(19)
(11) EP 1 867 880 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
17.06.2009 Bulletin 2009/25

(21) Application number: 07008233.4

(22) Date of filing: 23.04.2007
(51) International Patent Classification (IPC): 
F15B 15/28(2006.01)

(54)

Fluid pressure cylinder unit with stroke sensor

Zylindereinheit mit Hubgeber

Dispositif de vérin doté d'un capteur de course


(84) Designated Contracting States:
DE ES GB IT

(30) Priority: 16.06.2006 JP 2006166835

(43) Date of publication of application:
19.12.2007 Bulletin 2007/51

(73) Proprietor: KAYABA INDUSTRY CO., LTD.
Minato-ku, Tokyo 105-6190 (JP)

(72) Inventor:
  • Ito, Tatsuo
    Tokyo 105-6190 (JP)

(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät 
Leopoldstrasse 4
80802 München
80802 München (DE)


(56) References cited: : 
EP-A2- 1 217 220
DE-U1- 29 607 993
US-A- 5 150 049
AT-B- 392 126
JP-A- 11 190 308
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] This invention relates to the installation of a stroke sensor in a fluid pressure cylinder, according to the preamble of claim 1. Such an installation is known from EP 1 217 220 A2.

    BACKGROUND OF THE INVENTION



    [0002] JPH11-190308A, published by the Japan Patent Office in 1999 proposes a stroke sensor for detecting a stroke position of a fluid pressure cylinder.

    [0003] This stroke sensor comprises a sensor probe, a base of which is fixed to the cylinder and a tip of which is inserted into a bore formed axially in a piston rod through an opening formed in the central part of a piston.

    [0004] A magnetostrictive wire is built into the sensor probe in an axial direction. By applying a pulsed electric current to the magnetostrictive wire, a magnetic field is formed on the outer circumference of the sensor probe in a circumferential direction. By disposing a magnet so as to face the outer circumference of the sensor probe in this state, the magnetic field in the circumferential direction and a magnetic field formed by the magnet in the axial direction are integrated, and as a result a torsional strain in the magnetic field is generated in the position of the magnet. This phenomenon is known as the Wiedemann effect.

    [0005] The torsional strain in the magnetic field is transmitted as an acoustic wave along the magnetostrictive wire. The propagation period of this acoustic wave along the magnetostrictive wire has a linear relation with the distance from the magnet. By measuring the propagation period of this acoustic wave in a predetermined position of the magnetostrictive wire, the relative positions of the magnet and the sensor probe can be detected.

    SUMMARY OF THE INVENTION



    [0006] According to the prior art, the magnet is disposed in a recess formed in the central position of the piston. The opening of the recess faces the bottom of the cylinder. The magnet is gripped between a cap-shaped holder and a bottom of the recess. The holder is secured to the bottom of the recess by mounting screws.

    [0007] Depending on the tightening force generated by the mounting screws, the axial position of the magnet may vary slightly. This variation causes a detection error in the stroke position. Further, if excessive torque is applied to the screws to secure the magnet firmly, the magnet may be damaged due to excessive tightening force.

    [0008] It is therefore an object of this invention to improve the precision with which the magnet is positioned with respect to the piston as well as to protect the magnet from an excessive tightening force. In order to achieve the above object, this invention provides an apparatus according to claim 1.

    [0009] The details as well as other features and advantages of this invention are set forth in the remainder of the specification and are shown in the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] FIG. 1 is a longitudinal sectional view of a hydraulic pressure cylinder unit according to this invention.

    [0011] FIG. 2 is an enlarged longitudinal sectional view of a magnet holding part of the hydraulic pressure cylinder unit.

    [0012] FIG. 3 is an enlarged longitudinal sectional view of a magnet holding part according to another embodiment of this invention.

    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0013] Referring to FIG. 1 of the drawings, a hydraulic pressure cylinder unit comprises a cylinder 1, a piston 2a enclosed in the cylinder 1 so as to be free to slide, and a piston rod 2 connected to the piston 2a and projecting from the cylinder 1 in an axial direction.

