequency or frequencies of the shock wave produced by the device can be used in many applications, either to break down complex structures or to aid in combining structures. Fourth, the cavitations and shock waves can be produced uniformly throughout a material for consistent diffusion.

    BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS



    [0009] For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

    [0010] Figures 1 and 1a illustrate a partially cross sectional, partially block diagram of a first embodiment of a diffuser;

    [0011] Figures 2a, 2b and 2c illustrate the diffusion process internal to the diffuser;

    [0012] Figure 3 illustrates an exploded view of the rotor and stator of the diffuser;

    [0013] Figure 4 illustrates an embodiment of the stator;

    [0014] Figure 5a illustrates a cross-section view of the rotor-stator assembly in a second embodiment of the invention;

    [0015] Figure 5b illustrates a top view of the rotor in the second embodiment of the invention;

    [0016] Figure 6 illustrates a cut-away view of a third embodiment of the invention;

    [0017] Figures 7a, 7b, 7c, 7e and 7g illustrate alternative embodiments for generating the diffusion whereas figures 7b, 7d, 7f, 7h, do not form part of the invention; and

    [0018] Figures 8a and 8b illustrate arrangements not forming part of the invention.

    DETAILED DESCRIPTION OF THE INVENTION



    [0019] The present invention is best understood in relation to Figures 1-8 of the drawings, like numerals being used for like elements of the various drawings.

    [0020] Figures 1 and 1a illustrate a partially block diagram, partially cross-sectional view first embodiment of a device 10 capable of diffusing or emulsifying one or two gaseous or liquid materials (hereinafter the "infusion materials") into another gaseous or liquid material (hereinafter the "host material"). The host material may be a normally solid material which is heated or otherwise processed to be in a liquid or gaseous state during the diffusion/emulsification process.

    [0021] A rotor 12 comprises a hollow cylinder, generally closed at both ends. Shaft 14 and inlet 16 are coupled to the ends of the rotor 12. A first infusion material can pass through inlet 16 into the interior of rotor 12. Shaft 14 is coupled to a motor 18, which rotates the rotor at a desired speed. The rotor 12 has a plurality of openings 22 formed therethrough, shown in greater detail in Figure 1a. In the preferred embodiment, the openings 22 each have a narrow orifice 24 and a larger borehole 26. The sidewalls 28 of the boreholes 26 can assume various shapes including straight (as shown in Figure 4), angled (as shown in Figure 1) or curved.

    [0022] A stator 30 encompasses the rotor 12, leaving a channel 32 between the rotor and the stator through which the host material may flow. The stator 30 also has openings 22 formed about its circumference. A housing 34 surrounds the stator 30 and inlet 36 passes a second infusion material to an area 35 between the stator 30 and the housing 34. The host material passes through inlet 37 into the channel 32. Seals 38 are formed between the shafts 14 and 16 and the housing 34. An outlet 40 passes the host material from the channel 32 to a pump 42, where it exits via pump outlet 44. The pump may also be driven by motor 18 or by an auxiliary source.

    [0023] In operation, the diffusion device receives the host material through inlet 37. In the preferred embodiment, pump 42 draws the host material on the pump's suction side in order to allow the host material to pass through the channel at low pressures. The first and second infusion materials are introduced to the host material through openings 22. The infusion materials may be pressurized at their source to prevent the host material from passing through openings 22.

    [0024] The embodiment shown in Figure 1 has separate inlets for 16 and 36 for the diffusion materials. This arrangement allows two different infusion materials to be introduced to the host material. Alternatively, a single infusion material could be introduced into both inlets.

    [0025] In tests, the embodiment shown in Figure 1 has demonstrated high levels of diffusion of the infusion material(s) into the host material. Tests using oxygen as the infusion material and water as the host material have resulted in levels of 400% dissolved oxygen in the water, with the increased oxygen levels lasting for days.

    [0026] The reason for the high efficiency and persistence of the diffusion is believed to be the result of micro-cavitation, which is described in connection with Figures 2a-c.
    Whenever a material flows over a smooth surface, a rather laminar flow is established with a thin boundary layer that is stationary or moving very slowly because of the surface tension between the moving fluid and the stationary surface. The openings 22, however, disrupt the laminar flow and can cause compression and decompression of the material. If the pressure during the decompression cycle is low enough, voids (cavitation bubbles) will form in the material. The cavitation bubbles generate a rotary flow pattern 46, like a tornado, because the localized area of low pressure draws the host material and the infusion material, as shown in Figure 2a. When the cavitation bubbles implode, extremely high pressures result. As two aligned openings pass one another, a succusion (shock wave) occurs, generating significant energy. The energy associated with cavitation and succussion mixes the infusion material and the host material to an extremely high degree, perhaps at the molecular level.

