(19)
(11) EP 1 719 315 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
22.07.2009 Bulletin 2009/30

(21) Application number: 05726380.8

(22) Date of filing: 14.01.2005
(51) International Patent Classification (IPC): 
H04L 27/26(2006.01)
(86) International application number:
PCT/US2005/001283
(87) International publication number:
WO 2005/076559 (18.08.2005 Gazette 2005/33)

(54)

Channel adaption using variable sounding signal rates

Kanalanpassung unter Verwendung von Kanalmessungsreferenzsignalen mit variablen Raten

Adaptation de voie utilisant des vitesses de signal de sondage variables


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(30) Priority: 30.01.2004 US 769414

(43) Date of publication of application:
08.11.2006 Bulletin 2006/45

(73) Proprietor: Intel Corporation
Santa Clara, CA 95052 (US)

(72) Inventors:
  • JACOBSEN, Eric
    Scottsdale, AZ 85259 (US)
  • AZIZI, Shahrnaz
    San Diego, CA 92127 (US)

(74) Representative: Dunlop, Hugh Christopher et al
R.G.C. Jenkins & Co. 26 Caxton Street
London SW1H 0RJ
London SW1H 0RJ (GB)


(56) References cited: : 
WO-A-03/028323
DE-A1- 10 141 971
   
  • HANZO, MÜNSTER, CHOI, KELLER: "OFDM and MC-CDMA for Broadband Multi-user Communications, Wlans and Broadcasting" 1 January 2003 (2003-01-01), WILEY , ENGLAND , XP002325501 page 164 - page 165 page 196 - page 198
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION.



[0001] The present invention relates to communications in wireless networks. More specifically, but not exclusively, the present invention relates to signaling techniques for adaptively modulating communications in a high throughput wireless network.

[0002] Most communications networks are designed to convey multiple communications simultaneously over each individual communication path, for example, a radio frequency (RF) channel, using some type of modulation. In recent years, an increasing demand has arisen for more efficient and reliable digital data transfers which assure correct data transmissions at as high a data rate as possible.

[0003] Orthogonal frequency division multiplexing (OFDM) is an increasingly attractive modulation technique for high-bandwidth wireless applications since it dramatically simplifies equalization of intersymbol interference (ISI) channels.

[0004] Using link adaptation (LA), it is possible to improve throughput and/or efficiency in wireless OFDM systems by adjusting transmission parameters, such as subcarrier modulation orders, power allocation and/or code rate, to best fit the current channel state.

[0005] Ideally, link adaptation would adapt at every time instant in frequency to the instantaneous channel realizations. Unfortunately, limitations in feedback bandwidth and variation of the channel due to Doppler spread make ideal link adaptation difficult to realize.

[0006] One of the difficulties encountered in LA for wireless networks, for example, high throughput (HT) wireless local area networks (WLANs) with adaptive OFDM, is the useful duration of channel adaptation information. Since propagation channels can change rapidly due to Doppler and other effects, the useful duration of channel adaptation information may be dependent on the coherence time of the channel. Coherence time is the time domain dual of Doppler spread (i.e., Doppler spread and coherence time are inversely proportional to one another) and is used to characterize the time varying nature of the frequency dispersivenes of a channel in the time domain.

[0007] Coherence time is a statistical measure of the time duration over which the channel impulse response is essentially invariant, and quantifies the similarity of the channel response at different times. In other words, it is the time duration over which two received signals have a strong potential for amplitude correlation.

[0008] Network environments with long channel coherence times may not need as frequent channel adaptations as network environments with shorter channel coherence times. Thus the channel adaptation information for longer channel coherence times may be exchanged on a proportionately less frequent basis.

[0009] Conversely, networks in highly dynamic environments may need to exchange adaptation information more often in order to maximize the efficiency of the channel adaptations. A method, system and/or technique for efficient link adaptation between communicating devices is needed.

[0010] The document WO03/028323 discloses a wireless network in which the separation between the pilots within a data burst is varied according to the coherence time of the channel.

BRIEF DESCRIPTION OF THE DRAWING.



