(19)

(11)
(45) Date of publication and mention of the grant of the patent:
18.11.2009 Bulletin 2009/47
(51) Int Cl.:

HO5K 3/12 ${ }^{(2006.01)} \quad$ H04N 1/192 ${ }^{(2006.01)}$
(21) Application number: 05002618.6
(22) Date of filing: 15.03.1999
(54) Scanner system

Abtastvorrichtung
Système de balayage
(84) Designated Contracting States:

DE GB
(30) Priority: 04.07.1998 DE 19829986
(43) Date of publication of application:
31.08.2005 Bulletin 2005/35
(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
99915645.8 / 1110437
(73) Proprietor: Laser Imaging Systems GmbH \& Co. KG.
07745 Jena (DE)
(72) Inventors:

- Retschke, Wolfgang 07743 Jena (DE)
- Senf, Wolfgang 07747 Jena (DE)
- Rücker, Steffen 07751 Groslobichau (DE)
- Klowsky, Uwe 07747 Jena (DE)
- Battig, Udo 07751 Jena (DE)
- Baumann, Ulrich 07745 Jena (DE)
(74) Representative: Kuhnen \& Wacker Patent- und Rechtsanwaltsbüro Prinz-Ludwig-Strasse 40A 85354 Freising (DE)
(56) References cited:

EP-A- 0679520 US-A- 4451854
US-A- 4742401 US-A- 5342715

Description

FIELD OF THE INVENTION

[0001] The present invention is related to methods for scanning surfaces, for example for writing on the surfaces with a scanning laser beam. In particular, a system for direct writing of patterns on printed circuit boards is disclosed.

BACKGROUND OF THE INVENTION

[0002] Most printed circuit boards are produced by first coating a printed circuit board substrate, having a solid copper cladding, with a photoresist material. When selectively exposed and developed, part of the photoresist is removed and the remaining photoresist forms a pattern corresponding to the light and dark areas of the illumination. After formation of the developed photoresist pattern, the copper cladding is typically subjected to an etching step in which that part of the copper cladding that is not coated by the photoresist is removed.
[0003] In the main, one of two methods of selectively exposing the photoresist is used. One method utilizes a master, such as a film, on which the required pattern (or its inverse) is formed. The photoresist coating is exposed to strong illumination, through this film. The exposed board is then developed and etched as described above. For highly precise patterns with small object sizes, this method has a number of significant drawbacks. Firstly, the films may stretch or otherwise distort. This stretching causes sometimes significant variations between the sizes and positions of the patterns formed on various layers of a multilayer or double sided board. Second, the wear and tear on the films requires frequent changing the films. Third, any changes in the layout require a new set of films and often several new sets of films. Finally, it is difficult to compensate for small variations in sizing that occur during processing of the boards.
[0004] A second method, which is the subject of the present invention, utilizes a scanning laser beam to scan the photoresist coating to write the pattern thereon. This method is known as the "direct writing" method. In principle, direct writing overcomes many of the drawbacks of the prior art. In practice, conventional direct writing methods often have problems of their own. In particular, conventional direct writing systems are generally much slower than the film exposure methods and require much higher capital expenditure. Although, in principle, the accuracy and resolution of direct writing is high, many practical considerations, such as the ability to speedily deliver high energy radiation to expose the photoresists, have limited the throughput as well as the actual accuracy and precision of boards produced by conventional direct writing methods.
[0005] It is known in the art to scan a printed circuit board with a plurality of beams to increase the scanning speed of direct writing systems. In general such multi-
beam scanning is utilized in a number of fields such as in the preparation of reticules for the printed circuit industry and in electrophotographic printing machines. However, in such applications the power requirements are
5 low and the size of the objects scanned is generally relatively small.
[0006] US patent 5,635,976 describes a system for improved feature definition in producing reticules. In this system the reticule is scanned utilizing a beam address
10 at a resolution at least four times as high as the object pixel resolution. A single laser scan line or multiple scan lines are disclosed.
[0007] US patent 5,495,279 describes a system for exposure of patterns for very large device. In this device an
15 oval laser beam is used. The beam is segmented into at least 100 parallel segments, each of which is separately addressable, such that 100 lines of pixels may be written together.
[0008] A further requirement of direct writing systems 20 is that the system know exactly where on the written surface the beam is situated at any time. One way of making this determination is to boresight a test beam with the writing beam. The test beam is separated from the writing beam prior to the impingement of the writing beam on 25 the surface of the printed circuit board. A scale selectively reflects a portion of the test beam. The reflected beam is then detected and the detected signal is used as the basis for a data clock. However, in order to provide for ease of boresighting and especially for separation of the 30 boresighted beams, the beams are of different wavelengths. Unfortunately, beams of different wavelengths are affected differently by the optics and do not track perfectly. Furthermore, only a portion of the relevant path is traversed by both beams and the f - 0 lens typically used 35 in such scanners is not fully traversed by both beams. One such system is the LIS DirectPrint 40 of Laser Imaging Systems GmbH of Jena, Germany.
[0009] Generally, it is important to precisely position the optical exposure of the photoresist (and the subse40 quent etched pattern) on the board. While this is not very important for single sided inner layers of composite boards for outer layers formed on already laminated boards and for double sided boards, in which holes are drilled to connect features within the board or on opposite 45 sides of the board or layer, the exact placement of the patterns is imperative. This can be achieved by referencing the scan data to predetermined features, for example for inner layers, referencing to features that appear on both sides of the board. One such normally used feature
50 is a drilled hole. In general, an unwritten board has one or more drilled holes present in the board, which holes mate with pins on the scanner. For double sided inner layers, scanning is thus referenced to the holes for both sides of the board.
55 [0010] However, such a system is not wholly satisfactory. The accuracy possible with pin alignment is relatively limited, as compared with the required printed circuit element resolutions. Attempts to reduce the toler-
ances of the holes to the pins results in damage to the holes and subsequent poor alignment.
[0011] US-patent 5,342,715 discloses an apparatus and a method for forming multiple color images on separate pitches of a photoreceptor belt and for registering the images and avoiding exposure on the belt seam. A photosensor is placed beneath each print bar of the apparatus and a belt hole is formed on the belt surface. The location of the belt hole is sensed to provide information as to the location of the belt seam. The achieved information serves for controlling the image exposure sequence for obtaining registration of the printed images.
[0012] US-patent 4,451,854 deals with detecting features of paper in a copying machine in order to avoid a paper jam, said features being possibly present holes which could be misinterpreted by edge detection means or light barriers.

SUMMARY OF THE INVENTION

[0013] It is an object of the present invention to improve the accuracy of a method of determining the position of a surface in relation to a scanning beam beyond the accuracy obtainable with a pin alignment system of the kind discussed before.
[0014] This object and further considerable advantages are obtained with a method in accordance with claim 1 and claim 17.
[0015] Further developments and improvements are characterized in claims 2 to 16 and claims 18 to 20.
[0016] In accordance with an aspect of some preferred embodiments of the present invention, alignment of the data to the board is with reference to through holes, as in the prior art. However, unlike the prior art systems in which the holes were mechanically aligned with the scanner, in preferred embodiments of the invention, the holes are optically aligned with the scan data.
[0017] In a preferred embodiment of the invention, the system used for writing on the printed circuit board, including the scan and cross-scan positioning mechanism, is utilized for determining the precise position of the holes, and hence of the board, on the scanner table. In preferred embodiments of the invention, the data is matched to the position of the board by rotating the board to correct for angular misalignment of the board with the data. Alternatively or additionally, selective delay of the scan line data corrects for residual scan positional misalignment. Preferably, cross-scan misalignment is corrected by delaying or advancing the data in the cross-scan direction. Generally, all three corrections are carried out.
[0018] In an alternate preferred embodiment of the invention, the data itself is transformed to the measured coordinate system by rotating and translating the data to match the measured position. However, it is difficult to make these transformations on-line, so that the hybrid alignment of the data with the position, described above, is preferred.
[0019] In an aspect of some preferred embodiments
of the invention, the size of the image to be scanned is adjusted by comparing the actual distance between holes in the board to a predetermined distance.
[0020] In some preferred embodiments of the inven-
5 tion, a scaling operation is performed in one direction. In others, it is performed in both directions based on a distance measurement in one direction. In others, it is performed in both directions based on distance measurements in both directions.
10 [0021] Other aspects of the invention will become clear from the following detailed description of the invention, together with the appended claims.
[0022] There is also provided in accordance with a preferred embodiment of the invention, a method of deter-
edge positions.
[0023] In a preferred embodiment of the invention, the method includes comparing the positions of the holes to a design position. Preferably, the method includes correcting one or both of the position of the surface and the positioning of data to be written on the surface based on said comparison. Preferably, correcting comprises rotating the surface. Alternatively or additionally, correcting comprises rotating the data. Alternatively or additionally, correcting comprises translating the relative positions of the surface or the data. Alternatively or additionally, the method includes correcting the size of data to be written on the surface based on said comparison.
[0024] In a preferred embodiment of the invention, detecting comprises detection utilizing a same detector for a plurality of holes and the detector receives energy passing through the holes via a light-guide. Preferably, light is transmitted to the detector from a plurality of holes, via a same light guide.
[0025] In a preferred embodiment of the invention, detecting comprises detecting utilizing a different detector for different holes.
[0026] In a preferred embodiment of the invention, the surface is determined from the position of the at least one hole. Preferably, the at least two holes comprise at lest three asymmetrically placed holes and the side of the surface is determined from the relative positions of the holes.
[0027] There is also provided in accordance with a preferred embodiment of the invention, a method of writing data in a scanner type writing system, comprising providing data for writing on a surface;
measuring the position of at least two features on a surface;
comparing a distance between the features to a design distance;
scaling the data based on the comparison; and writing the scaled data on the surface. Preferably, measuring comprises measuring the position of at least three non-collinear features and scaling comprises scaling in two directions with different scale factors. Alternatively or additionally, the features are through holes.
[0028] In a preferred embodiment of the invention, the surface is the surface of a metalized printed circuit board substrate coated with a photoresist material.