    [0027] The tangential velocity of the rotor 12 and the number of openings that pass each other per rotation dictate the frequency at which the device operates. It has been found that operation in the ultrasonic frequency can be beneficial in many applications. It is believed that operating the device in the ultrasonic region of frequencies provides the maximum succussion shock energy to shift the bonding angle of the fluid molecule, which enables it to transport additional infusion materials which it would not normally be able to retain. The frequency at which the diffuser operates appears to affect the degree of diffusion, leading to much longer persistence of the infusion material in the host material.

    [0028] In some applications, a particular frequency or frequencies may be desired to break down certain complex molecules, such as in the case of water purification. In this application, multiple frequencies of succussion can be used to break complex structures, such as VOCs (volatile organic compounds), into smaller sub-structures. Ozone can be used as one of the infusion materials to oxidize the sub-structures at a high efficiency.

    [0029] Other sonochemistry applications can be performed with the device 10. In general, sonochemistry uses ultrasound to assist chemical reactions. Typically, the ultrasound is generated using a piezoelectric or other electro-acoustical device. A problem associated with electro-acoustical transducers is that the sound waves do not provide uniform sound waves throughout the material; rather, the desired cavitation is localized around the device itself. The present invention allows the ultrasonic waves to be produced throughout a material using a simple mechanical device.

    [0030] Figure 3 illustrates an exploded view of an embodiment of the rotor 12 and stator 30 where multiple frequencies may be obtained at a single rotational velocity. In Figure 3, three circular arrays of openings 50 (shown individually as arrays 50a, 50b, and 50c) of openings 22 are disposed circumferentially about the rotor 12. Each ring has a different number of openings evenly spaced about its circumference. In similar fashion, the stator 30 would have three circular arrays of openings 52 (shown individually as arrays 52a, 52b, and 52c). To ensure that only one pair of openings between corresponding arrays will be coincident at any one time, the number of openings 22 in a given array 52 on the stator 30 can be one more (or less) than the number of openings 22 in the corresponding array 50 of the rotor 12. Thus, for example, if array 50a had twenty openings evenly spaced around the circumference of rotor 12, array 52 could have 21 openings spaced evenly around the circumference of stator 30.

    [0031] As the rotor 12 of Figure 3 rotates relative to stator 30, each array will create succussions at a different frequency. By properly choosing different frequencies, a sum and difference interference pattern will result, creating a wide spectrum of frequencies. This spectrum of frequencies can be beneficial in many applications where unknown impurities in a host liquid need to be broken down and oxidized.

    [0032] Figure 4 illustrates a cross-sectional side view of an embodiment of a stator 30. For smaller diameter stators, it may be difficult to form the borehole 26 on the inside of stator 30. The embodiment of Figure 4 uses an inner sleeve 54 and an outer sleeve 56. The boreholes 26 can be drilled, from the outside, of the inner sleeve 54. For each borehole 26 on the inner sleeve 54, a corresponding aligned orifice 24 is drilled on the outer sleeve 56. The inner sleeve 54 is then placed in, and secured to, the outer sleeve 56 to form the stator 30. Other methods, such as casting, could also be used to form the stator 30.

    [0033] Figures 5a-b and 6 illustrate alternative embodiments of the diffuser 10. Where appropriate, reference numerals from Figure 1 are repeated in these figures.

    [0034] Figure 5a illustrates an cross-sectional side view of an embodiment where the rotor 12 and stator 30 are disk shaped. Figure 5b illustrates a top view of the disk shaped rotor 12. The stator 30 is formed above and below the rotor 12. Both the stator 12 and rotor 30 have a plurality of openings of the type described in connection with Figure 1, which pass by each other as the rotor 12 is driven by the motor. As before, for each array 52, the stator 30 may have one opening more or less than the corresponding array 50 in rotor 12 in order to prevent simultaneous succussion at two openings within an array. The openings 22 can be of the same shape as shown in Figure 1. A hollow shaft serves as the inlet 16 to the interior of the disk shaped rotor for the first infusion material. Similarly, an area 35 between the stator 30 and the housing 34 receives the second infusion material. As the host material flows in the channel 32 between the rotor 12 and the stator 30, it is subjected to the vortex generation at the openings 22, thereby causing a diffusion of the first and second materials with the host material. The infused host material passes to outlets 40.