[0011] Aspects, features and advantages of the present invention will become apparent from the following description of the invention in reference to the appended drawing in which like numerals denote like elements and in which:

Fig. 1 is a block diagram of an exemplary communication system according to various embodiments of the present invention;

Fig. 2 is a timing diagram showing various rates of channel sounding signals in proportion to the channel coherence times in a communications network according to one example embodiment of the present invention;

Fig. 3 is a sequence diagram showing a method of varying sounding signal rates according to one embodiment of the present invention; and

Fig. 4 is a block diagram of a communication apparatus which uses varying sounding signal rates according to one embodiment of the present invention.


DETAILED DESCRIPTION OF THE INVENTION.



[0012] While the following detailed description may describe example embodiments of the present invention in relation to wireless networks utilizing Orthogonal Frequency Division Multiplexing (OFDM) adaptive modulation, the embodiments of present invention are not limited thereto and, for example, can be implemented using other modulation schemes which may utilize link adaptation information where suitably applicable.

[0013] The following inventive embodiments may be used in a variety of applications including transmitters and receivers of a radio system, although the present invention is not limited in this respect. Radio systems specifically included within the scope of the present invention include, but are not limited to: wireless local area network (WLAN) systems, wireless personal area networks (WPAN) systems, wide metropolitan area network (WMAN) systems and wireless wide area network (WWAN) systems including network interface devices and peripherals such as network interface cards (NICs), base stations, access points (APs), gateways, bridges, hubs and cellular radiotelephones. Further, the radio systems within the scope of the invention may include cellular radiotelephone systems, satellite systems, personal communication systems (PCS), two-way radio systems, one-way pages, two-way pagers, personal computers (PC), personal digital assistants (PDA), personal computing accessories (PCA) and all existing and future arising systems which may be related in nature and two which the principles of the invention could be suitably applied.

[0014] Turning to Fig. 1, a wireless communication system 100 according to one of the embodiments of the invention may include one or more user stations 110, 112 and one or more network access stations 120. System 100 may be any type of wireless network such as a wireless local area network (WLAN), wireless wide area network (WWAN) or cellular network where stations 110, 112 communicate with access station 120 via a communication link or channel. System 100 may further include one or more other wired or wireless network devices as desired, for example basic services set (BSS), distribution system (DS) and/or ad-hoc network components.

[0015] The communication channel conditions between stations 110, 112 and 120 may be measured and/or estimated so that communications between these stations can be continually adapted (if necessary) to facilitate efficient communications with reasonable quality.

[0016] In preferred embodiments system 100 is an adaptive OFDM network although the embodiments of the invention are not limited in this respect. OFDM is the modulation currently used in many wireless applications including the Institute of Electrical and Electronic Engineers (IEEE) 802.11a and 802.11 g standards for WLANs. OFDM works by dividing up a wideband channel into a larger number of sub-channels. By placing a subcarrier in each sub-channel, each subcarrier may be modulated separately depending on the signal to noise ratio (SNR) or other signal characteristics in that particular narrow portion of the band. As the channel varies over time, adaptations can be made on each subcarrier in order to continually optimize the data-carrying capacity of the channel. This is referred to herein as "adaptive modulation." Alternate and/or additional transmission parameters, such as subcarrier power allocation and/or code rates, may also be adapted or modified to improve the efficiency of communications. The various types of transmission adaptations are generically, individually and/or collectively, referred to herein as "link adaptation" (LA).

[0017] Since the channel conditions are susceptible to change due to, for example, reflections, interference, scattering or movement between stations, the channel conditions should be continually evaluated so that transmission parameters can be modified to meet current or recent channel conditions.

[0018] A relatively simple way to determine the channel conditions and/or whether a previous link adaptation scheme has expired (i.e., lost its usefulness due to changes in the channel) is to exchange training preambles and adaptation information between the user station 110, 112 and the network access station 120 at every access. This approach provides the freshest link adaptations but incurs a large overhead since it uses a dedicated exchange between the stations to update the link adaptation.

[0019] Another approach is for user station 110, 112 to passively measure/estimate the channel conditions in the downlink direction based on channel sounding signals broadcast from access station 120. A channel sounding signal is a transmission which may be used by proximate receivers to estimate current channel conditions whether or not they are actively communicating with access station 120.