SHORT DESCRIPTION OF THE DRAWINGS

[0029] The present invention will be more clearly understood from the following detailed description of the preferred embodiments of the invention taken together with the following drawings, which partly show structures not being part of the present invention but facilitate the general understanding.

Fig. 1 is a schematic perspective view of a printed circuit board direct writing scanner;

Fig. 2 is a schematic top view of the scanner of Fig. 1; Fig. 3 is a schematic view of the scanner of Figs. 1 and 2 in which the elements of the scanner are shown without mounts and not to scale, for clarity of presentation;
Figs. 4A-4D show four scanning schemes;
Fig. 5 is an exemplary curve relating scan overlap to polygon speed, for various values of overlap, illustrating a method for optimizing throughput of a direct laser scanner;
Fig. 6A-6C illustrate an alignment compensation of the scanner;
Figs. 7A and 7B show two functional views of the main beam optics up to an acousto-optic modulator; Figs. 8 A and 8 B show two functional views of the main beam optics between the acoustooptic modulator and the printed circuit board;
Fig. 9 is a simplified block diagram for a data control system for a scanner;
Fig. 10A is an overall block diagram of portions of the system of Fig. 9;
Fig. 10B shows an implementation of hardware logic of Fig. 10A;
Fig. 11 illustrates the operation of a portion of the circuitry of Fig. 10B in which data lines are sent to acousto-optic modulators, based on scan control signals;
Fig. 12 is a block diagram of apparatus useful for providing a data clock;
Fig. 13 shows some clock pulses, useful in understanding the apparatus of Fig. 12;
Fig. 14 is a schematic drawing illustrating a method for precisely determining the position of a printed circuit board in a scanner, in accordance with a preferred embodiment of the invention;
Fig. 15 shows a scanner system including a universal part of a vacuum chuck for holding printed circuit boards as well as a specific adapter for holding a printed circuit board;
Fig. 16 shows details of the permanent portion of the vacuum chuck of Fig. 15;
Figs. 17A and 17B show side and top views respectively of a part of the scanner used in determining certain cross-scan errors; and
Figs 18A and 18B show a prior art acousto-optic modulator and an acousto-optic modulator constructed in accordance with an advantageous further development.

BODIMENTS

SYSTEM OVERVIEW

In a preferred embodiment of the invention, an Argon Ion type ultraviolet laser, operating at 351.1 and 363.8 nanometers and delivering a maximum power of 4.4 watts has been found suitable. Such lasers are generally available and an Innova Sabre type laser of Coherent, Inc. of California USA or a Beam Lock 2085 type laser of Spectra Physics of California, USA, have both been found suitable. A beam 14 exits source 12 and is split into two beams, a main beam 16 and a test beam 18, by a first beam splitter (or partially reflective mirror) 20 . As explained below, main beam 16 (shown as a dashed line), is (eventually) used to scan and expose the photoresist on the printed circuit board. Test beam 18 (shown as a dotted line) is used to determine the scan position of main beam 16 and for certain other test and alignment functions as will be described below. Preferably, splitter 20 and the mirrors and other splitters described below are front surface mirrors and splitters. Preferably, the mirrors and splitters are dielectric front surface mirrors.
[0031] Since the power required for testing is much lower than that for writing, beam splitter 20 preferably reflects much more power than it transmits. Preferably of the order of 99% of the power of beam 14 is reflected into main beam 16. In the following explanation, the two directions perpendicular to the propagation axis of the beam are designated as the "scan direction" and the "cross-scan direction". These directions correspond to the direction of scanning of the writing beam and the direction perpendicular to both the beam axis and the scan direction, respectively. It should be understood that the full import of this nomenclature becomes clear below.
[0032] For ease of explanation, the optical path of main beam 16 is discussed first. Main beam 16 is passed through a series of optical elements $22,24,25$ and 26 whose function is to focus the beam on a modulating surface within a modulator 28 after the beam's reflection from a first mirror 30 . For the exemplary embodiment of Figs. 1-3, these elements are a first cross-scan cylindrical lens 22 , a second cross-scan cylindrical lens 24 , a first spherical lens 25 and a first scan cylindrical lens 26. Moreover, while beam 16 is substantially round after reflection from first splitter 20, it is oblong when it enters modulator 28, being longer in the cross-scan direction than in the scan direction. As the beam passes through modulator 28, segments of the beam in the cross-scan direction are independently modulated by modulator 28. Such a beam may be considered to comprise a plurality of separately modulated beams traveling side by side. However, for ease of visualization only a single beam path is shown for main beam 16. The cross-scan direction is the vertical direction at the exit from modulator 28 (as indicated by reference number 29 on Fig. 3.
[0033] Although the main beam is described, in the preferred exemplary embodiment, as being a single beam comprising a plurality of separately modulated subbeams, it is readily understood that, for some aspects of the invention, beam 16 could be formed of a plurality of discrete beams, produced, for example by beam splitters,
a plurality of laser emitters or other suitable means.
[0034] It may be noted that, for this exemplary embodiment, first mirror 30 does not reflect main beam at 90°. Rather, beam 16 is reflected from mirror 30 at an acute
5 angle and it impinges on modulator 28 at an angle different from the angle with which it leaves the modulator. Modulator 28 is preferably an acousto-optic modulator as well known in the art and as described in "Design and Fabrication of Acousto-optic Devices," pages 94 ff ., ed-
10 ited by Akis P. Goutzoulis and Dennis R. Papa, published by Marcel Dekker, Inc., 1994, which is incorporated herein by reference. After modulation, the beam must be further optically processed, preferably through an anamorphic lens system, to prepare it for scanning. In the exem-
15 plary embodiment of Figs 1-3, the beam is first passed through a second spherical lens 32 , then successively though a third cross-scan cylindrical lens 34, a third spherical lens 36 and a fourth cross-scan cylindrical lens 38. Main beam 16 is then reflected from second third and

20 fourth mirrors 40, 42, and 44. After reflection from mirror 44 , beam 16 is aimed at a facet of a rotating polygon 46. The beam preferably passes through a compound lens 48 prior to impinging on polygon 46. As indicated below, the z-position of lens 36 may be adjusted to (for example
25 by movement of a motorized mount, not shown) focus the beam on different thicknesses of PC board. While all the other lenses of the system may be simple fused silica lenses, lens 48 is preferably a compound lens to correct chromatic on-axis errors so that the focal points of the 30 two laser wavelengths (351.1 nm and 363.8 nm) in the scan and cross-scan directions on the board coincide more closely.
[0035] It will be noted from Fig. 1 that after passing through lens 38 , beam 16 is folded over by reflector sets 3550 and 52 (not shown on Fig. 3 for simplicity of visualization). The object of these reflectors is to increase the beam path length and increase the size of the beam, such that the optical power density on the optical surfaces is decreased.
40 [0036] It will be further noted that, for the exemplary embodiment, the focusing in the cross-scan direction is much greater than that in the scan direction. In a preferred embodiment of the invention, beam 16 is focused in the cross-scan direction on the facet which reduces errors 45 caused by polygon wobble and is defocused (collimated) in the scan direction such that the facet is well underfilled, so as not to lose power.
[0037] Turning to the path of test beam 18. After passing through first beam splitter 20 , test beam 18 is reflected
50 by a fifth mirror 54 such that its path is preferably substantially parallel to that of main beam 16. A beam rotator 55 preferably rotates beam 18 by 90° about its axis for reasons that will be understood later. Other than the rotation, the rotator, which may be a series of mirrors, pref55 erably does not change the axis of beam 16.
[0038] A portion 56 of beam 18 is split off the test beam by a second splitter 58 and directed toward laser alignment apparatus 60, whose operation is described below.