    [0035] Figure 5b illustrates a top view of the rotor 12. As can be seen, a plurality of openings forms concentric arrays of openings on the rotor 12. Each array can, if desired, generate secussions at different frequencies. In the preferred embodiment, openings 22 would be formed on the top and bottom of the rotor 12. Corresponding openings would be formed above and below these openings on the stator 30.

    [0036] Figure 6 illustrates a cut away view of an embodiment of the invention where the rotor 12 has a conical shape. Both the stator 12 and rotor 30 have a plurality of openings of the type described in connection with Figure 1, which pass by each other as the rotor 12 is driven by the motor. In addition to the openings around the circumference of the rotor 12, there could also be openings at the bottom of the conical shape, with corresponding openings in the portion of the stator 30 at the bottom. As before, for each array, the stator 30 may have one opening more or less than the rotor 12 in order to prevent simultaneous succussion at two openings 22 on the same array. A hollow shaft serves as the inlet 16 to the interior of the disk shaped rotor for the first infusion material. Similarly, an area 35 between the stator 30 and the housing 34 receives the second infusion material. As the host material flows between the rotor 12 and the stator 30, it is subjected to the vortex generation at the openings 22, thereby causing a diffusion of the first and second materials with the host material. The infused host material passes to outlets 40.

    [0037] In the embodiments of Figures 5a-b and 6, because the arrays of openings 22 can be formed at increasing diameters, generation of multiple frequencies may be facilitated. It should be noted that any number of shapes could be used, including hemi-spherical and spherical shapes to realize the rotor 12 and stator 30.

    [0038] The diffuser described herein can be used in a number of applications. Optimal opening size (for both the orifice 24 and borehole 26), width of channel 32, rotational speed and rotor/stator diameters may be dependent upon the application of the device.

    [0039] As described above, the diffuser 10 may be used for water aeration. In this embodiment air or oxygen is used as both the first and second infusion materials. The air/oxygen is diffused into the wastewater (or other water needing aeration) as described in connection with Figure 1. It has been found that the diffuser can increase the oxygenation to approximately 400% dissolved oxygen, with greater concentrations expected as parameters are optimized for this application. In tests which circulated approximately twenty five gallons of municipal water at ambient temperatures (initially having a reading of 84.4% dissolved oxygen) through the device for five minutes to achieve 390% dissolved oxygen content, the enhanced concentration of oxygen levels remained above 300% dissolved oxygen for a period of four hours and above 200% dissolved oxygen for over 19 hours. After three days, the dissolved oxygen content remained above 134%. In these tests, frequencies of 169 kHz were used. The sizes of the openings were 0.030 inches for the orifice 24 and 0.25 inches for the borehole (with the boreholes 26 on the rotor having sloped sides). Cooler temperatures could significantly increase the oxygenation levels and the persistence.

    [0040] Also for the treatment of wastewater, or for bio-remediation of other toxic materials, oxygen could be used as one of the infusion materials and ozone could be used as the other infusion material. In this case, the ozone would be used to oxidize hazardous structures in the host material, such as VOCs and dangerous microorganism. Further, as described above, a set of frequencies (as determined by the arrays of openings in the rotor 12 and stator 30) could be used to provide an destructive interference pattern which would break down many of the complex structures into smaller substructures. Alternatively, if the treatment was directed towards oxidation of a single known hazardous substance, it would be possible to use a single frequency which was known to successfully break down the structure. Conversely, a set of frequencies which result in a constructive interference pattern could be used to combine two or more compounds into a more complex and highly structured substance.

    [0041] For producing potable water, ozone could be used as the first and second infusion material to break down and oxidize contaminants.

    [0042] While the operation of the diffuser 10 has been discussed in connection with large applications, such as municipal wastewater remediation, it could also be used in household applications, such as drinking water purifiers, swimming pools and aquariums.

    [0043] The diffuser could also be used for other applications where diffusion of a gas or liquid into another liquid changes the characteristics of the host material. Examples of such applications would include the homogenization of milk or the hydrogenation of oils. Other applications could include higher efficiencies in mixing fuel and gases/liquids resulting in higher fuel economy.