    [0014] A hydraulic pressure chamber R is delimited in the cylinder 1 by the piston 2a. The hydraulic pressure chamber R drives the piston 2a in the axial direction within the cylinder 1 according to hydraulic pressure supplied from a hydraulic pressure source P disposed on the outside of the cylinder 1.

    [0015] Specifically, when hydraulic pressure is supplied to the hydraulic pressure chamber R from the hydraulic pressure source P, the hydraulic pressure chamber R expands, and the piston 2a displaces towards the right hand side of the figure. Accordingly, the piston rod 2 projects from the cylinder 1. This action is known as elongation of the hydraulic pressure cylinder unit.

    [0016] On the other hand, when the hydraulic pressure is released from the hydraulic pressure chamber R to the hydraulic pressure source P, the hydraulic pressure chamber R contracts and the piston 2a displaces towards the left hand side of the figure in the cylinder 1. Accordingly, the piston rod 2 invades the cylinder 1. This action is known as contraction of the hydraulic pressure cylinder unit.

    [0017] To detect a relative position of the piston rod 2 with respect to the cylinder 1 in the axial direction, or in other words a stroke position of the piston 2a the hydraulic pressure cylinder unit comprises a stroke sensor 100.

    [0018] The stroke sensor 100 comprises a sensor probe 3 fixed to the cylinder 1, and a magnet 4 fixed to the piston 2a.

    [0019] The sensor probe 3 is formed from a non-magnetic material. The sensor probe 3 penetrates a hole formed in a bottom cap member 11 which is fixed to a bottom 1a of the cylinder 1. A base portion 3b of the sensor probe 3 is screwed into the bottom cap member 11. The sensor probe 3 projects into the cylinder 1 and is covered by a sheath 32. The sheath 32 is made of a non-magnetic material and an end thereof is fitted into the hole in the bottom cap member 11. The sensor probe 3 penetrates a ring-shaped centering guide 33 which is fitted in the sheath 32, and is maintained in a state of concentricity with the sheath 32 thereby.

    [0020] A cylindrical recess A is formed in the central portion of the piston 2a facing the bottom 1a of the cylinder 1. A bore 2b connected to the recess A is formed in the piston rod 2 in the axial direction. The sensor probe 3 and the sheath 32 pass through the recess A and are inserted into the bore 2b. A centering guide 34 is fitted to the outer circumference of a tip of the sheath 32. The centering guide 34 is in contact with the inner circumference of the bore 2b so as to maintain the sheath 32 in a state of concentricity with the bore 2b.

    [0021] A magnetostrictive wire extending in the axial direction is enclosed in the sensor probe 3. A probe head 3a is fitted to the base of the sensor probe 3 so as to be exposed to the outside of the bottom cap member 11. A cable 3c is connected to the magnetostrictive wire via the probe head 3a so as to supply the magnetostrictive wire with a pulsed electric current.

    [0022] Referring to FIG. 2, the magnet 4 is enclosed in the recess A. The magnet 4 is formed into a cylindrical shape that is long in the axial direction. It is also possible to construct the magnet 4 in a ring-shape or to construct the magnet 4 by accumulating ring-shaped magnet elements in the axial direction.

    [0023] The magnet 4 is enclosed in a cap-shaped holder 6 fixed to a bottom 2c of the recess A. The holder 6 is made of a non-magnetic material and provided with a through-hole through which the sheath 32 passes. The magnet 4 is arranged to face the outer circumference of the sheath 32 in the holder 6.

    [0024] An annular groove is formed on a bottom 62b of the holder 6, and a shock absorbing member 7 is fitted therein.

    [0025] A seat member 5 made of a non-magnetic material and having the same diameter as that of the recess A is fitted into the recess A so as to be in contact with the bottom 2c of the recess A. A flange 62a is formed at an opening of the holder 6. The diameter of the flange 62a is set in advance such that the outer circumference of the flange 62a comes into contact with the inner circumference 2d of the recess A. In the recess A, the holder 6 with the magnet 4 enclosed therein is fixed to the piston 2a by mounting screws 61 which penetrate bolt holes 5a formed in the flange 62a and the seat member 5 and are screwed into the piston 2a.