[0020] In example implementations of the present invention relating to WLAN, a channel sounding signal might be a periodic access beacon transmission from an access point (AP) (e.g., network access station 120) or ad-hoc station. Access beacons, generically referred to herein as AP beacons, are unsolicited broadcasts that are periodically repeated so that proximate network stations (STAs) may detect the existence of and/or properties of the network access station for acquisition purposes and/or link maintenance. In one example, received AP beacon transmissions (i.e., in the downlink direction) can be used by user stations 110, 112 to periodically sense and track the channel conditions and/or identify any significant changes in the channel condition. User stations 110, 112 may then resynchronize with, and/or adapt subsequent transmission parameters to, the access station 120 (i.e., in the uplink direction) based on channel conditions of the detected AP beacons (i.e., in the downlink direction).

[0021] However, if the period between AP beacons (and/or other types of unsolicited broadcasts such as communications between the AP and another STA) is longer than the channel coherence time, the channel conditions estimated by user stations 110, 112 for the last access beacon may no longer be valid for communications occurring a certain time (e.g., the coherence time) after the last access beacon. Accordingly, in certain embodiments of the present invention, the beacon rate of network access station 120 (or the interval between periodic channel sounding signals) may be varied in proportion to a channel coherence time in order to allow a user station 110 to passively detect changes in the channel conditions. Once changes are detected, the user station 110 may adapt future uplink communications to access station 120 and/or send training information to access station 120 to facilitate its link adaptation.

[0022] The network access station may be adjusted to beacon at a slower or faster rate to meet the link adaptation requirements of the network and preferably, the period between beacons will not substantially exceed the channel coherence time. In this manner the network access station and user station may exchange training information (i.e., update the link adaptation scheme), only when the user station determines that the channel conditions have changed from observing channel sounding signals in the downlink direction.

[0023] If the channel coherence time is relatively short, it may be inefficient to increase the AP beacon rate too much since AP beacons may include additional overhead other than just a training preamble. Such additional overhead may include information to identify the network for example, service set identifier (SSID), supported rate/mode, supported security mechanisms, etc. which may not be needed for link adaptation. In cases with relatively shot channel coherence times, network access station 120 (e. g. , an AP or ad-hoc station) may be configured to transmit a different type of channel sounding signal (i.e., other than an AP beacon) so that an interval between any two successive sounding signals docs not significantly exceed the channel coherence time.

[0024] These additional channel sounding signals are used in addition to the access beacons so that the channel conditions between stations can be estimated and link adaptations can be implemented (if necessary) in a period proportional to the channel coherence time. In certain embodiments the additional channel sounding signals are low overhead signal fragments, such as a training preamble without a data payload. In combination with the access beacons, the time period between successive channel sounding signals may be varied in accordance with the channel coherence time. This type of dynamic adjustment allows user stations 110,112 to maintain adaptation coherence tracking without actively sounding the channel and without incurring the full overhead of, for example, the AP 120 transmitting closely spaced AP beacons.

[0025] Turning to Fig. 2, an example timing diagram 200 illustrates sample varying timing sequences 210,220 and 230 for transmitting channel sounding signals according to various embodiments of the present invention.

[0026] Timing sequence 210 demonstrates a transmitting unit (e.g. AP) in a network environment with a long coherence time. The AP transmits beacons 212 at every time interval T1, referred to as the beacon rate.

[0027] Interval T1 may preferably have a maximum length selected to conserve power and utilize the minimum channel bandwidth but shorter than a coherence time of the channel.

[0028] Timing sequence 220 demonstrates beacons 212 being transmitted at shortened time intervals T2. In this example, interval T2 is reduced (as compared with T1) to increase the access beacon rate for a network environment having a shorter channel coherence time as compared with the coherence time for timing sequence 210.

[0029] However, as previously mentioned, it may be undesirable to increase the access beacon rate too much since; for example, an AP beacon may carry additional overhead other than a training preamble. Timing sequence 230 demonstrates an embodiment for environments with relatively short channel coherence times. Here, the network access station may sound the channel using AP beacons 212 which occur at some maximum rate (e. g. , every interval T2). However, additional sounding fragments 232, having lower overhead (reflected by shorter arrows) than typical AP beacons, are transmitted in the interval between beacons 212. This embodiment allows the user stations to track channel conditions without the overhead associated with frequent beacons.

[0030] Depending on the channel coherence time, the network access station may transmit more than one sounding fragment 232 between each access beacon 212, and such that a time interval T3 between any two successive transmissions (e.g., between beacon and sounding fragment or two sounding fragments) will not substantially exceed the coherence time of the channel.

