(19)
(11) EP 1 056 903 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
25.11.2009 Bulletin 2009/48

(21) Application number: 99906650.9

(22) Date of filing: 09.02.1999
(51) International Patent Classification (IPC): 
D21C 7/06(2006.01)
(86) International application number:
PCT/SE1999/000162
(87) International publication number:
WO 1999/042653 (26.08.1999 Gazette 1999/34)

(54)

FEEDING SYSTEM IN CONNECTION WITH THE CONTINUOUS COOKING OF CELLULOSE CONTAINING MATERIAL

ZUFÜHRVORRICHTUNG BEI DER KONTINUIERLICHEN KOCHUNG VON CELLULOSEHALTIGEM MATERIAL

SYSTEME D'ALIMENTATION EN RELATION AVEC LA CUISSON EN CONTINU DE MATERIAU CONTENANT DE LA CELLULOSE


(84) Designated Contracting States:
AT DE ES FI FR PT SE

(30) Priority: 18.02.1998 SE 9800476

(43) Date of publication of application:
06.12.2000 Bulletin 2000/49

(73) Proprietor: Metso Fiber Karlstad AB
651 15 Karlstad (SE)

(72) Inventors:
  • SNEKKENES, Vidar
    S-652 19 Karlstad (SE)
  • SVANEGARD, Bo
    S-654 72 Karlstad (SE)
  • GUSTAVSSON, Lennart
    S-653 59 Karlstad (SE)
  • NYSTRÖM, Per
    S-654 63 Karlstad (SE)


(56) References cited: : 
WO-A1-94/21855
SE-C- 174 094
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a feeding system for feeding comminuted cellulose containing material and liquid to a continuously operating treatment vessel, preferably a preimpregnation vessel or a digester which may be of steam/liquor phase type or of a hydraulically filled type. The feeding system comprises a chute, operating at a first pressure level, with a liquid level and a level of material, a high pressure feeder which, by means of rotating pockets, sluices the material, together with all or a part of said liquid, to a second pressure level, which is higher than said first pressure level, for further conveyance to said treatment vessel, which high pressure feeder also receives a return liquid flow, from said treatment vessel, at said second pressure level and recirculates a recirculation flow to said chute or to said high pressure feeder.

    BACKGROUND AND PROBLEMS



    [0002] Continuously operating digesters for cooking comminuted cellulose containing material to paper pulp have been known for a long-time and hence also feeding systems for such digesters. The requirements on the feeding system are, among other things, that the cellulose material, hereinafter called chips, should be evenly fed from a low (atmospheric) pressure to a higher pressure, that the chips should be heated at the same time as vapour and gases are evacuated from it, to be replaced with water or condensate, and that the feeding system should be as cheap as possible in terms of investment costs and operating costs.

    [0003] A conventional feeding system comprises a chip bin, a chip meter, a low-pressure feeder, a steaming vessel, a chip chute and a high-pressure feeder. The function of the high-pressure feeder is to sluice the cellulose material, including some liquid, to a continuous digester or to a preimpregnation vessel, which operates at a relatively high pressure. Between the high pressure feeder and the impregnation vessel or digester, there is conventionally a top circulation, which comprises a feed line for a mixture of chips and impregnation liquid, and a return liquid line for separated impregnation liquid.

    [0004] A top separator is arranged in the top of the impregnation vessel or the digester for feeding of the chips into the impregnation vessel or digester at the same time as a part of the impregnation liquid is separated off and is pumped with a pump through the return liquid line, back to the high pressure feeder. The high pressure feeder is equipped with a rotor with pockets, whereby one pocket always is in low pressure position, to be in open connection with the chute and one pocket always, at the same time, is in high pressure position, to be in open connection with the impregnation vessel or digester via the feed line. When a rotor pocket which is, to a degree, filled with chips, arrives in high pressure position, that is in direct connection with the top circulation, it is flushed clean by the liquid from the return liquid line, and the suspension of chips and impregnation liquid is fed into the top of the impregnation vessel or digester via the feed line. Liquid, in a circulation loop on the low pressure side of the high pressure feeder, which loop is conventionally equipped with a pump, is at the same time feeding chips from the chute into one of the pockets of the high pressure feeder so that this pocket is, to a degree, filled with chips. The circulation loop is also, as will be further described in connection with the figure description below, equipped with a sand trap and a tubular screen, referred to as an in-line drainer. Further, a level tank is, via a line from the in-line drainer, connected to the return liquid line of the top circulation.