    [0026] In this fixed state, the magnet 4 is gripped between the shock absorbing member 7 and the seat member 5. The shock absorbing member 7 is constituted by an O-ring made of a rubber material or a synthetic resin. The dimension of the shock absorbing member 7 are set such that the shock absorbing member 7 projects from the annular groove in the bottom 62b of the holder 6 towards the seat member 5. By tightening the mounting screws 61 onto the piston 2a, the magnet 4 is pressed against the shock absorbing member 7 and deforms the shock absorbing member 7. The magnet 4 is ultimately supported by the bottom 62b via the deformed shock absorbing member 7.

    [0027] If the holder 6 is temporarily fixed to the seat member 5 by, for example, an adhesive in advance, fitting the magnet 4 and the holder 6 into the recess A can be performed easily.

    [0028] The operation principle of the stroke sensor 100 is identical to that of the prior art.

    [0029] According to this invention, the magnet 4 is gripped between the seat member 5 and the shock absorbing member 7 supported by the bottom 62b of the holder 6. Deformation of the shock absorbing member 7 prevents excessive compression force from acting on the magnet 4 even when the tightening force of the mounting screws 61 is excessive, thereby protecting the magnet 4 from damage due to the excessive tightening force. On the other hand, the shock absorbing member 7 exerts a resilient force on the magnet 4 so as to keep the magnet 4 in contact with the seat member 5 even when the tightening force of the mounting screws 61 is insufficient. According to this invention, therefore, the magnet 4 is maintained in the predetermined position with high precision irrespective of the tightening force of the mounting screws 61.

    [0030] Next, referring to FIG. 3, another embodiment of this invention will be described.

    [0031] In this embodiment, the entire holder 6 is formed into a cylindrical shape. A male screw 62c is formed on the outer circumference of the holder 6 and a female screw is formed on the inner circumference 2d of the recess A. By screwing the male screw 62c into the female screw on the inner circumference 2d of the recess A, or in other words by screwing the holder 6 directly into the recess A, the holder 6 is fixed to the piston 2a. The magnet 4 is gripped between the seat member 5 and the bottom 62b via the shock absorbing member 7 as in the case of the first embodiment under the tightening force of the holder 6 screwed into the recess A.

    [0032] According to this embodiment also, deformation of the shock absorbing member 7 protects the magnet 4 from damage due to excessive tightening force while ensuring precise positioning of the magnet 4. Further, the mounting screws 61 are omitted in this embodiment, and hence the number of components required for installing the stroke sensor 100 can be decreased.

    [0033] Although the invention has been described above with reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, within the scope of the claims.

    [0034] In the embodiments described above, the hydraulic pressure cylinder is a single rod type, but this invention can be applied to a double rod type hydraulic pressure cylinder. This invention can be applied to any kind of hydraulic pressure cylinder including cylinder for seismic isolation of civil or architectural structures. Further, the fluid pressure cylinder to which this invention is applied should not be limited to a hydraulic pressure cylinder. This invention can be also applied to an air pressure cylinder, for example.

    [0035] The embodiments of this invention in which an exclusive property or privilege is claimed are defined as follows:


    Claims

    1. A fluid pressure cylinder unit comprising:

    a cylinder (1);

    a piston (2a) housed in the cylinder (1) so as to be free to slide in an axial direction;

    a holder (6) formed into a cap-shape having a bottom (62b), the holder (6) being disposed in a recess (A) and fixed to the piston (2a);

    a stroke sensor (100) for detecting a relative position of the piston (2a) with respect to the cylinder (1), the stroke sensor (100) comprising a magnet (4) and a sensor probe (3) which generates a signal in response to a relative position in the axial direction with respect to the magnet (4), wherein the magnet (4) is formed into a cylindrical shape and accommodated in the holder (6) so as to face an outer circumference of the sensor probe (3) in a gripped state between the piston (2a) and the bottom (62b) of the holder (6),