In a preferred embodiment of the invention, splitter 58 is a $50-50$ splitter, although substantially different ratios may be used. Beam 18 passes to the side of a sixth mirror 62 and impinges on a seventh mirror 64 which reflects it so that it is preferably substantially parallel to beam 16, after that beam leaves modulator 28 . It will be noted that beams 16 and 18 are relatively far apart on this leg of their path. Beam 18 is subjected to focusing in the crossscan direction by Two cylindrical lenses 65 and 66. A mirror pair 68, 70 reflect beam 18 so that it too is reflected by mirrors 42 and 44 toward polygon 46 via lens 48 . However, beams 16 and 18 are no longer parallel when they reach mirror 42 . Mirror 70 is preferably placed at an angle such that beams 16 and 18 are traveling at an angle, towards each other. Preferably, the angle is such that the beams are substantially coincident at the facet of polygon. After reflection from the facet, they diverge.
[0039] It will be noted that beams 16 and 18 preferably lay in a vertical (cross-scan) plane as they leave mirror 42. This assures that they will scan at substantially the same scan position after reflection from the polygon facet. Beam 18 is thus, for example, above beam 16 prior to impingement on polygon 46 and below beam 16 after reflection from polygon 46.
[0040] Unlike main beam 16, which underfills a single facet, test beam 18 is preferably focused at the facet, in the cross-scan direction and overfills more than two facets in the scan direction. When the polygon rotates, main beam 16 is traced on the facet as described below. At the same time, the facet cuts part of beam 18 out of the total beam. As test beam 18 is Gaussian, the total power of this cut part changes with scan angle.
[0041] Scanning optics 72 focuses both beams as they are scanned across optics 72 by polygon 46 . In general, optics 72 is spherical optics such that it substantially focuses both beams in the scan and cross-scan directions. The beams are reflected by a scanning mirror 74 toward a lens 76. Beam 16 impinges a photoresist coated printed circuit board 78 after passing through a cylindrical (crossscan) lens 82 . Lens system 72 together with lens 76 forms a quasi-f- θ optic system that converts the angular variation imparted to the beam by the polygon to linear movement across the board.
[0042] Beam 18, which has meanwhile diverged from beam 16 , impinges on a scale 80 without passing through cylindrical lens 82 . It should be noted that the scan position of beams 16 and 18 are substantially identical such that a measurement of the scan position of test beam 18 defines the position of beam 16.
[0043] Scale 80 is preferably oriented at a slight angle (about the scan direction axis) from the normal of the direction of beam 18. In this way, while beam 18 is reflected from the scale in almost the same direction as it arrived at the scale, a slight angle is introduced between the incoming and reflected beams. For clarity of exposition, the reflected beam is denoted as beam 18 ' in the description and in the drawings, where feasible.
[0044] Beam 18' passes through lens 76, mirror 74,
optics 72 , polygon 46 , lens 48 , mirrors $44,42,70$ and 68 and through lenses 66 and 65 to mirror 64 . By the time the beam reaches mirror 62, beams 18 and 18' are separated such that mirror 62 intercepts beam 18' and re-
5 flects it, through a lens 85 , to a detector 84 . Detector 84 detects modulation imposed on the beam by markings on scale 80 . These detected signals, which contain information on the position of scanning beam 16, are preferably used to control the modulation of beam 16 by modulator 28 , as described below.
[0045] Returning now to beam 56 that is derived from test beam 18 by splitter 52 . Beam 56 impinges on a beam splitter 86 , preferably after passing through a first spherical lens (not shown). One portion of the beam is sent, 15 preferably after passing through a second spherical lens (not shown) to a first quadrapole detector 88. The first and second spherical lenses project the waist of the laser beam onto detector 88 , such that signals from detector 88 indicate deviations of the beam in scan and cross20 scan dimensions.
[0046] A second portion of beam 56 is sent by beam splitter 52 to a second quadrapole detector 90 , via a pair of lenses (not shown, for clarity). The pair of lenses is configured to operate as an $f-\theta$ lens, such that signals from detector 90 show angular deviations in both the scan and cross-scan directions. Preferably, circuitry 91 receives the signals and passes them to a system controller.
[0047] When the system is originally aligned, the de30 tectors are positioned and adjusted such that their deviation signals are all zero. When the laser is replaced, the entire system need not be realigned. It is sufficient to place the laser in its mount and to adjust its height and angular positions such that both detectors 88 and 90 pro35 duce a zero deviation signal. Such a zero deviation signal will be produced only when the laser is appropriately aligned to produce a beam having precisely the same beam path as the laser with which the system was originally aligned. The result of aligning the laser is that the 40 entire system is aligned.
[0048] Preferably, the system is mounted on a synthetic granite base 92 , for stability. Many of the components are preferably mounted on rails 94 , utilizing mounting methods as described in a co-pending PCT patent ap45 plication entitled "Optical Alignment and Mounting System," the disclosure of which is incorporated herein by reference, filed on even date as the present application, in the European Patent Office as PCT receiving office. This mounting scheme allows for the easy replacement of components without realignment of the entire optics, or even of the replaced component.

BEAM MODULATION

55 [0049] As indicated above, main beam 16 is piecewise modulated by modulator 28 . In general, the present invention contemplates writing of very small elements with very high accuracy. In general, features (such as lines)
having an extent of less than about 50 micrometers (2 mil) are to be written.
[0050] To this end, the beam is modulated at modulator 28 such that, when the modulated beams are projected onto the printed circuit board, they form spots having a center to center spacing of one-eighth of the minimum feature size to be written. However, it should be noted that, while the center to center spacing is about $6.35 \mathrm{mi}-$ crometers (0.25 mil), the spot size of the individually addressed scan lines, due to diffraction and other optical effects, is generally poorer, namely about 19 micrometers (0.75 mil). It should be noted that the beam is addressable at the scan line resolution of every 6.35 mi crometers (on the board). The result of these dimensions allows for the achievement of high fidelity patterns of 2 mil feature size with sharp edges and exact line-width control. In practice, in a preferred embodiment of the invention, scan line positions on the board corresponding to the addressable modulated beam segments are preferably scanned a plurality of times.
[0051] Figs. 4A-4D show four scanning schemes in accordance with preferred embodiments of the invention. In each of these Figs., cross-scan is from left to right. Note that only a single line in the scan direction is shown. The upper line represents the scan line number (on the printed circuit board) and the scan line data being written. The scan lines for which exposure is desired are shown shaded, and those for which no data is to be written are shown without shading. In the example shown scan lines 7-10, 19-26 and 31-34 are to be exposed and the other lines are not.
[0052] The lower lines represent successive scans and the numbers represent the modulated beam segments (the corresponding modulator channel number for each scan). The beam extends over 24 modulator (=scan line) channels. In each case, a channel will have the data corresponding to the index in the upper line written in it. For ease of visualization, the channels which transmit the beam to expose the PC board, are shown shaded, while those that are not are shown white.
[0053] Fig. 4A shows a first exemplary scheme, referred to herein as a $2 x$ overlap, since each scan line is written twice. Fig. 4A shows three swaths of the scan. In this particular scheme, when the swath of the scan lines is 24 scan lines wide, for $2 x$ overlap, the swath advances 12 scan lines for each scan. For the first scan (only a portion is shown) modulators $17-20$ pass the beam for writing. For the second scan at the same scan position, shown in the next line, modulators 5-8 and 17-24 pass the beam for writing. For the third scan at the same scan position, shown in the next line, modulators 5-12 and 17-20 pass the beam for writing. For the fourth scan at the same scan position, shown in the next line, modulators 5-8 pass the beam for scanning. In the [referred exemplary embodiment, it is noted that the lines in the beam are not interlaced when the swathes overlap.
[0054] Figs. 4B-4D show $3 x$ overlap (where the swath advances 8 scan lines for each scan), $4 x$ overlap (where
the swath advances 6 lines for each scan) and 6X overlap (where the swath advances 4 lines for each scan), respectively. It should be understood that $12 x$ overlap and $24 \times$ overlap are also possible.
5 [0055] It should be understood that only one line of data along the cross-scan direction is shown. This represents data for a single scan position of the swath. As the swath advances, the data is changed such that the modulation is in accordance with the requirements of the 10 pixels being scanned at the particular scan position.
[0056] In a preferred embodiment of the invention a combination of scan-overlap and polygon speed are used to provide optimum exposure for the photoresist at maximum available writing speed and to maximize the utili-
15 zation of energy provided by the beam. In this preferred embodiment of the invention, the scan overlap and polygon speed are varied (for different sensitivities of photoresist) to provide a desired exposure energy of the photoresist. Preferably, the laser power is set at a fixed, pref-
20 erably an optimum (maximum or near maximum) power level. Fig. 5 shows a series of curves relating polygon speed and exposure energy for various scan overlap levels as a parameter for the curves. The curves are based on a scanning length of 24 ". For very high-speed pho-
25 toresist, it may be necessary to reduce the power of the laser. However, over a large range of photoresist speeds, as shown in Fig. 5, throughput may be optimized, by adjusting polygon speed and swath overlap while keeping the laser power at the desired optimal level.
30 [0057] It will be noted that just using $2 x, 3 x$ and $4 x$ overlap schemes allows for $3 x$ variation of delivered energy for only a $3: 2$ ratio of polygon speeds. Since the power is kept at a constant optimum (maximum or near maximum) power level, each of these exposures is per35 formed at the maximum speed at which the scanner is capable. Furthermore, by utilizing $6 x, 8 x, 12 x$ and $24 x$ overlap, the range of exposure energy variations can be much larger, while the power of the laser (and the exposure duration) are optimized.
40 [0058] In a further preferred embodiment of the invention, automatic compensation is provided for cross-scan off-set of the laser beam at the modulator. Figs. 6A-6C illustrate one methodology of providing such automatic compensation. In particular, while the beam illuminating
45 the modulator is 24 physical (scan line) pixels wide, the modulator provides several extra physical channels of modulation on each side of a central 24 pixel portion. In Figs. 6A-6C, the channels are shaded in the same way as they are in Figs. 4A-4D and represent modulator set50 tings for the lower lines.
[0059] Figs. 6A-6C show the channels numbered as 1-24 with four extra channels $-1,-2$ and $+1+2$ at either end of the modulator. Note that each channel provides modulation in accordance with the line that would be 55 scanned if power were present in the beam at the modulator, namely, the x-axis scan line position.
[0060] In Fig. 6A, the beam, shown by a bold outline, is correctly placed. Thus, for the 2 X overlap shown, the
result is the same as that in Fig. 4A. In Fig. 6B, the beam is mispositioned on the modulator by two scan lines to the left. Note that scan positions 25 and 26 , which were written in Fig. 6A, by modulator positions 23 and 24 in . the first swath and modulator positions 11 and 12 in the second swath are now written by positions 11 and 12 in the second swath and by -1 and -2 in the third swath. It will be noted, that while each swath may be mispositioned, each line is scanned the proper number of times and with the proper data. Fig. 6C shows the beam mispositioned by two scan lines to the right. Again, the scan power and data are conserved. Thus, by providing more channels of modulation than are necessary for the actual swath width, the cross-scan positioning of the beam in the modulator (and its long term stability) are made less critical.
[0061] It should be noted that, in a preferred embodiment of the invention, the energy profile of main beam 16 is not uniform in either the scan or cross-scan directions. In both directions it has a Gaussian or near Gaussian shape. Allowing the beam to have the Gaussian shape in the cross-scan direction increases the overall efficiency of the system, since only the extreme tails of the beam (below $1 / \mathrm{e}^{2}$ of the peak power) are not used (or at least are not taken into consideration). If each pixel would be written by a single scan line, this would result in varying exposures for different pixels. However, since each scan line on the PC board is written at least two (and usually more) times utilizing different portions of the cross-scan beam swath, the total amount of power delivered to the photoresist is fairly constant even though most of the Gaussian cross-section of the beam is used. Furthermore, since each of the individually modulated scan lines is about three times smaller than the diffraction limit, as described earlier, there is a further homogenizing of the power to written lines.