    [0005] This conventional system was formed a long time ago, when the production volume of a continuous pulp mill was perhaps just a tenth of the volume that a modern pulp mill produces today. Accordingly, when the conventional feeding system was developed, the machines that were used were much smaller. This, for instance, meant that the pump in said circulation loop, for recirculating liquid to the chute on the low pressure side of the high pressure feeder, was rather small and hence needed to be protected from chips that might enter the circulation loop together with the liquid which is fed out from the high pressure feeder. To achieve this protection, the high-pressure feeder was equipped with a screen device, a so-called strainer plate, in its outlet to the circulation loop. The intention was that liquid should pass the screen and that the chips should remain in the pocket of the high-pressure feeder to give a high filling degree of the pocket. In reality, however, the screen is partially plugged every time a pocket is filled with chips, which leads to that the filling degree in a pocket only reaches about 50-70 vol.-% (counted on chips). The rest of the space is filled with liquid. This should be compared with the filling degree in the chute, which theoretically should be able to be reached in the high pressure feeder as well and which normally is about 80-85 vol.-%. When the rotor turns, the strainer plate is again scraped free from plugging chips, but the problem re-occurs when the next pocket comes in the same position. The partial filling degree results in an uneconomic operation and in that the high pressure feeder must be operated at a relatively high rotary speed, which in its turn leads to premature wearing of the equipment.

    [0006] In addition, the building volume needs to be relatively large in order to accommodate the high pressure feeder which must be placed at a relatively high level due to the necessary suction pipe for the pump on the low pressure liquid side of the high pressure feeder. Also the building volume needs to be large enough to accommodate said sand trap, in-line drainer and level tank and this equipment also leads to investment and operating costs.

    SOLUTION AND ADVANTAGES



    [0007] It has now surprisingly been found that a well functioning feeding system can be provided, which feeding system operates substantially without a screening device in the outlet of the high pressure feeder to the circulation loop and also without an in-line drainer and a level tank. The system according to the invention further enables the pockets of the high pressure feeder to be filled to a theoretical maximum degree, that is to the same degree as the filling degree in the chute.

    [0008] The invention is defined in the independent claim 1.

    [0009] Basically, the background of the discovery that has led to the invention is that the machines in modern pulp mills with high production are much larger than they were at the time when the conventional feeding system was developed. Especially, the pump in the circulation loop, for recirculating liquid to the chute on the low pressure side of the high pressure feeder, is much larger today and is hence capable of handling a certain amount of chips in the liquid flow to be pumped, since the size of the chips is not much different from what it always has been. Thus, the screening device that conventionally stopped chips from entering this circulation, can be excluded, which leads to several important advantages.

    [0010] Firstly, when a pocket of the high pressure feeder moves towards the low pressure position it is full with liquid from the return liquid flow from the digester or preimpregnation vessel, hereinafter called the treatment vessel. When the pocket reaches the low-pressure position, the liquid is displaced from above with the mixture of chips and liquid that is present in the chute, whereby the same filling degree as in the chute can be achieved. The filling degree in the chute is normally about 80-85 vol.-% since some excess liquid is demanded for the chip column to be able to move down into the high-pressure feeder.

    [0011] Secondly, the building height of the high-pressure feeder can be lowered. This is a consequence of the fact that essentially no suction pipe is needed for the pump in the recirculation flow of the circulation loop, since there is no pressure drop across a screening device. Also, the conventional level tank and its in-line drainer can be excluded from the system, which results in decreased investment and operating costs as well as in a smaller building volume. The reason for the possibility to exclude the level tank and the in-line drainer is that in the system according to the invention, there is always liquid communication between the pumps on the liquid side of the high pressure feeder, and the chute. This means that a chute liquid level control valve can be placed in connection with one of these pumps, for regulation of the liquid level in the chute. In the conventional system, there is no such liquid communication when the screening device is plugged and hence, the chute liquid level control valve have to be placed in connection with a level tank, normally between the in-line drainer and the level tank.