[0031] Turning to Fig. 3, a method 300 of communicating in an adaptive link wireless network according to certain embodiments of the invention generally includes wireless devices exchanging 305 (e.g., at least one device sending information to the other) training information to establish a communication channel in a wireless network. In one embodiment, one or both of the wireless devices send training symbols or pilot signals to the other in an attempt to synchronize and establish a coherent adaptive OFDM communication channel.

[0032] The devices may receive the training information and estimate the characteristics of the channel for adapting OFDM transmission parameters, including determining 310 the channel coherence time. Once the channel coherence time is known/estimated, one of the wireless devices (e.g., an AP) can then periodically broadcast 315 channel sounding signals (e.g., an AP beacon, low-overhead signal fragments or combination thereof) at intervals proportionate to the channel coherence time. The device not transmitting channel sounding signals, may then periodically receive each channel sounding signal and estimate 320 the channel conditions to passively determine 325 if any significant changes have occurred in the channel.

[0033] If any significant changes in the channel are identified, one or both of the devices may then exchange 330 additional training information so that both devices may update, if necessary, their adaptive OFDM transmission parameters (e.g., modulation scheme, power allocation, etc.) in accordance with the new channel conditions.

[0034] Turning to Fig. 4, an example network apparatus 400 which may implement the various embodiments of the present invention generally includes a radio frequency (RF) interface 410 and a baseband and medium access controller (MAC) processor portion 450.

[0035] RF interface 410 may be any component or combination of components operative to send and receive multi-carrier modulated signals. In one example RF interface includes a receiver 412, transmitter 414 and frequency synthesizer 416. Interface 410 may also include bias controls and a crystal oscillator and/or one or more antennas 418. Furthermore, RF interface 410 may alternatively or additionally use external voltage-controlled oscillators (VCOs), surface acoustic wave filters, IF filters and/or RF filters. Various RF interface designs and their operation are known in the art and the description thereof is therefore omitted.

[0036] In preferred embodiments interface 410 is configured to be compatible with one or more of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 frequency band standards for wireless local area networks (WLAN), however European or other standards may also apply. Most preferably, interface 410 is configured for compatibility and/or backward compatibility with the IEEE 802.11(a-b) (g) and/or (n) standards for WLAN.

[0037] Baseband and MAC processing portion 450 communicates with RF interface 410 to process receive/transmit signals and may include, by way of example only, an analog-to-digital converter 452 for down converting received signals, a digital to analog converter 454 for up converting signals for transmission, a baseband processor 456 for physical (PHY) layer processing of respective receive/transmit signals, and one or more memory controllers 458 for managing read-write operations from one or more internal and/or external memories (not shown). Processing portion 450 may also include processor 459 for medium access control (MAC)/data link layer processing. In certain embodiments of the present invention, processor 459 or additional circuitry (not shown) may be configured to perform the processes for identifying channel coherence time, adjusting the rate of channel sounding signals and/or channel estimation (e.g., 310, 315, or 320; Fig. 3). Alternatively or in addition, baseband processor 456 may share processing for these functions or perform these processes independent of processor 459. MAC and PHY processing may also be integrated into a single component if desired.

[0038] Apparatus 400 may be implemented as, for example, a user station (STA) or as an access point (AP) described previously and the functions and/or specific configurations of apparatus 400 would be suitably selected or omitted.

[0039] The components and features of apparatus 400 may be implemented using any combination of discrete circuitry, application specific integrated circuits, logic gates and/or single chip architectures. Further, the features of apparatus 400 may be implemented using microcontrollers, programmable logic arrays and/or microprocessors or any combination of the foregoing where suitably appropriate.

[0040] It should be appreciated that the example apparatus 400 shown in the block diagram of Fig. 4 is only one functionally descriptive example of many potential implementations and that division, omission or inclusion of block functions in Fig. 4 does not infer that the hardware components, circuits and/or elements for implementing these functions would be divided, omitted, or included in embodiments of the present invention.

[0041] Embodiments of the present invention may be implemented using single input single output (SISO) systems, multiple input multiple output (MIMO) systems or any combination thereof. Further, embodiments of the invention may utilize multi-carrier code division multiplexing (MC-CDMA) multi-carrier direct sequence code division multiplexing (MC-DS-CDMA) or any other existing or future arising modulation or multiplexing scheme compatible with the features of the present invention. Unless contrary to physical possibility, the inventors envision the methods described herein: (i) may be performed in any sequence and/or in any combination; and (ii) the components of respective embodiments combined in any manner.