THE MAIN BEAM OPTICAL SYSTEM

[0062] In accordance with preferred embodiments of the invention, an improved optical system is provided. This optical system can be subdivided into two parts, in accordance with their different functional tasks: the Modulator Illumination System, and the Modulator to Printed Circuit Board Imaging System. The system can also be subdivided into pre-scanning optics and scanning optics. The pre-scanning optics comprises all lenses, situated between the laser and the polygon. The scanning optics comprises the optics between the polygon and the board plane. This division is desirable because of the very different requirements for these two parts. The elements of the pre-scanning optics are small in size, since the beam is small. However, the power density is high which may cause problems.
[0063] For the scanning optics the requirements with respect to beam size and power density are generally reversed.
The Modulator Illumination System transforms the
beam from the laser head to the modulator in accordance with the optical requirements of the laser waist transformation, which is well known in state-of-the-art laser optics. As a result, the modulator channels are illuminated,
methodology of performing these measurements is described in a section below, titled "Determination of CrossScan Errors". If "p" and "a" are measurements of local and angular shifts of the beam, the steering information is: $\Delta y=c * p+d * a$ for lens 22 and $\Delta y=e * p+f * a$ for lens 24 , where c, d, e and f are constants dependent on the optical design. Correction of this type is especially important if the modulator only has the same number of segments as are required for writing. If a modulator with extra channels, as described in conjunction with Fig. 6 is used, the beam positioning requirement is less exact.
[0069] Such a beam expander vario and beam steering system is needed to compensate for variations caused by thermal changes or changes in laser resonator conditions of an electrical or optical nature during daily usage cycles or during the lifetime of the laser. If these variations are not corrected, the generated pattern deteriorates. Inappropriate size or local placement of the beam at the modulator leads to uneven power distribution due to the $2 x-24 x$ overlapping procedures as described above and, consequently, to increased line-width variation or edge roughness of the generated pattern. Inappropriate angular variation lead to power losses due to cutting parts of the beam at a Numerical Aperture Stop of the exposure system or to unsymmetrical effects at the edges of the generated pattern.
[0070] In the preferred embodiment as described above all these deteriorating effects for the generated pattern are preferably prevented.
The Modulator-Printed Circuit Board Imaging System is responsible for transmission of an image of the modulator to the printed board plane.
[0071] In a preferred embodiment of the invention, the focus of the laser beam on the PC board is optically adjustable. Of course, focusable optical systems are known. However, complicated scanners such as those of the present invention are generally of fixed focus. This is not surprising considering the manifold requirements on the system and the (generally) different focusing schemes for the scan and cross-scan directions. It is also noted that the object must be moved only a relatively short distance to bring it into focus. However, the present inventors believe that for high accuracy, the mechanics should be as simple and robust as possible.
[0072] In order to allow for such focusing, the system requirements such as high total laser power transfer efficiency, high resolution and high fidelity pattern generation must be taken into consideration.
[0073] Figs. 8A and 8B shows a functional schematic of the preferred embodiment of the invention. As with Figs. 7A and 7B, Figs. 8A and 8B represent views along the cross-scan and scan directions respectively.
[0074] The modulator-board imaging system consists of several modular units. The starting point of the imaging system is acousto-optical modulator 28 , which preferably is a multi-channel modulator. The center position of the acoustic wave on the optical axis is regarded as the object plane. Type AOMC 117/24-UV acoustic modulator from

Crystal Technology, Inc. is an available 24 channel modulator, suitable for some preferred embodiments of the invention.
[0075] In the scan direction (Fig. 8A), a first modular
5 imaging unit consists of spherical lenses 32 and 36 , which forms a first image of the modulator plane(object plane) at a plane 39. A second modular imaging unit images the image at plane 39 to the plane of the PC board 78. The second modular unit comprises spherical lens 48 and the
10 spherical part of the scanning lens system 72 and lens 76. Consequently, between polygon 46 and board plane 78 , the optical system works as a quasi $\mathrm{f}-\theta$ lens which is preferably telecentric. A physical stop 31 is shown between lenses 34 and 36 . This stop made large enough canning numerical aperture in this direction which is defined by the rotating facets of the polygon. Its main function is to stop the directly transmitted beam from modulator 28 from entering the optical system. A physical stop 31' in the cross-scan direction 20 does define a numerical aperture in this direction.
[0076] To achieve steep side walls of the generated pattern and high power efficiency, the scophony effect and facet tracking as known in the art are preferably used. A requirement for the scophony effect is that the acoustic velocity of the switching information in the modulator medium - reduced by the reduction ratio of the optical system between modulator and board - is equal to the scan speed of the writing spot on the board, but in the opposite direction. This leads to "standing" data information on the predetermined place on the board. As the acoustic velocity for quartz material which is used as an optical medium in the modulator is 5.7 km per sec and the scanning speed is 0.270 km per sec $(\approx 1700$ RPM polygon speed - see Fig. 5) a reduction ratio of about $21 x$ is required. If

35 this reduction ratio is fixed, each difference of the scan speed from 0.270 km per sec (as required to achieve optimum scan times) leads to blur at the pattern edges. The magnitude of the blur at different scan speeds can be reduced by reducing the size of the illumination beam
40 at the modulator. But reduced size results in increased divergence and, consequently in reduced diffraction efficiency of the modulator.
[0077] The beam size to $1 / \mathrm{e}^{2}$ at the polygon is smaller than the facet width. The facet itself acts as a Numerical
45 Aperture stop for the scan direction and, as the rotation of the polygon deflects the beam, the aperture moves. If the beam to the polygon were fixed in position, the movement of the polygon would result in a reduced power over the scan. This can be compensated for by changing the lator, to cause an angular change of the optical axis at the modulator, leading to a parallel shift of the beam at the polygon. The modulation frequency is changed such that the beam is traced synchronously with the rotation of the facet (facet tracking).
[0078] Facet tracking improves the cycle time efficiency compared with other methods (see Goutzoulis et al., page 182 ff .) to about 99%. As it is known in the art,
maximum diffraction efficiency (transmission) at the modulator is reached, if the incident ray and the acoustic wave front form a special angle - the Bragg Angle. As the Bragg Angle only depends on wavelength of the beam, acoustic velocity in the optical medium and carrier frequency of the modulation signal, the beam adjustment can only be optimized for one frequency. This is generally chosen as the center frequency of the sweep. For the outer positions of the sweep, the diffraction efficiency decreases, reducing the power delivered to the board, in those positions. A preferred embodiment of the invention compensates for this effect optically and consequently, equalizes the power distribution along the scan. This is accomplished by focusing the beam in the cross scan direction on the polygon and also on the board. Thus, small angular cross-scan changes in the beam direction caused by wobble do not result in movement of the beam position on the board.
[0079] Turning to Fig. 8B, in the cross-scan direction spherical lenses 32 and 36 and the cylindrical lens 34 are a modular imaging unit with a real focus close to that for the scan direction, with cylindrical lens 38 removed. With lens 38 in the system, the cross-scan focus at plane 39 turns to a virtual focus. Together with spherical compound lens 48 a real second image is formed at or near the polygon facet only for cross-scan direction. The image size in cross-scan is many times smaller than the facet height. A third modular imaging unit from the second image to the board plane consists of the spherical part of the scanning lenses (72 and 76) and cylindrical lens 82.
[0080] This third modular unit is responsible for the polygon wobble compensation, because angular variations of the facets, which are near the second focus are transmitted to the board plane as angular variations as well, not as local position variations. However, imperfections in the optics do cause systematic deviations in the crossscan position of the beam as it scans along its scan path. These deviations can be compensated as described below. The reduction ratio of the entire cross-scan imaging system from the modulator to the board is predetermined by the required data resolution. In the preferred embodiment of the invention, the width of a single modulator channel of 375 micrometer as the smallest addressable unit is reduced to 6.35 micrometer in accordance with a required address resolution of 4000 DPI (dots per inch). As a result a reduction ratio of 59 x is chosen for the crossscan direction.
[0081] In a preferred embodiment of the invention, both the scan and cross-scan directions have practically a joint image plane (first image of modulator plane) intermediate between modulator and printed circuit board. It should be noted, that the image planes can differ by a small amount. Preferably, both beam directions were brought to focus by a single element, which is lens 36 . The reduction ratio from this point to the board plane is equal for both directions. In this manner, simple axial movement of lens 36 allows for a nearly equal change of focus for both the scan and cross-scan directions. The gear
ratio between the focusing lens 36 to the focus shift at the board is decided by the reduction ratio from first focus 39 to board plane 78.
[0082] In an exemplary system, according to a pre-
5 ferred embodiment of the invention, the following reduction ratios are chosen:

> Scan direction: Modulator-to-firstimage: $12.35 x$; first image-to-board: $1.7 x$; and modulator-to-board: $21 x$. Cross-scan direction: Modulator-to-first image: $34.7 x$; First image-to-second image: $0.113 x$; second image-to-board: $15 x$; first image-to-board: $1.7 x$; and modulator-to-board: $59 x$

15 [0083] As indicated above, in order to improve the accuracy and edge resolution of the beam in the scan direction, facet tracking and scophony are used in modulator 28. However, this causes the beam deflection angle in the modulator to vary. In turn, this causes the power in the beam to vary, since the modulator efficiency is a function of the deflection angle. This results in the power being non-uniform across the scan. To correct for this phenomena, the $f-\theta$ lens is a lens in which $x=f(\theta)$, where $f(\theta)$ is a compensating function which slows down the 25 beam where the power is low, namely at the ends of the scan. Generally, a simple quadratic correction, $x=f_{1} * \theta$ $+f_{2} * \theta^{3}$ is sufficient to effectively compensate for the power non-uniformity, where f_{1} is the center focal length and f_{2} preferably is a negative number.

ACOUSTO-OPTIC MODULATOR FOR MULTIPLE WAVELENGTHS

[0084] Fig. 18A shows an available modulator 28, such 35 as the above referenced commercially available modulator. In modulator 320, acoustic waves are generated at a transducer 322 and form the pattern which is used to diffract input beams 324 and 326. As indicated above, the present invention contemplates using a laser with two 40 spectral lines. For efficiency, both lines should be used. However, as shown in Fig. 18A this would result in diffracted beams 324' and 326' at the two wavelengths having different exit angles, since they are refracted differently as they enter and leave the modulator and since 45 their Bragg angles are different.
[0085] Fig. 18B shows a proposed solution to this splitting of the lines when they leave the modulator. In modulator 28 ' of Fig. 18B, the modulator entrance and exit faces are not parallel. Rather they are at an angle which 50 is designed such that the difference in refraction for the two beams (at the different wavelengths) at the input and output faces is exactly equal and opposite to the difference in Bragg angles for the beams. Thus, the two beams which enter together, exit together.
55 [0086] It is noted that transmitted beams 324" and 326" have different exit angles. However, since only the diffracted waves are used in the present system, this is not of interest. However, for systems which use the trans-
mitted beams rather than the diffracted ones, a complementary angle between the input and output faces will result in the beams leaving at the same angle for transmission. Of course, this will increase the deviation for the diffracted beams.

SCAN DIRECTION POSITION MEASUREMENT

[0087] One of the most critical elements in accurate direct laser writing of PC boards is knowledge of the position of the beam on the PC board. This knowledge allows for the proper modulation of the beams (or more precisely, the scan lines) with correct data, at the position of the scan lines. The PC board moves in the cross-scan direction and the beam scans in the scan direction. Thus, the position of the beam may be completely determined from knowledge of the cross-scan position of a table 79 on which PC board 78 is mounted and of the scan position of the beam.
[0088] It is straightforward to determine the cross-scan position of the table. Any of the well-known encoders known in the art may be used. In a preferred embodiment of the invention, the table is transported along two x shaped rails 96 and an optical encoder is used for the measurement. A scale 98, associated with the encoder is shown in Fig. 1. In a preferred embodiment of the invention, a type LIE 5 by encoder system Numerik Jena GmbH, Jena, Germany; (accuracy $2 \mu \mathrm{~m}$, resolution $0.2 \mu \mathrm{~m}$) is used. Preferably, the cross-scan position measurement is made to an accuracy of ± 2 or 3 mi crometers and a resolution of ± 0.1 micrometers, although other resolutions and accuracies may be used, depending on the system requirements.
[0089] It should be noted that each feature on the printed circuit board is written by several segments of beam 16. Thus, knowledge of the cross-scan position can be used to determine modulation of the beam to a positional accuracy greater than the minimum required feature size. The data position may be adjusted to a positional accuracy equal to the scan line spacing, which is generally much smaller than the required accuracy.
[0090] It is more difficult to determine the scan direction position of the beam with great accuracy. This problem is made somewhat more difficult by the use of a scan speed that varies with position, since this requires more precise control over the data stream from the data source.
[0091] Fig. 9 is a simplified block diagram for a data control system 100, for a scanner in accordance with a preferred embodiment of the invention.
[0092] Control system 100 receives signals from detector circuitry 84 . These signals represent the variations in power of beam 18' as modulated by the markings on scale 80. In general, these markings produce an analog signal (the "optical clock") with a relatively low pulse rate, much lower than the data clock rate for the system. A clock generator 102 generates an X-clock (data clock) and a start of scan signal from the scan position detector signal. A preferred method of generating the x-clock from
the scan signal is described below. The following features of the clock should be noted however:

1) The average x-clock rate is preferably not constant over the length of the scan.