    [0012] Yet another advantage is that the rotary speed of the pockets in the high-pressure feeder can be increased to a speed which is at least up to twice as high as in a conventional feeding system. Thereby, there is a major increase in the capacity of the high-pressure feeder, enabling installation of a smaller size of high-pressure feeder and thus decrease of costs.

    [0013] An additional advantage of the system according to the invention is that the pump, hereinafter called the first pump, in the recirculation flow can be coupled in series with a second pump, that pumps liquid from the low pressure recirculation flow to the high pressure return liquid flow from the treatment vessel. This means that the pump head of the first pump can be added to the pump head of the second pump, whereby the second pump may be one standard pump instead of, as in the conventional system, two standard pumps or one high-pressure pump with several impellers. This results in a major decrease in investment and operating costs. Accordingly by means of the invention all prior restrictions, e.g. feeder screen, inline drainer, installed on the suction side of the second pump can be eliminated, resulting in lower costs and improved availability.

    [0014] According to one aspect of the invention, said recirculation flow, that is the volumetric flow that exits the high-pressure feeder on its low-pressure side is related by a factor 0.8-1.5 to the volumetric chip flow which is handled by the high pressure feeder. The maximum theoretical volumetric flow can be calculated as the volume of the pockets in the high pressure feeder multiplied with the rotary speed of the high pressure feeder and by a factor two (since the pockets are filled twice in each complete rotation). Another way of calculating the volumetric flow is by dividing the incoming chip flow (as measured in a chip meter) by a factor 0.5-0.9.

    [0015] According to another aspect of the invention, a sand trap is installed in said return liquid flow. This location has the benefit, as compared to the conventional location in the circulation loop, that the flow is steady, without any essential fluctuations in its velocity. The sand trap consists of a cyclone that has to be optimised for a certain flow velocity and will thus operate better in the relatively steady return liquid flow from the treatment vessel. As an alternative, the sand trap may be installed in the chute. A further advantage is that the sand is not circulated in said recirculation flow on the low-pressure side of the high-pressure feeder, whereby its wearing effect on the equipment is avoided. These alternative placements of the sand trap can of course also be made in other types of feeding systems, that is not necessarily related to the present invention.

    BRIEF FIGURE DESCRIPTION



    [0016] The invention will in the following be further described with reference to the drawings, of which:
    Figure 1
    represents a feeding system according to a conventional system.
    Figure 2
    represents a feeding system according to a preferred embodiment of the invention.
    Figure 3
    represents a feeding system according to an alternative embodiment of the invention.
    Figure 4
    shows a tramp material catcher.
    Figure 5
    shows the tramp material catcher in figure 4 in the section view A-A.
    Figure 6
    shows a typical high-pressure feeder with its pockets.