[0042] Although there have been described preferred embodiments of this novel invention, many variations and modifications are possible without departing from the scope of the invention and the embodiments described herein are not limited by the specific disclosure above, but rather should be limited only by the scope of the appended claims.


Claims

1. A method (300) of communicating between an access point (120) and a network station (110, 112) in a channel of a link adaptive wireless network, the method comprising, at the access point (120):

broadcasting an access beacon (212) at predetermined intervals (T1;T2);

transmitting (315) one or more sounding fragments (232) between said broadcasted access beacons (212), said one or more sounding fragments comprising a training preamble with no payload, for use by the receiving network station to evaluate a condition of the channel between the access point and the network station, wherein said one or more sounding fragments (232) are transmitted at determined intervals proportionate to a coherence time of the channel; and

adjusting the rate of transmission of the access beacons if it is determined by the receiving network station (110,112) that changes have occurred to the condition of the channel.


 
2. The method (300) of claim 1, wherein communicating between the first station and the second station in the link adaptive wireless network comprises using orthogonal frequency division multiplexing (OFDM) with adaptive bit modulation.
 
3. The method (300) of claim 1, wherein communicating between the first station and the second station in the link adaptive wireless network comprises using OFDM with adaptive subcarrier power loading.
 
4. An access point (120) for communicating with a network station (110, 112) in a channel of a link adaptive wireless network, comprising:

a transmitter (414); and

a control unit (459) communicatively coupled to the transmitter and operative to control the transmitter to:

broadcast an access beacon (212) at predetermined intervals (T1;T2); and

transmit one or more sounding fragments (232) between said broadcasted access beacons (212), said one or more sounding fragments comprising a training preamble with no payload, for use by the receiving network station to evaluate a condition of the channel between the access point and the network station, wherein said one or more sounding fragments (232) are transmitted at determined intervals proportionate to the coherence time of the channel; and

the control unit (459) further including means for adjusting the rate of transmission of the access beacons when it is determined by the receiving network station (110,112) that changes have occurred to the condition of the channel.


 
5. The system (100) of claim 4 wherein the transmitter (414) transmits orthogonal frequency division multiplexing (OFDM) signals.
 
6. The access point of claim 4 further comprising an antenna (418) coupled to the transmitter (414) and operative to broadcast multi-carrier signals.
 
7. A wireless communication system comprising:

an access point (120) according to any one of claims 4 to 6; and

a network station (110,112) for communicating with the access point (120) in a channel of a link adaptive wireless network, the network station (110,112) including:

a channel estimator configured to estimate (320) a condition of the channel based on received channel sounding signals (212) periodically broadcast (315) by the access point (120) at an interval corresponding to a coherence time of the communication channel and one or more channel sounding fragments (232) having lower overhead than the channel sounding signals between the intervals of the channel sounding signals; and

a control unit configured to adapt communications with the network station according to detected changes in the condition of the communication channel.


 
8. The device of claim 7 wherein the network station comprises a wireless local area (WLAN) station (STA).
 
9. The device of claim 7 wherein the access point (120) and the network station (110,112) communicate using orthogonal frequency division multiplexing (OFDM) signals.
 
10. The device of claim 9 further comprising an antenna configured to broadcast and receive the OFDM signals.
 
11. The device of claim 9 further comprising multiple antennas configured to broadcast and receive the OFDM signals.
 


Ansprüche

1. Verfahren (300) für die Kommunikation zwischen einem Zugangspunkt (120) und einer Netzwerkstation (110, 112) in einem Kanal eines drahtlosen Netzwerks mit Verbindungsanpassung, wobei das Verfahren am Zugangspunkt (120) umfasst:

das Senden eines Zugangsfunksignals (212) in vorbestimmten Intervallen (T1;T2);

das Übertragen (315) eines oder mehrerer Tonfragmente (232) zwischen den gesendeten Zugangsfunksignalen (212), wobei das eine oder die mehreren Tonfragmente eine Trainingspräambel ohne Nutzlast umfassen, die von der empfangenden Netzwerkstation verwendet wird, um eine Bedingung des Kanals zwischen dem Zugangspunkt und der Netzwerkstation auszuwerten, wobei das eine oder die mehreren Tonfragmente (232) in bestimmten Intervallen entsprechend einer Kohärenzzeit des Kanals übertragen werden; und

das Anpassen der Übertragungsrate der Zugangsfunksignale, wenn von der empfangenden Netzwerkstation (110,112) festgelegt wird, dass an der Bedingung des Kanals Änderungen aufgetreten sind.