    [0044] Figures 7a-b illustrate alternative embodiments for the rotor 12 and stator 30. In Figure 7a, the "stator" 30 also rotates; in this case, the frequency of the successions will be dependent upon the relative rotational speed between the rotor 12 and stator 30. In Figure 7b, one of either the rotor 12 or stator 30 does not pass an infusion material through the component (in Figure 7b only the rotor passes an infusion material); the component which does not pass an infusion material has its openings 22 replaced by cavities 58 to produce the turbulence. The cavities 58 could be shaped similarly to the boreholes 26 without the accompanying orifices 24.

    [0045] In Figure 7c, the orifice 24 through which the infusion material is passed through the rotor 12 or stator 30 is positioned next to the borehole 26, rather than in the borehole 26 as in previous embodiments. It should be noted that the primary purpose of the borehole 26 is to disrupt the laminar flow of the host material along the surface of the rotor 12 and stator 30. The compression and rarefaction (decompression) of the host material causes the micron-cavitation, which provides the high degree of diffusion produced by the device. During decompression, voids (cavitation bubbles) are produced in the host material. The cavitation bubbles grow and contract (or implode) subject to the stresses induced by the frequencies of the succussions. Implosions of cavitation bubbles produce the energy which contribute to the high degree of diffusion of the infusion materials into the host material as it passes through the channel 32. Thus, so long as the infusion materials and the host material are mixed at the point where the cavitation and resultant shock waves are occurring, the diffusion described above will result.

    [0046] Further, the generation of the cavitation and shock waves could be performed using structures which differ from the boreholes 26 shown in the embodiments above. As stated above, the boreholes 26 are surface disturbances which impede the laminar flow of the host material along the sidewalls of the channel 32. In Figure 7e, a protrusion, such as bump 62 could be used as a surface disturbance in place of or in conjunction with the boreholes 26. Shapes other than rounded shapes could also be used. As shown in Figure 7f, grooves (or ridges) 64 could be formed in the rotor 12 and/or stator 30 to generate the cavitation and shock waves.

    [0047] As stated above, not all applications require, or benefit from, the generation of shock waves at a particular frequency. Therefore, the rotor 12 or stator 30 could have the boreholes 26 (or other surface disturbances) arranged such that a white noise was produced, rather than a particular frequency. The structures used to create the cavitation need not be uniform; a sufficiently rough surface be formed on the rotor 12 or stator 30 will cause the cavitation. Additionally, as shown in Figure 7g, it may not be necessary for both the surface of the rotor 12 and the surface of the stator 30 to create the cavitation; however, in most cases, operation of the device 10 will be more efficient if both surfaces are used.

    [0048] The present invention provides significant advantages over the prior art. First, the micro-cavitations generated by the device allow diffusion to occur at a molecular level, increasing the amount of infusion material which will be held by the host material and the persistence of the diffusion. Second, the micro-cavitations and shock waves can be produced by a relatively simple mechanical device. Third, the frequency or frequencies of the shock wave produced by the device can be used in many applications, either to break down complex structures or to aid in combining structures. Fourth, the cavitations and shock waves can be produced uniformly throughout a material for consistent diffusion


    Claims

    1. A diffuser (10) comprising:

    a rotor (12) and a stator (30), at least one of the rotor (12) and stator (30) having a surface incorporating surface disturbances (22); the stator .(30) positioned relative to the rotor (12) to form a channel (32) through which a first material is, in use, able to flow substantially without interruption between the respective member surfaces, whereas the surface disturbances face the channel, at least one of said rotor (12) and stator (30) further having orifices (24); a first inlet means (37) for introducing said first material into said channel (32); a second inlet means (36) for introducing a second material into a second surface of said rotor (12) or stator (30) such that said second material is, in use, input through the orifices (24) into said channel (32) for mixing with the first material and a motor (18) to move one of the rotor (12) and stator (30) relative to the other to, when in use, create cavitation in the first material while the first material is within the channel (32) for diffusing the second material into the first material.


     
    2. The diffuser (10) of claim 1, wherein one or more of said surface disturbances (22) comprise impressions.
     
    3. The diffuser (10) of claim 2, wherein said one or more of said surface disturbances (22) comprise boreholes, grooves or protrusions.
     