    characterized in that

    the holder (6) comprises an annular groove formed on the bottom (62b) and the fluid pressure cylinder further comprises a shock absorbing member (7) which is accommodated in the annular groove, a dimension of the shock absorbing member (7) being set such that the shock absorbing member (7) projects from the annular groove in the axial direction and elastically deforms in the axial direction depending on a tightening force acting between the magnet (4) and the piston (2a), so that the magnet (4) is ultimately supported by the bottom (62b) via the deformed shock absorbing member (7).


     
    2. The fluid pressure cylinder unit as defined in claim 1,characterized in that the shock absorbing member (7) is constituted by an annular member formed from a rubber or a synthetic resin.
     
    3. The fluid pressure cylinder unit as defined in claim 1 or claim 2, characterized in that the holder (6) comprises a flange (62a) which comes into contact with an inner circumference (2d) of the recess (A), and is fixed to the piston (2a) by a mounting screw (61) which penetrates the flange (62a).
     
    4. The fluid pressure cylinder unit as defined in any one of claim 1 through claim 3, characterized in that the holder (6) is screwed directly into an inner circumference (2d) of the recess (A).
     
    5. The fluid pressure cylinder unit as defined in claim 4 or claim 5, characterized by a seat member (5) gripped between the holder (6) and the piston (2a), wherein the seat member (5) has an outer circumference which comes into contact with the inner circumference (2d) of the recess (A), and an axial end of the magnet (4) is supported by the piston (2a) via the seat member (5) and another axial end of the magnet (4) is supported by the bottom (62b) of the holder (6) via the shock absorbing member (7).
     


    Ansprüche

    1. Fluiddruckzylindereinheit, die umfasst:

    einen Zylinder (1);

    einen Kolben (2a), der in dem Zylinder (1) so aufgenommen ist, dass er in einer axialen Richtung frei gleiten kann;

    einen Halter (6), der in einer Kappenform mit einem Boden (62b) ausgebildet ist, wobei der Halter (6) in einer Vertiefung (A) angeordnet und an dem Kolben (2a) befestigt ist;

    einen Hubsensor (100) zum Erfassen einer relativen Position des Kolbens (2a) in Bezug auf den Zylinder (1), wobei der Hubsensor (100) einen Magneten (4) und eine Sensor-Sonde (3) umfasst, die in Reaktion auf eine relative Position in der axialen Richtung in Bezug auf den Magneten (4) ein Signal erzeugt, wobei der Magnet (4) in einer zylindrischen Form ausgebildet und in dem Halter (6) so aufgenommen ist, dass er in einem zwischen dem Kolben (2a) und dem Boden (62b) des Halters (6) eingeklemmten Zustand einem Außenumfang der Sensor-Sonde (3) zugewandt ist,

    dadurch gekennzeichnet, dass

    der Halter (6) eine Ringnut umfasst, die an dem Boden (62b) ausgebildet ist, und der Fluiddruckzylinder des Weiteren ein Stoßdämpfelement (7) umfasst, das in der Ringnut aufgenommen ist, wobei eine Abmessung des Stoßdämpfelementes (7) so festgelegt ist, dass das Stoßdämpfelement (7) in der axialen Richtung aus der Ringnut vorsteht und sich in Abhängigkeit von einer Spannkraft, die zwischen dem Magneten (4) und dem Kolben (2a) wirkt, in der axialen Richtung elastisch verformt, so dass der Magnet schließlich über das verformte Stoßdämpfelement (7) von dem Boden (62b) getragen wird.


     
    2. Fluiddruckzylindereinheit nach Anspruch 1, dadurch gekennzeichnet, dass das Stoßdämpfelement (7) durch ein ringförmiges Element gebildet wird, das aus einem Kautschuk oder einem Kunstharz besteht.
     
    3. Fluiddruckzylindereinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Halter (6) einen Flansch (62a) umfasst, der mit einem Innenumfang (2d) der Vertiefung (A) in Kontakt kommt, und er an dem Kolben (2a) mit einer Anbringungsschraube (61) befestigt ist, die den Flansch (62a) durchdringt.
     
    4. Fluiddruckzylindereinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Halter (6) direkt in einen Innenumfang (2d) der Vertiefung (A) geschraubt ist.
     
    5. Fluiddruckzylindereinheit nach Anspruch 4 oder 5, gekennzeichnet durch ein Aufnahmeelement (5), das zwischen dem Halter (6) und dem Kolben (2a) eingeklemmt ist, wobei das Aufnahmeelement (5) einen Außenumfang hat, der mit dem Innenumfang (2d) der Vertiefung (A) in Kontakt kommt, ein axiales Ende des Magneten (4) über das Aufnahmeelement (5) von dem Kolben (2a) getragen wird und ein anderes axiales Ende des Magneten (4) über das Stoßdämpfelement (7) von der Unterseite (62b) des Halters (6) getragen wird.
     


    Revendications

    1. Dispositif de vérin à fluide sous pression comprenant :

    un vérin (1) ;

    un piston (2a) logé dans le vérin (1) de manière à être libre de coulisser dans une direction axiale ;

    un support (6) ayant une forme de chapeau comportant une embase (62b), le support (6) étant disposé dans un retrait (A) et étant fixé sur le piston (2a) ;

    un capteur de course (100) destiné à détecter une position relative du piston (2a) par rapport au vérin (1), le capteur de course (100) comprenant un aimant (4) et une sonde de capteur (3) qui génère un signal en réponse à une position relative dans la direction axiale par rapport à l'aimant (4), dans lequel l'aimant (4) est formé de manière cylindrique et est logé dans le support (6) de manière à faire face à une circonférence externe de la sonde de capteur (3) dans un état de serrage entre le piston (2a) et l'embase (62b) du support (6),

    caractérisé en ce que :

    le support (6) comprend une gorge annulaire formée sur l'embase (62b) et en ce que le dispositif de vérin à fluide sous pression comprend en outre un élément amortisseur de chocs (7) qui est logé dans la gorge annulaire, une dimension de l'élément amortisseur de chocs (7) étant ajustée de telle sorte que l'amortisseur de chocs (7) est en saillie à partir de la gorge annulaire dans la direction axiale et se déforme de manière élastique dans la direction axiale en fonction d'une force de serrage qui agit entre l'aimant (4) et le piston (2a), de telle sorte que l'aimant est supporté au final par l'embase (62b) par l'intermédiaire de l'élément amortisseur de chocs en déformation (7).


     
    2. Dispositif de vérin à fluide sous pression selon la revendication 1, caractérisé en ce que l'élément amortisseur de chocs (7) est constitué par un élément annulaire formé à partir d'un caoutchouc ou d'une résine synthétique.
     
    3. Dispositif de vérin à fluide sous pression selon la revendication 1 ou la revendication 2, caractérisé en ce que le support (6) comprend une bride (62a) qui vient en contact avec une circonférence interne (2d) du retrait (A), et qui est fixée sur le piston (2a) au moyen d'une vis de montage (61) qui rentre à l'intérieur de la bride (62a).
     
    4. Dispositif de vérin à fluide sous pression selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le support (6) est vissé directement à l'intérieur d'une circonférence interne (2d) du retrait (A).
     
    5. Dispositif de vérin à fluide sous pression selon la revendication 4 ou la revendication 5, caractérisé par un élément de siège (5) serré entre le support (6) et le piston (2a), dans lequel l'élément de siège (5) comprend une surface externe qui vient en contact avec la circonférence interne (2d) du retrait (A), et par une extrémité axiale de l'aimant (4) qui est supportée par le piston (2a) par l'intermédiaire de l'élément de siège (5) et une autre extrémité axiale de l'aimant (4) est supportée par l'embase (62b) du support (6) par l'intermédiaire de l'élément amortisseur de chocs (7).
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description