 
2. Verfahren (300) nach Anspruch 1, wobei das Kommunizieren zwischen der ersten Station und der zweiten Station in dem drahtlosen Netzwerk mit Verbindungsanpassung das Verwenden eines orthogonalen Frequenzmultiplexverfahrens (OFDM) mit adaptiver Bit-Modulation umfasst.
 
3. Verfahren (300) nach Anspruch 1, wobei das Kommunizieren zwischen der ersten Station und der zweiten Station in dem drahtlosen Netzwerk mit Verbindungsanpassung das Verwenden von OFDM mit adaptiver Unterträger-Leistungsbelastung umfasst.
 
4. Zugangspunkt (120) für die Kommunikation mit einer Netzwerkstation (110, 112) in einem Kanal eines drahtlosen Netzwerks mit Verbindungsanpassung umfassend:

ein Übertragungsgerät (414); und

eine Steuereinheit (459), die kommunikativ mit dem Übertragungsgerät verbunden und betriebsfähig ist, um das Übertragungsgerät zu steuern, um:

ein Zugangsfunksignal (212) in vorbestimmten Intervallen (T1;T2) zu senden; und

eines oder mehrerer Tonfragmente (232) zwischen den gesendeten Zugangsfunksignalen (212) zu übertragen, wobei das eine oder die mehreren Tonfragmente eine Trainingspräambel ohne Nutzlast umfassen, die von der empfangenden Netzwerkstation verwendet wird, um eine Bedingung des Kanals zwischen dem Zugangspunkt und der Netzwerkstation auszuwerten, wobei das eine oder die mehreren Tonfragmente (232) in bestimmten Intervallen entsprechend einer Kohärenzzeit des Kanals übertragen werden; und

wobei die Steuereinheit (459) ferner Mittel zum Anpassen der Übertragungsrate der Zugangsfunksignale umfasst, wenn von der empfangenden Netzwerkstation (110,112) festgelegt wird, dass an der Bedingung des Kanals Änderungen aufgetreten sind.


 
5. System (100) nach Anspruch 4, wobei das Übertragungsgerät (414) OFDM-Signale sendet.
 
6. Zugangspunkt nach Anspruch 4 ferner umfassend eine Antenne (418), die mit dem Übertragungsgerät (414) verbunden und betriebsfähig ist, um Multiträgersignale zu senden.
 
7. Drahtloses Kommunikationssystem umfassend:

einen Zugangspunkt (120) nach einem der Ansprüche 4 bis 6; und

eine Netzwerkstation (110,112) für die Kommunikation mit dem Zugangspunkt (120) in einem Kanal eines drahtlosen Netzwerks mit Verbindungsanpassung, wobei die Netzwerkstation (110, 112) umfasst:

einen Kanalschätzer, der konfiguriert ist, um eine Bedingung des Kanals basierend auf den empfangenen Kanaltonsignalen (212) zu schätzen (320), die periodisch durch den Zugangspunkt (120) in einem Intervall, das einer Kohärenzzeit des Kommunikationskanals entspricht, gesendet (315) werden, und wobei eines oder mehrere der Kanaltonfragmente (232) einen geringeren Aufwand haben als die Kanaltonsignale zwischen den Intervallen der Kanaltonsignale; und

eine Steuereinheit, die konfiguriert ist, um Kommunikationen mit der Netzwerkstation gemäß ermittelter Änderungen in der Bedingung des Kommunikationskanals anzupassen.


 
8. Vorrichtung nach Anspruch 7, wobei die Netzwerkstation eine Wireless Local Area (WLAN) Station (STA) umfasst.
 
9. Vorrichtung nach Anspruch 7, wobei der Zugangspunkt (120) und die Netzwerkstation (110,112) mithilfe von OFDM-Signalen kommunizieren.
 
10. Vorrichtung nach Anspruch 9 ferner umfassend eine Antenne, die zum Senden und Empfangen der OFDM-Signale konfiguriert ist.
 
11. Vorrichtung nach Anspruch 9 ferner umfassend mehrere Antennen, die zum Senden und Empfangen der OFDM-Signale konfiguriert sind.
 