    DETAILED FIGURE DESCRIPTION



    [0017] Figure 1 represents a feeding system according to a conventional system. Detail 1 in figure 1 denotes a low pressure feeder, which sluices chips, that has been steamed in a previous step (not shown), from atmospheric pressure into a slight overpressure in a chip chute 2. The low pressure feeder 1 may be excluded from the system or may be located at an earlier position in the system. In the chute, there are levels of liquid and chips. The chips fall by gravity down into a high pressure feeder 3 through a first opening 3a in its housing. The high pressure feeder comprises rotating pockets, whereby a first pocket, via the first opening 3a, is in open connection with the chute and, via a second opening 3b, which is equipped with a strainer plate, in the housing is connected to a recirculation flow 4 at the same time as a second pocket, via a third opening 3c in the housing, is in open connection with a return liquid flow 5, which comprises liquid that has been separated from the chips in a top separator in the treatment vessel, and, via a fourth opening 3d in the housing is in open connection with a sluicing flow 6 for feeding chips and impregnation liquid to the treatment vessel. Due to the strainer plate in the second opening 3b, chips are to a degree prevented from entering the recirculation flow 4. The pocket which is in open connection with the return liquid flow 5 is filled with liquid at a relatively high pressure at the same time as a mixture of chips and liquid, which was present in the pocket, is displaced into the sluicing flow 6. When this pocket moves into the position of the first opening 3a, the liquid in the pocket is again displaced by a mixture of chips and liquid from the chute 2. The filling degree does however not reach optimum since the strainer plate becomes partially plugged by chips. The liquid which has been displaced enters the recirculation flow 4 and is pumped, by a first pump 7, to a sand trap 8, where sand and other particles are removed from the liquid flow. Thereafter, the liquid recirculation flow 4 continues through an in-line drainer 9 and back to the chute 2. A branch flow 10 is extracted through a screen in the in-line drainer 9, to prevent any chips that might be present in the flow 4 from entering the branch flow 10, and is introduced in a level tank 11, in which a certain liquid level is maintained at all times. Liquid is pumped, by a second pump 12 which may consist of two or more standard pumps or one high pressure pump, in a conduit 13 from the level tank 11 to the return liquid flow 5 from the treatment vessel, in order to constitute a part of the liquid that displaces the chips in the high pressure feeder. The liquid in the level tank 11 has mainly three sources, that is the liquid which is displaced by chips in the high pressure feeder 3, condensate and water from the chute 2 and leakage from the high pressure side to the low pressure side of the high pressure feeder 3. To the second pump 12 there may also be added cooking chemicals, especially white liquor. The flow of high-pressure return liquid 5 is maintained by a third fluid pump 16.

    [0018] It is important to maintain a certain liquid level in the chute. If it becomes to high, liquid will get into the low pressure feeder 1 and the steaming vessel with resulting problems. If the level, on the other hand is to low, steam will enter the high pressure feeder 3. When steam is allowed to enter the high-pressure side of the high pressure feeder 3, it collapses which results in bangs and massive vibrations in the feed line 6 to the treatment vessel This may result in severe damages in this line. In the conventional system according to figure 1, the liquid level in the chute 2 is controlled by a chute liquid level control valve 14 which is arranged in the branch flow 10 between the in-line drainer 9 and the level tank 11. If the liquid level in the chute 2 becomes to low, the valve 14 will throttle down, and vice versa. The liquid level in the level tank is in its turn controlled by a valve 15 in the conduit 13 between the level tank 11 and the return liquid flow 5. The recirculation flow 4 is in reality controlled by the existence of a screening device in the high pressure feeder 3. When the screening device becomes plugged, the first pump 7 does not get any fluid to pump and thus the flow is interrupted.

    [0019] Figure 2 represents a feeding system according to a preferred embodiment of the invention. The equipment that is the same as in figure 1 has been denoted with the same reference numbers. The high pressure feeder 3 is, according to the invention, in open connection, with respect to both liquid and chips, with the recirculation flow 4', when any of the pockets of the high pressure feeder is in a location which corresponds to an outlet for said recirculation flow 4', that is at the second opening 3b' in the housing. This means that the second opening 3b' lacks any form of screening device which would be able to, at any extent, prevent the chips from entering the recirculation flow 4'. Since there, due to the lack of a screening device, always is liquid communication between the suction side of the first pump 7 and the chute 2, the liquid level in the chute can be controlled by a chute liquid level control valve 14' in connection with the second pump 12', or by controlling the rotary speed of the second pump 12', whereby no level tank is needed. The in-line drainer is not needed either, since its only function was to prevent chips from entering the level tank where it would accumulate. This means that the recirculation flow 4' can be led directly back to the chute 2. This flow is regulated, by a valve 17 or by controlling the rotary speed of the first pump 7', against the flow of chips that is entering the feeding system, which chip flow is measured by a measuring device, for example a so called chip meter screw 18. Such a regulation of the recirculation flow 4' and thus the first pump 7 is probably needed according to the invention, since the first pump 7 is not controlled by any screening device in the high pressure feeder 3. If the recirculation flow 4' is not controlled at all, it will probably lead to that an excess amount of chips will enter the recirculation flow 4'.