2) Data is sent to modulator 28 based on the instantaneous x-clock count and the start of scan signal. It should be understood that while the data is sent to the modulator in response to the x-clock, there is no data sent except at times for which the beam is in a correct position for writing on the PC board. Thus, for periods during which the beam changes facets or during the beginning or end of the scan, when the beam is not in a writing position, no data is sent to the modulator, which is shut off.
[0093] Clock generator 102 sends an x-clock signal and a start of scan signal to a data base 104, which contains a binary map of the PC board to be scanned. Alternatively, the data could be in vector form and could be transformed to raster form on-line. This data is preferably in compressed form. The generation of the start of scan signal may be based on a separate detector, which sends a start of scan signal (not shown) to the clock generator. Preferably, the start of scan signal is based on the scan signal itself, for example by long signals generated at the beginning and/or end of a scan.
[0094] Clock generator 102 also sends a y-synch signal to a controller (not shown) This controller controls movement of the table in synchronism with the y-scan signal. This signal, which is synchronized with the start of scan, provides a means for synchronizing the position of the table with the data stream.
[0095] Data base 104 send a plurality of scan lines of data to a multi-line data buffer and scan line generator 106. Preferably, multi-line data buffer 106 contains all of the lines of data required for the present scan and for the next scan.
[0096] Based on a cross-scan position signal and PC board position information, the multi-line data buffer and scan line generator generates scan line data and transfers the scan line data to scan line buffers and control 108. This data is fed to the various modulators one bit at a time in response to the clock, starting at a time dependent on the start of scan signal.
[0097] It should be understood that Fig. 9 represents only a functional block diagram and a variety of apparatus and methods for carrying out the functionality of Fig. 9 will occur to persons of skill in the art. Furthermore, some of the functions associated with one of the block may be carried out by another of the blocks or blocks may be combined in practice. Furthermore, all or some of the functions may be carried out in hardware, software or firmware or in combinations of hardware, software or firmware and/or on general or special purpose computers. In general however, for very fast systems, dedicated hardware systems are desirable. Such systems will generally use hardware data decompression, FIFOs for hold-
ing the data, switches for switching the data from the FIFOs to the beams and programmable delays for delaying the data based on the position of the printed circuit board. A general view of such a system (for generation of 36 scan lines, only 24 which are actually written to the acousto-optic modulator (AOM) and 12 lines of which are used for the cross scanning correction, described below) is shown in Fig. 10A shows an overall block diagram of buffer/generator 106 and scan line buffer and control 108, in accordance with a preferred embodiment of the invention. Fig. 10B shows an implementation of the hardware logic of Fig. 10A. Fig. 11 illustrates how the fast switcher of Fig. 10B is operative to control which data lines are sent to the AOMs, based on the scan control signals described above. The system allows for up to a 6 scan line offset for the modulator signals in each direction.
[0098] It should be noted that the fast switcher shown in Fig. 11 allows for the correction of cross-scan errors that are related to scan position. Such errors may be caused, for example, by residual aberrations in the scanning optics. Such errors do not change with time and can be measured once in the lifetime of the scanner. These errors are stored in a memory and form the basis for signals to the fast switcher.
[0099] In particular, Fig. 11 shows 36 data input streams, shown in Fig. 11 as beams entering the switching system and 24 output data streams, each corresponding to a beam modulation channel in modulator 28, leaving it. (For the system of Fig. 6, 30 beams would leave the system.) The incoming data streams correspond to a given scan line on the board according to according to its nominal position. Also shown in Fig. 11 are three boxes 310-312 which designate three exemplary "positions" for the switcher. Each box 310-312 corresponds to an exemplary cross-scan offset position of the beam on the board for the given scan position, such as may arise due to imperfections in the scan optics. In position 310, the cross-scan offset is zero. In this case input lines $\mathrm{N}=0$ to $\mathrm{N}=23$ are sent to the modulator. A reference 311 designates the situation in which the beam is offset by two scan lines in the cross-scan direction. To compensate, input lines $\mathrm{N}=2$ to $\mathrm{N}=21$ are sent to the modulators so that sub-beams are modulated by data from these input lines. This assures that even though the beam moves in the cross-scan direction during the scan, the information is written in the proper positions on the board. Similarly a reference 312 represents the situation in which the offset is in the opposite direction by one scan line, such that input lines $N=1$ to $N=24$ are sent to the modulator.
[0100] Fig. 12 is a schematic drawing of clock generator 102 circuitry for producing the X-clock, in accordance with a preferred embodiment of the invention. While this circuitry and the method it performs are preferred, it should be understood that other methods of producing a high rate clock from a low rate signal, as known in the art, may be used in other embodiments of the invention. Fig. 13 illustrates clock signals useful in understanding
the operation of clock generator 102.
[0101] The optical clock signal from detector circuitry 84 is used to provide a locking signal for a PLL and VCO 140. PLL and VCO 140 form a loop with a division by 16 which is similar to the optical clock. The PLL clock differs from the optical clock (opt-clock) in the following ways:
3) The PLL-clock is more stable (very short term) than the opt-clock.
4) The PLL clock has sharper and more stable transitions than the opt-clock.
5) The PLL-clock is continuous. The opt-clock disappears during facet switching. When the opt-clock reappears, the PLL locks the PLL clock to the optclock. For several cycles a phase difference may exist. However, no data is triggered during this period, as the beam is at the beginning of the scan when no data is yet to be written.
[0102] The PLL and VCO 140 produces two clocks (VCO and inverse-VCO), both of which are 16 times as fast as the PLL clock and the optical clock. Standard circuitry may be used for this division. Using an AD9850BRS (available from Analog Devices Corp. of USA) to perform the division, other divisions (such as 15,999 or 16.001) can be achieved with a 40 bit accuracy. This makes it possible to generate any required linear scaling.
6) The purposely high VCO frequency caused by scale predistortion. This frequency may be about 0.75% high.
7) A scale factor of the boards, as described below.
8) Position errors between the scale measurement and the position of the writing beam. These errors occur primarily because the two beams do not follow the same path and the scanning lens, while telecentric, has some residual non-telecentric errors. Thus,
the offset between the beams and the different length of the beams results in some small repeatable errors. The value of these errors is stored in correction memory 146.
[0105] The logic also generates a start scan signal, preferably from the optical clock itself, as described above. This signal is supplemented by a y-phase signal which determines the actual synchronization between the polygon and the y motion of the table.
[0106] It should be understood that for simplicity of explanation, other data corrections have not been described. Preferably, however, known errors in the scan readings are taken into account in determining the data sent to the modulator. A further correction is made for a timing delay between the electrical clock based data switching and the impingement of the optical beam on the board. As a result of the timing delay there will be an additional positioning delay in the scanning direction depending for example on the current polygon speed. In a preferred embodiment of the invention an autoalignment mechanism based on the position measurement system, as described below (Fig. 14) is used.
[0107] At a table position outside of the area of light guide 152 (Fig. 14), preferably where the board is not under the beam, a data signal is sent at a known X-Clock position. However, delays in the electronic system and especially in the switching time of modulator 28 will produce modulation at the board, at an offset time from when the data is sent. This results in a positioning offset error at the board. This positioning error is mainly a factor of the polygon speed. To measure the position offset after changing polygon speed, a data signal is sent to the modulator at a fist x-position and the light signal from the light pipe is received at a second x-position.
[0108] The number of X-Clock pulses between firstand second positions now represents a timing delay and is used as an additional delay for X-Clock generator.
[0109] It should be understood that several timing delays at several X -Clock positions may be used to provide better accuracy.
[0110] The system also preferably includes a test clock used to test the circuitry without having to turn on the laser.

PC BOARD ALIGNMENT

[0111] In accordance with preferred embodiments of the present invention, alignment of the data to the board is with reference to through holes, as in the prior art. Writing on boards in an absolute position is particularly important when writing on boards that have already been written on, such as the second side of a layer to be used within a multi-layer board or the outside of a multi-layer board. However, unlike the prior art systems in which the holes on the board were mechanically aligned with the scanner, in preferred embodiments of the invention, the holes on the board are optically aligned with the scan
data. Preferably, the system used for writing on the printed circuit board, including the scan and cross-scan positioning mechanism is utilized for determining the precise position of the holes and hence of the board on the data is matched to the position of the board by rotating the board to correct for angular misalignment of the board with the data and/or by selective delays of the scan line data in both the scan and cross-scan directions, to correct for residual scan positional misalignment. Preferably, cross-scan misalignment is corrected by delaying or advancing the data in the cross-scan direction. Generally, all three corrections are carried out.
[0112] In an alternate preferred embodiment of the in5 vention, the data itself is transformed to the measured coordinate system by rotating and translating the data to match the measured position. However, it is difficult to make these transformations on-line, so that the hybrid alignment of the data with the position, described above, is preferred for high throughput scanners where on-line transformations from the data base is desirable.
[0113] Fig. 14 is a schematic representation of a position measurement system, in accordance with a preferred embodiment of the invention. PC board 78 is formed with a plurality of holes 150 , preferably with three holes as shown. Table 79 is not shown in Fig. 14, but it is also formed with holes underlying and somewhat larger than holes 150 . Beneath the table a light guide 152, coated on top with a fluorescent material, receives light that passes through the holes and illuminates a detector 153 with the light. When the beam passes through a hole, detector 153 will produce a signal. When the beam is blocked by the PC board, detector 153 produces no signal. The signal from detector 153 is fed, together with the beam x-position and the beam y-position into a position calculator and memory 155 . The position calculator and memory determines the edge of the hole from the positions of the beam (both scan and cross-scan directions) when the signal changes from off to on and from on to off. From this edge, the actual position of the center of the holes is determined.
[0114] The center position of all three holes 150 is sent to a position error calculator 156. Calculator 156 also receives (or has in storage) a nominal position of the holes. Based on the difference between the actual and nominal positions of the holes, a rotation correction unit 157 determines a required rotation for the table. A rotation mechanism 158 accurately rotates the table by a desired amount prior to scanning in order to align the $x-y$ axes of board 78 to the respective axes of the scanner system. In addition, a position correction module 160 determines a relationship between the position of the table and the position of the area to be written. This relationship is used to correct the position of the data sent to modulator 28 by data control 100 .
[0115] In addition, a scan direction scale factor (shown on Fig. 12) may be calculated based on a difference from nominal of the distance between the holes. In a preferred
embodiment of the invention, additional holes 150 ' may be provided, such that the cross scan distance between holes 150 and holes 150 ' may be determined. This distance (compared to a nominal distance) may be used to scale input data in the cross-scan direction. Alternatively, the same scale factor can be used in both directions. This scale correction is used when actually writing on the PC board to scale the data as described above.
[0116] It is not desirable to expose the photoresist on board 78 during the hole position determination. This can be achieved by either reducing the power so that the beam 16 is not powerful enough to expose the photoresist or by limiting the irradiated region to the region of the holes, which are not part of the pattern to be written.
[0117] It should be understood that Fig. 14 is very general in nature and is generally functional. Other electronic structures may be useful to carry out the position determination or they may be carried out in whole or in part in software or firmware.
[0118] In practice, after one side of the board is written, the board is turned over. The left most hole of Fig. 14 has moved near to the right edge of the table and is placed over an additional hole in the table at its new position. The middle holes, which are preferably symmetrically placed, just switch positions. Again the positions of the holes are calculated and the second side is written using the respective positions of the holes as a reference to determine the positions, corresponding to the pattern written on the first side, at which the pattern for the second side should be written. It should be noted that asymmetric positioning of the holes results in automatic detection of the side of the board.
[0119] In general, a number of layers would be exposed in this manner and then etched. In general, when layers (even different layers) are produced in a batch, the dimension change for all of them will be about the same. The layers are stacked, preferably using the holes as a guide, but using other means, such as X -ray images as known in the art, to align the layers, which are then laminated to each other. Outer layers (which are, at this point completely covered, on their outside, with copper) are part of the stack. As in the prior art, holes for vias and/or mounting are drilled, for example based on X-ray images. Preferably, holes suitable for use in aligning the stack for writing on the outside layers are also drilled. These holes may be used to align the data for the outsides of the board with the patterns written on the inner layers. It should be noted that the scale factor for the stack is usually different from that for the layers, due to pressure caused distortion in the stacking and attachment process.
[0120] While this method of positioning is preferred, for some preferred embodiments of the invention other alignment methods, such as mounting holes (in the boards) and pins (on the table) may be used.
[0121] Optionally, the table may be supplied with positioning pins and the board with holes used to roughly align the boards, prior to the application of the above
position determination and correction methodology. In this manner, the required rotational corrections and the data position corrections are minimized.
[0122] In a preferred embodiment of the invention, light
position in the scan direction) by slit 304. As indicated, a pulse will be collected by detector 153 from the fiducial only when the beam crosses the fiducial. This scan position may be measured using the x-position measuring system, including scale 80 which measures position at the focal plane. The angular offset can be derived from the error in position (time) of the received pulse.
[0127] It was noted above that wobble of the polygon causes no appreciable movement of the beam in the cross-scan direction, by design of the optical system.