Revendications

1. Procédé (300) de communication entre un point d'accès (120) et une station de réseau (110, 112) dans un canal d'un réseau sans fil à adaptation de liaison, le procédé comprenant, au point d'accès (120), les étapes consistant à :

- diffuser une balise d'accès (212) à des intervalles prédéterminés (T1 ; T2) ;

- transmettre (315) un ou plusieurs fragments de sondage (232) entre lesdites balises d'accès diffusées (212), lesdits un ou plusieurs fragments de sondage comprenant un préambule de formation avec aucune charge utile, à utiliser par la station de réseau de réception pour évaluer un état du canal entre le point d'accès et la station de réseau, dans lequel lesdits un ou plusieurs fragments de sondage (232) sont transmis à des intervalles déterminés proportionnels à un temps de cohérence du canal ; et

- ajuster le taux de transmission des balises d'accès s'il est déterminé par la station de réseau de réception (110, 112) que des changements sont survenus dans l'état du canal.


 
2. Procédé (300) selon la revendication 1, dans lequel la communication entre la première station et la deuxième station de réseau sans fil à adaptation de liaison comprend l'utilisation d'un multiplexage à division de fréquence orthogonale (OFDM) avec la modulation binaire adaptative.
 
3. Procédé (300) selon la revendication 1, dans lequel la communication entre la première station et la deuxième station dans le réseau sans fil à adaptation de liaison comprend l'utilisation d'OFDM avec une charge de puissance de sous-porteuse adaptative.
 
4. Point d'accès (120) pour communiquer avec une station de réseau (110, 112) dans un canal d'un réseau sans fil à adaptation de liaison, comprenant :

- un émetteur (414) ; et

- une unité de commande (459) couplée de manière communicative à l'émetteur et opérationnelle pour commander l'émetteur pour :

-- diffuser une balise d'accès (212) à des intervalles prédéterminés (T1 ; T2) ; et

-- transmettre un ou plusieurs fragments de sondage (232) entre lesdites balises d'accès diffusées (212), lesdits un ou plusieurs fragments de sondage comprenant un préambule de formation avec aucune charge utile, à utiliser par la station de réseau de réception pour évaluer un état du canal entre le point d'accès et la station de réseau, dans lequel lesdits un ou plusieurs fragments de sondage (232) sont transmis à des intervalles déterminés proportionnels au temps de cohérence du canal ; et

-- l'unité de commande (459) comprenant en outre des moyens pour ajuster le taux de transmission des balises d'accès s'il est déterminé par la station de réseau de réception (110, 112) que des changements sont survenus dans l'état du canal.


 
5. Système (100) selon la revendication 4, dans lequel l'émetteur (414) transmet des signaux de multiplexage à division de fréquence orthogonale (OFDM).
 
6. Point d'accès selon la revendication 4, comprenant en outre une antenne (418) couplée à l'émetteur (414) et opérationnelle pour diffuser des signaux de multi-porteuses.
 
7. Système de communication sans fil comprenant :

- un point d'accès (120) selon l'une quelconque des revendications 4 à 6 ; et

- une station de réseau (110, 112) pour communiquer avec le point d'accès (120) dans un canal d'un réseau sans fil à adaptation de liaison, la station de réseau (110, 112) comprenant :

-- un estimateur de canal configuré pour estimer (320) un état du canal sur la base des signaux de sondage de canal reçus (212) périodiquement diffusés (315) par le point d'accès (120) à un intervalle correspondant à un temps de cohérence du canal de communication et un ou plusieurs fragments de sondage de canal (232) ayant une charge de transport inférieure à celle des signaux de sondage de canal entre les intervalles des signaux de sondage de canal ; et

une unité de commande configurée pour adapter les communications avec la station de réseau en fonction des changements détectés de l'état du canal de communication.


 
8. Dispositif selon la revendication 7, dans lequel la station de réseau comprend une station (STA) de réseau local sans fil (WLAN).
 
9. Dispositif selon la revendication 7, dans lequel le point d'accès (120) et la station de réseau (110, 112) communiquent en utilisant des signaux de multiplexage à division de fréquence orthogonale (OFDM).
 
10. Dispositif selon la revendication 9, comprenant en outre une antenne configurée pour diffuser et recevoir les signaux OFDM.
 
11. Dispositif selon la revendication 9, comprenant en outre de multiples antennes configurées pour diffuser et recevoir les signaux OFDM.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description