    [0020] A tramp material catcher 20 is arranged close to the inlet of the first pump 7. The design of the tramp material catcher 20 is shown in detail in figures 4 and 5. The pump 7 is capable of maintaining a pumping action even if large amount of chips will enter the recirculation flow 4'. However, tramp material in form of bolts, nuts, tools and large stones needs to be separated in order not to destroy the pump 7. The tramp material catcher 20 is therefore designed with a pocket 24 in the lower part of the pump inlet. In order to improve separation of tramp material is the central part of the pump wheel 22 extended, forming a boss 23 member. The boss member should preferably extend to such an extent that it could create a swirling motion in the flow 4' above the tramp material pocket 24. Tramp material is thus separated by centrifugal forces in the flow 4. The pocket 24 could be retrieved via an inspection cover 21, enabling manual extraction of tramp material collected in said pocket. Black liquor, BL, could also be used in order to flush the pocket clean of any chips. The black liquor supply is controlled via valve HS. The valve HS is preferably opened automatically upon start of the system. The addition of black liquor will improve establishment of a stable flow in the system. Once the flow is established after a start-up, then the valve HS is closed. The valve HS could also be opened automatically if the rotating pockets of the high-pressure feeder are stuck. If such a malfunction occurs would the low pressure feeder 1 be shut off, and if black liquor were introduced in front of the pump 7 would the chip chute 2 and recirculation flow 4 eventually be drained from chips. This would avoid further pumps and valves from become stuck. The gradual decrease of chip content in the chip chute 2 and the recirculation flow 4, would also increase the likelihood for the high pressure feeder to assume its proper function.

    [0021] A branch flow 13' is, via the pump 12' led directly from the recirculation flow 4 to the return liquid flow 5 and is controlled, according to the above mentioned, by the chute liquid level control valve 14' or by controlling the rotary speed of the second pump 12'. By this arrangement, the first pump 7 and the second pump 12' are coupled in series, whereby one standard pump is sufficient as the second pump 12'.

    [0022] Figure 3 represents a feeding system according to an alternative embodiment of the invention. In this case, the recirculation flow 4" (in this embodiment called a first recirculation flow) is led to the return liquid flow 5 from the treatment vessel and thereby to the high-pressure liquid inlet side of the high pressure feeder 3. By this arrangement, one pump can be saved, as compared to the embodiment of figure 1, but instead the first pump 7" needs to be a high-pressure pump, which of course is not preferred. A second recirculation flow 19 is led from the return liquid flow 5 to the chute 2 for adjustment of the liquid/wood ratio in the chute, and is controlled by the flow control valve 17" against the flow of chips that is entering the feeding system. The first recirculation flow 4" is regulated, by a chute liquid level control valve 14" or by controlling the rotary speed of the first pump 7", against the liquid level in the chute 2. A similar tramp material catcher 20 is located in the inlet of the pump 7".

    [0023] By removing the restrictions on the suction side of the first pump 7 a circulation in a closed vessel is achieved, i.e. the first pump can no longer build up an excess pressure in the chute or steaming vessel. Accordingly the safety pressure switches can be set at comfortable levels, e.g. at pressures above 3 bars, preferably above 5 bars, which allows for stable operation minimising costly unwanted interruptions of the production.

    [0024] In figure 6 is a typical valve member 30 for a high-pressure feeder shown. The rotating valve member 30 includes at least one, most often four, diametrically through going pockets 31, 32. When the pocket 31 is exposed to the inlet 42a in the stationary housing 40, then this pocket is filled with chips from the chute 2. During the subsequent rotation of the valve member 30 is the pocket 31 closed, and the pocket 32 exposed to the inlet 42b When each pocket have rotated some 90° from the filling position, then the pocket is flushed with liquor and the chips leaves each pocket in the high pressure feeder via outlets 41a and 41 b respectively. In the prior art designs have always a strainer plated 50 been used in the outlet 3b' from each pocket, preventing chips from passing through the high-pressure feeder. The function of a high-pressure feeder is explained in more detail for example in US 5,236,285, US 5,236,286 or US 4,372,711.