THE SCALE

[0128] Scale 80 has a number of features to improve the accuracy and reliability of the position measurement. As already mentioned, the facet cuts a portion of light out of the expanded Gaussian distributed test beam 18. As a result, the total power of the forward beam is lower in the outer portions of the scan than in its center. Furthermore, as the scanning lens isn't completely telecentric, the beam is reflected in a different direction, in the scan direction, from the incident beam. As a result, the reflected beam does not impinge on the facet in the same position as the incoming beam. The reflected beam is then cut again by the facet, depending on the telecentric error. [0129] The telecentric error characteristics usually have the general form $\Theta=a * X+b * X^{3}$, where Θ is the telecentric error, X is the scan position, symmetrically measured from the center of the scan, and a and b are constants.
[0130] To overcome this problem, in a preferred embodiment of the invention, the surface of the scale is contoured, in the scan direction, such that the beam is reflected in the same direction as the incident beam (i.e., perpendicular to the scale). This can be achieved if the scale has a surface with a contour having the form $Z=$ $c * X^{2}+d * X^{4}$, where Z is the deviation from flatness of the scale. However, due to focal depth considerations, the offset is limited to about 0.5 mm .
[0131] However, this correction is not complete. As a result, at some scan positions, especially in the middle of the scan, the amplitude of the signal based on the reflected beam is in saturation and the on period is substantially greater than the off period. In other positions, especially at the ends of the scale, the off period is greater than the on period. Since the generation of the data clock is conveniently based on thresholding the signal, this can lead to timing errors, especially if the off period amplitude does not fall below the threshold or the on period amplitude does not rise above it. In a preferred embodiment of the invention, the sizes of the reflecting and non-reflecting portions of the scale are varied with position, such that the on and off periods of the signals are the same.

VACUUM CHUCK FOR THE PC BOARD

[0132] During the cycle of measurement of position and scanning, it is important that the printed circuit board
remain in place. This problem is complicated by the fact that, even when positioning pins are used, they are not accurate enough for positioning. Thus, a vacuum chuck is preferably used to hold PC board 78 in place on table
[0133] Fig. 15 is a perspective view of the scanner of Fig. 1 with table 79 in an extended position and PC board 78 removed from the table. Table 79 is formed with a segmented surface 200, shown more clearly in Fig. 16.
10 Segmented surface 200 is preferably formed of a series of truncated pyramids, with the tops of the pyramids forming a flat surface. Surface 200 is further formed with one or more vacuum outlets 202 from which air can be pumped in either direction. If the entire surface is covered 15 and air is pumped out through outlets 202, the vacuum thus formed is distributed throughout the channels between the pyramids and the entire surface of the covering is held down by the vacuum.
[0134] In practice, most PC boards can not be placed 20 directly on the truncated cones, since most PC boards are smaller than the entire surface. Thus, any potential vacuum would escape at the edges of the boards. Furthermore, many PC boards have holes drilled in them before they are exposed, so that vacuum would escape 25 through them as well.
[0135] In accordance with a preferred embodiment of the invention, an intermediate plate 204 is placed between surface 200 and PC board 78. Plate 204 is designed to act as a vacuum distributor for a specific design 30 of PC board. Plate 204 will typically have a large number of holes 205, but only in areas to be covered by solid regions of the PC board.
[0136] It will be noted from Figs. 15 and 16 that the end of table 200 has a different structure from that of surface 200. Preferably, where a position measurement system described above is used, the table will be formed with holes 206 corresponding to holes 150 on the printed circuit board and holes 207 formed in plate 204. It should be understood that holes 206 and 207 are substantially larger than holes 150 , so that they do not interfere with the alignment of board 78 described above. It will also be noted that optional pins 208 are provided on the top of table 79 for rough positioning of the PC board. These pins mate with holes 210 in PC board 78 and 212 in plate 45204.
[0137] It will also be noted that due to the presence of holes in the table, the truncated pyramid structure is not used for the end of the table. Rather, a series of channels, connecting to the valleys of the pyramids is preferably 50 used to provide hold-down vacuum at the end of the table. [0138] In accordance with a preferred embodiment of the invention, removal of the PC board, after writing is completed is aided by the provision of compressed air to the bottom of the board via holes 202 and valleys of the pyramids. This compressed air lifts the board slightly making it easier to remove.
[0139] A vacuum chuck as described above has the further advantage that the entire board is pressed toward
and referenced with a flat surface (the truncated tops of the pyramids). Thus, the entire board is at the same focal plane.
[0140] It should be understood that the detailed description of the preferred embodiment of the invention, described above, is intended to be exemplary in nature and not to be limiting. In particular, the preferred embodiment contains many features and details that are not absolutely necessary for the invention, although they may provide for optimum operation of the system. Furthermore, while particular circuitry and other structure is disclosed for the preferred embodiment, it will be evident to the skilled reader that other structure may be substituted for the described structure. Furthermore, it should be understood that the term printed circuit board, as used herein also includes other large similar structures, such as flat panel displays, which are written on by similar techniques. Finally, the described apparatus and method include many ideas and aspects which, even when closely related, may be separately applied to practical scanning systems. It should not be inferred, based on the detailed description, that these ideas and aspects must be applied together, nor should the use of section heading be considered to limit the scope of the invention.
[0141] As used in the disclosure and claims, the terms "comprise" or "include" or their conjugates mean "including but not limited to".

Claims

1. A method of determining the position of a surface in relation to a scanning beam in a scanner, the method comprising:
providing the surface with at least two holes (150);
scanning the surface at least in the vicinity of the holes with the beam;
detecting (153) the beam when it is in positions at which it passes through the holes;
determining positions, in a scanner reference frame, of the beam at least at those positions where the beam is at an edge of the hole; and determining the positions of the holes, in the scanner reference frame, based on a determination of the positions of the edges of the holes.
2. A method according to claim 1 wherein the position of the edges of the holes (150) are determined over the entire circumference of the holes.
3. A method according to claim 1 or claim 2 and including:
determining a distance between the two holes; comparing the determined distance to a design distance; and
determining a scaling factor for data to be written on the surface by the scanner from said comparison.
4. A method according to claim 3 and further including:
providing at least one additional hole (150') in the surface positioned non-colinearly with the at least two holes (150);
determining the position of the at least one additional hole;
determining a further distance between the at least one additional hole and at least one of the at least two holes;
comparing said further distance with a design further distance; and
determining at least one scaling factor for data to be written on the surface by the scanner from said comparison of the further distance and the design further distance.
5. A method according to claim 4 wherein determining the position of a hole comprises determining the positions of points on the edge of the hole and computing the position of the center of the hole based on the determined positions of the edge positions.
6. A method according to any of claims 1-5 and including:
comparing the positions of the holes to a design position.
7. A method according to claim 4 and including:
correcting one or both of the position of the surface and the positioning of data to be written on the surface based on said comparison.
8. A method according to claim 7 wherein correcting comprises rotating the surface.
9. A method according to claim 7 wherein correcting comprises rotating the data.
10. A method according to any of claims 7-9 wherein correcting comprises translating the relative positions of the surface or the data.
11. A method according to any of claims 7-10 and including:
correcting the size of data to be written on the surface based on said comparison.
12. A method according to any of claims $1-11$ wherein detecting comprises detection utilizing a same detector (153) for a plurality of holes, wherein the de-
tector receives energy passing through the holes via a light-guide (152).
13. A method according to claim 12 wherein light is transmitted to the detector from a plurality of holes, via a same light guide (152).
14. A method according to any of claims $1-10$ wherein detecting comprises detecting utilizing a different detector for different holes.
15. A method according to any of claims $1-13$ wherein the surface is determined from the position of the at least one hole.
16. A method according to claim 15 wherein the at least two holes comprise at least three asymmetrically placed holes and wherein the side of the surface is determined from the relative positions of the holes.
17. A method of writing data in a scanner type writing system, comprising:
providing data for writing on a surface measuring the position of at least two features (150) on a surface;
comparing a distance between the features (150) to a design distance;
scaling the data based on the comparison; and writing the scaled data on the surface.
18. A method according to claim 17 wherein measuring comprises measuring the position of at least three non-collinear features (150, 150') and wherein scaling comprises scaling in two directions with different scale factors.
19. A method according to claim 17 or claim 18 wherein the features are through holes (150, 150').
20. A method according to any of the preceding claims wherein the surface is the surface of a metalized printed circuit board substrate coated with a photoresist material.