    4. The diffuser (10) of claim 3, wherein said protrusions comprise bumps or ridges.
     
    5. The diffuser (10) as claimed in any preceding claim, wherein both of said rotor (12) and stator (30) has one or more orifices (24) formed therein.
     
    6. The diffuser (10) as claimed in any preceding claim including (a) a pump (44) for drawing said first and second materials through said channel, or (b) a pump for driving said first and second materials through said channel (32).
     
    7. The diffuser (10) as claimed in any preceding claim, wherein said rotor (12) has a cylindrical shape, a disk shape, a conical shape, a spherical shape, or a hemispherical shape.
     
    8. A method of diffusing a first material with a second material, comprising the steps of:

    inputting said first material from a first inlet means (37) into a channel (32) formed between a rotor (12) and a first side of a stator (30), at least one of said rotor (12) and stator (30) having surface disturbances (22) facing said channel (32); at least one of said rotor (12) or stator (30) further having orifices (24);

    inputting the second material from a second inlet means (36) such that said second material is, in use, input through the orifices (24) of said rotor (12) or stator (30) into said channel (32) for mixing with the first material;
    and

    moving said first material in a flow in said channel (32) substantially without interruption and relative to said surface disturbances (22) to cause said first and second materials to be compressed and decompressed resulting in cavitation of said first material.


     


    Ansprüche

    1. Ein Diffusor (10), der Folgendes enthält:

    einen Rotor (12) und einen Stator (30), wobei wenigstens einer von Rotor (12) und Stator (30) eine Oberfläche aufweist, die Oberflächenstörungen (22) enthält, wobei der Stator (30) derart in Bezug zum Rotor (12) positioniert ist, dass ein Kanal (32) gebildet wird, durch den bei der Benutzung ein erstes Material im Wesentlichen ohne Unterbrechung zwischen den entsprechenden Elementoberflächen fließen kann, wobei die Oberflächenstörungen gegen den Kanal gerichtet sind, wobei wenigstens einer von Rotor (12) und Stator (30) ferner Öffnungen (24) aufweist; ein erster Einlass (37) zur Einführung des ersten Materials in den Kanal (32) vorgesehen ist; ein zweiter Einlass (36) zur Einführung eines zweiten Materials in eine zweite Oberfläche von Rotor (12) oder Stator (30) vorgesehen ist; so dass das zweite Material bei der Benutzung durch die Öffnungen (24) in den Kanal (32) zur Mischung mit dem ersten Material eintritt, und ein Motor (18) vorgesehen ist, um einen von Rotor (12) und Stator (30) relativ zum anderen zu bewegen, um bei der Benutzung eine Kavitation in dem ersten Material zu erzeugen, während das erste Material sich in dem Kanal (32) zur Diffusion des zweiten Materials in das erste Material befindet.


     
    2. Diffusor (10) nach Anspruch 1, bei dem eine oder mehrere der Oberflächenstörungen (22) Eindrücke enthalten.
     
    3. Diffusor (10) nach Anspruch 2, bei dem eine oder mehrere der Oberflächenstörungen (22) Löcher, Vertiefungen oder Vorsprünge enthalten.
     
    4. Diffusor (10) nach Anspruch 3, bei dem die Vorsprünge Punkte oder Rippen enthalten.
     
    5. Diffusor (10) nach einem der vorhergehenden Ansprüche, bei dem sowohl der Rotor (12) als auch der Stator (30) eine oder mehrere Öffnungen (24) enthalten.
     
    6. Diffusor (10) nach einem der vorhergehenden Ansprüche, welcher (a) eine Pumpe (44) zum Saugen des ersten und zweiten Materials durch den Kanal oder (b) eine Pumpe zum Drücken des ersten und zweiten Materials durch den Kanal (32) aufweist.
     
    7. Diffusor (10) nach einem der vorhergehenden Ansprüche, bei dem der Rotor (12) eine zylindrische Form, eine scheibenförmige Form, eine konische Form, eine spherische Form oder eine hemisphärische Form aufweist.
     