Patentansprüche

1. Verfahren zum Bestimmen der Position einer Oberfläche in Bezug auf einen Abtaststrahl in einem Scanner, wobei das Verfahren umfasst:

Versehen der Oberfläche mit mindestens zwei Löchern (150);
Abtasten der Oberfläche zumindest in der Nähe der Löcher mit dem Strahl;
Erfassen (153) des Strahls, wenn er Positionen einnimmt, in denen er durch die Löcher hin-
durchgeht;
Bestimmen von Positionen des Strahls zumindest in den Positionen, wo der Strahl sich an einem Rand des Loches befindet, in einem Scanner-Bezugsrahmen; und
Bestimmen der Positionen der Löcher im Scan-ner-Bezugsrahmen auf der Basis einer Bestimmung der Positionen der Ränder der Löcher.

Korrigieren einer oder beider Positionen der Oberfläche und Positionieren von Daten, die auf die Oberfläche geschrieben werden sollen, auf der Basis des Vergleichs.
8. Verfahren nach Anspruch 7, wobei das Korrigieren das Drehen der Oberfläche umfasst.
9. Verfahren nach Anspruch 7, wobei das Korrigieren das Drehen der Daten umfasst.
10. Verfahren nach einem der Ansprüche 7-9, wobei das Korrigieren das Versetzen der relativen Positionen der Oberfläche oder der Daten umfasst.
11. Verfahren nach einem der Ansprüche 7-10, ferner umfassend:

Korrigieren der Größe der Daten, die auf die Oberfläche geschrieben werden sollen, auf der Basis des Vergleichs.
12. Verfahren nach einem der Ansprüche 1-11, wobei das Erfassen ein Erfassen unter Verwendung des gleichen Detektors (153) für eine Vielzahl von Löchern umfasst, wobei der Detektor Energie, die durch die Löcher hindurch geht, über einen Lichtleiter (152) empfängt.
13. Verfahren nach Anspruch 12, wobei Licht von einer Vielzahl von Löchern über ein und denselben Lichtleiter (152) zum Detektor übertragen wird.
14. Verfahren nach einem der Ansprüche 1-10, wobei das Erfassen ein Erfassen unter Verwendung unterschiedlicher Detektoren für unterschiedliche Löcher umfasst.
15. Verfahren nach einem der Ansprüche 1-13, wobei die Oberfläche aus der Position des mindestens einen Lochs bestimmt wird.
16. Verfahren nach Anspruch 15, wobei die mindestens zwei Löcher mindestens drei asymmetrisch angeordnete Löcher sind und wobei die Seite der Oberfläche aus den relativen Positionen der Löcher bestimmt wird.
17. Verfahren zum Schreiben von Daten in einem Scan-ner-Schreibsystem, umfassend:

Bereitstellen von Daten, die auf eine Oberfläche geschrieben werden sollen;
Messen der Position von mindestens zwei Merkmalen (150) auf einer Oberfläche;
Vergleichen eines Abstands zwischen den Merkmalen (150) mit einem beabsichtigten Abstand;

Skalieren der Daten auf der Basis des Vergleichs; und
Schreiben der skalierten Daten auf die Oberfläche.
19. Verfahren nach Anspruch 17 oder Anspruch 18, wobei die Merkmale Durchgangslöcher (150, 150’) sind.
20. Verfahren nach einem der vorangehenden Ansprüche, wobei die Oberfläche die Oberfläche eines metallbeschichteten Leiterplattensubstrats ist, die mit einem Photoresistmaterial beschichtet ist.

Revendications

1. Procédé de détermination de la position d'une surface par rapportà un faisceau laser dans un dispositif à balayage, le procédé comprenant les étapes consistant à :

- réaliser au moins deux trous (150) dans la surface ;
- balayer la surface, au moins au voisinage des trous, avec le faisceau ;
- détecter (153) le faisceau lorsqu'il se trouve à des positions auxquelles il traverse les trous ;
- déterminer des positions, dans un cadre de référence de dispositif à balayage, du faisceau, au moins aux positions dans lesquelles le faisceau se trouve à un bord du trou ; et
- déterminer les positions des trous, dans le cadre de référence de dispositif à balayage, sur la base d'une détermination des positions des bords des trous.

2. Procédé selon la revendication 1 , dans lequel la position des bords des trous (150) est déterminée sur toute la circonférence des trous.
3. Procédé selon la revendication 1 ou la revendication 2 et comprenant les étapes consistant à :

- déterminer une distance entre les deux trous ;
- comparer la distance déterminée à une distance de référence ; et
- déterminer un facteur d'échelle pour des données devant être écrites sur la surface par le dispositif à balayage à partir de ladite comparaison.

4. Procédé selon la revendication 3 et comprenant en outre les étapes consistant à :

- réaliser au moins un trou supplémentaire (150') dans la surface, positionné de façon non colinéaire avec les au moins deux trous (150) ;
- déterminer la position du ou des trous supplémentaires ;
- déterminer une autre distance entre le ou les trous supplémentaires et au moins l'un des au moins deux trous ;
- comparer ladite autre distance avec une autre distance de référence ; et
- déterminer au moins un facteur d'échelle pour des données devant être écrites sur la surface par le dispositifà balayage à partir de ladite comparaison de l'autre distance et de l'autre distance de référence.

5. Procédé selon la revendication 4 , dans lequel la détermination de la position d'un trou comprend la détermination des positions de points sur le bord du trou et le calcul de la position du centre du trou sur la base des positions déterminées des positions du bord.
6. Procédé selon l'une quelconques des revendications 1 à 5 et comprenant l'étape consistant à :

- comparer les positions des trous à une position de référence.

7. Procédé selon la revendication 4 et comprenant l'étape consistant à :

- corriger l'un ou les deux parmi la position de la surface et le positionnement de données devant être écrites sur la surface sur la base de ladite comparaison.

8. Procédé selon la revendication 7 , dans lequel la correction comprend la rotation de la surface.
9. Procédé selon la revendication 7 , dans lequel la correction comprend la rotation des données.
10. Procédé selon l'une quelconque des revendications 7 à 9, dans lequel la correction comprend la translation des positions relatives de la surface ou des données.
11. Procédé selon l'une quelconque des revendications 7 à 10 et comprenant l'étape consistant à :

- corriger la taille des données devant être écrites sur la surface sur la base de ladite comparaison.

12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel la détection comprend la détection à l'aide d'un même détecteur (153) pour une pluralité de trous, le détecteur recevant de l'énergie traversant les trous par l'intermédiaire d'un guide de lumière (152).
13. Procédé selon la revendication 12, dans lequel la lumière est transmise au détecteur à partir d'une pluralité de trous, par l'intermédiaire d'un même guide lumière (152).
14. Procédé selon l'une quelconque des revendications 1 à 10 , dans lequel la détection comprend la détection à l'aide d'un détecteur différent pour différents trous.
15. Procédé selon l'une quelconque des revendications 1 à 13 , dans lequel la surface est déterminée à partir de la position du ou des trous.
16. Procédé selon la revendication 15 , dans lequel les au moins deux trous comprennent au moins trois trous placés de manière asymétrique et dans lequel le côté de la surface est déterminé à partir des positions relatives des trous.
17. Procédé d'écriture de données dans un système d'écrite de type dispositif à balayage, comprenant les étapes consistant à:

- mettre à disposition des données destinées à être écrites sur une surface ;
- mesurer la position d'au moins deux caractéristiques (150) sur une surface ;
- comparer une distance entre les caractéristiques (150) à une distance de référence ;
- mettre à l'échelle les données sur la base de la comparaison; et
- écrire les données mises à l'échelle sur la surface.

18. Procédé selon la revendication 17, dans lequel la mesure comprenant la mesure de la position d'au moins trois caractéristiques non colinéaires (150, 150^{\prime}) et dans lequel la mise à l'échelle comprend la mise à l'échelle dans deux directions avec différents facteurs d'échelle.
19. Procédé selon la revendication 17 ou la revendication 18, dans lequel les caractéristiques sont des trous traversants (150, 150').
20. Procédé selon l'une quelconque des revendications précédentes, dans lequel la surface est la surface d'un substrat de carte de circuits imprimés métallisé, revêtu d'un matériau de photorésist.

FIG. 2

[^0]1/2|3/4/5/6 [7x

FIG.4C

FIG. 5

FIG.6B

FIG.7B

FIG.8B

BEAM $N-6$
BEAM $N-1$
BEAM N
BEAM $N+1$
BEAM $N-6$
BEAM $N-1$
BEAM N
BEAM $N+1$
INFORMATION
FIG. 11

BEAM $N+23$
BEAM $N+24$
BEAM N+29 BEAM N+30 - BEAM
IN LOADING

FIG. 12

FIG. 13

FIG.17B

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5635976 A [0006]
- US 5495279 A [0007]
- US 5342715 A [0011]
- US 4451854 A [0012]
- US 4205348 A [0066]

Non-patent literature cited in the description

- Akis P. Goutzoulis ; Dennis R. Papa. Design and Fabrication of Acousto-optic Devices. Marcel Dekker, Inc, 1994, 94 [0034]

[^0]: | 15 | 16 | 17 | 18 | 19 | 20 |
 | :--- | :--- | :--- | :--- | :--- | :--- | 112720624

 FIG.4B