    8. Verfahren zum Diffundieren eines ersten Materials mit einem zweiten Material, welches folgende Schritte aufweist:

    Einführen des ersten Materials von einem ersten Einlass (37) in einen Kanal (32), der zwischen einem Rotor (12) und einer ersten Seite eines Stators (30) gebildet ist, wobei wenigstens einer von Rotor (12) und Stator (30) Oberflächenstörungen (22) aufweist, die gegen den Kanal (32) gerichtet sind; wenigstens einer von Rotor (12) und Stator (30) ferner Öffnungen (24) aufweist,

    Einführen des zweiten Materials von einem zweiten Einlass (36), derart, dass das zweite Material bei der Verwendung durch die Öffnungen (24) des Rotors (12) oder Stators (30) in den Kanal (32) eingeführt wird, um es mit dem ersten Material zu mischen,
    und

    Bewegen des ersten Materials in einem Fluss in dem Kanal (32) im Wesentlichen ohne Unterbrechung und relativ zu den Oberflächenstörungen (32), um die ersten und zweiten Materialien zu komprimieren und zu dekomprimieren, welches zu einer Kavitation des ersten Materials führt.


     


    Revendications

    1. Diffuseur (10) comprenant :

    un rotor (12) et un stator (30), au moins l'un parmi le rotor (12) et le stator (30) ayant une surface incorporant des perturbations de surface (22) ; le stator (30) étant positionné par rapport au rotor (12) pour former un canal (32) à travers lequel un premier matériau est capable, en utilisation, de circuler sensiblement sans interruption entre les surfaces d'éléments respectives, tandis que les perturbations de surface font face au canal, au moins l'un parmi ledit rotor (12) et ledit stator (30) ayant en outre des orifices (24) ; un premier moyen d'entrée (37) pour introduire ledit premier matériau dans ledit canal (32) ; un deuxième moyen d'entrée (36) pour introduire un deuxième matériau dans une deuxième surface dudit rotor (12) ou dudit stator (30) de sorte que ledit deuxième matériau est introduit, en utilisation, à travers les orifices (24) dans ledit canal (32) pour se mélanger avec le premier matériau ; et un moteur (18) pour déplacer l'un parmi le rotor (12) et le stator (30) l'un par rapport à l'autre pour créer, en utilisation, une cavitation dans le premier matériau alors que le premier matériau est dans le canal (32) pour faire diffuser le deuxième matériau dans le premier matériau.


     
    2. Diffuseur (10) selon la revendication 1, dans lequel une ou plusieurs desdites perturbations de surface (22) comprennent des empreintes.
     
    3. Diffuseur (10) selon la revendication 2, dans lequel lesdites une ou plusieurs desdites perturbations de surface (22) comprennent des orifices d'alésage, des rainures ou des saillies.
     
    4. Diffuseur (10) selon la revendication 3, dans lequel lesdites saillies comprennent des bosses ou des nervures.
     
    5. Diffuseur (10) selon l'une quelconque des revendications précédentes, dans lequel à la fois ledit rotor (12) et ledit stator (30) possèdent un ou plusieurs orifices (24) formés à l'intérieur.
     
    6. Diffuseur (10) selon l'une quelconque des revendications précédentes comprenant (a) une pompe (44) pour aspirer lesdits premier et deuxième matériaux à travers ledit canal, ou (b) une pompe pour entraîner lesdits premier et deuxième matériaux à travers ledit canal (32).
     
    7. Diffuseur (10) selon l'une quelconque des revendications précédentes, dans lequel ledit rotor (12) présente une forme cylindrique, une forme de disque, une forme conique, une forme sphérique, ou une forme hémisphérique.
     
    8. Procédé de diffusion d'un premier matériau avec un deuxième matériau, comprenant les étapes consistant à :

    introduire ledit premier matériau par un premier moyen d'entrée (37) dans un canal (32) formé entre un rotor (12) et un premier côté d'un stator (30), au moins l'un parmi ledit rotor (12) et ledit stator (30) ayant des perturbations de surface (22) faisant face audit canal (32) ; au moins l'un parmi ledit rotor (12) ou ledit stator (30) ayant en outre des orifices (24) ;

    introduire le deuxième matériau par un deuxièmes moyen d'entrée (36) de sorte que ledit deuxième matériau est introduit, en utilisation, à travers les orifices (24) dudit rotor (12) ou dudit stator (30) dans ledit canal (32) pour se mélanger avec le premier matériau ; et

    bouger ledit premier matériau dans un écoulement dans ledit canal (32) sensiblement sans interruption et par rapport auxdites perturbations de surface (22) pour amener une compression et une détente desdits premier et deuxième matériaux ce qui résulte en une cavitation dudit premier matériau.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description