    [0025] The invention is not restricted by the description of the above-mentioned embodiments, but can be varied within the scope of the claims. The skilled man will thus, for example, realise that various equipment may be included in the recirculation flow although it is preferred that a minimum of equipment and especially no level tank is present.

    [0026] Furthermore it is evident for the skilled man that the flow from the second pump may discharge into many other positions than shown above, e.g. directly into an impregnation vessel, directly into a digester, the pressure side (5) of the top circulation pump (third fluid pump 16) and also on the high pressure side (6) of the HP-feeder. It is also evident that speed control of the pumps may be used instead of conventional drive and a throttling valve.

    [0027] In order to keep an open connection between the high-pressure feeder and the recirculation flow, with respect to both liquid and comminuted cellulose containing material, the relevant opening in the high-pressure feeder should be designed to prevent chips from stacking up. Preferably, there are no obstructions at all in the opening, but the skilled man will realise that a screening device with slots wider than for instance 25-30 mm will be included in the scope of the invention, since such a screening device will allow the chips to pass through the opening.

    [0028] Also, it is conceivable that the relevant opening in the high pressure feeder can be equipped with a screening device with slots narrow enough to make the chips stack up, if the screening device is movable and withdrawn from the opening for a major part of the time. If necessary, that is if the operating conditions otherwise result in an excess of chips entering the recirculation flow, such a screening device could be introduced in the opening just before a pocket is filled up with chips and be withdrawn immediately afterwards, when the pocket proceeds to its high pressure position.

    [0029] The skilled man will also realise that instead of controlling certain flows by regulating them against the flow of chips that is entering the feeding system, as described above, the flows can be regulated against the rotary speed of the pockets in the high pressure feeder. The device that measures the flow of chips that enters the feeding system may also control the number of revolutions of the pump in the flow to be controlled, instead of controlling a valve in the flow.


    Claims

    1. Feeding system for feeding comminuted cellulose containing material and liquid to a continuously operating treatment vessel, which feeding system comprises a chute (2), operating at a first pressure level, with a liquid level and a level of material, a high pressure feeder (3) which, by means of rotating pockets, sluices (6) the material, together with all or a part of said liquid, to a second pressure level, which is higher than said first pressure level, for further conveyance to said treatment vessel, which high pressure feeder (3) also receives a return liquid flow (5), from said treatment vessel, at said second pressure level and recirculates a recirculation flow (4', 4") to said chute (2) or to said high pressure feeder (3),
    characterized in that said high pressure feeder (3) is in open connection, with respect to both said liquid and said comminuted cellulose containing material, with said recirculation flow (4', 4"), when any of the pockets of the high pressure feeder (3) is in a location which corresponds to an outlet (3b') for said recirculation flow (4', 4").
     
    2. Feeding system according to claim 1, characterized in that said high pressure feeder (3) lacks any form of screening device which would be able to, at any extent, prevent said comminuted cellulose containing material from entering said recirculation flow (4', 4").
     
    3. Feeding system according to claim 1, characterized in that when an inlet of a single pocket of the high pressure feeder is in a filling position with the chute (2), then the outlet of the pocket being in the filling position is connected to the recirculation flow (4', 4") substantially without any screening devices, i.e. without strainer plate, in the outlet from said high pressure feeder.
     
    4. Feeding system according to claim 2 or 3, characterized in that said feeding system lacks any form of level tank (11).
     
    5. Feeding system according to claim 2, 3 or 4, characterized in that there is effected a regulation of the flow in said recirculation flow (4', 4").
     
    6. Feeding system according to any of the preceding claims, characterized in that said recirculation flow (4', 4"), that exits the high pressure feeder, is related by a factor 0.8-1.5 to a volumetric chip flow which is handled by the high pressure feeder.
     
    7. Feeding system according to claim 5, characterized i n that the recirculation flow (4') is entering the chute (2), and is regulated against a flow of comminuted cellulose containing material which is entering (18) the feeding system or against the rotary speed of the pockets in said high pressure feeder (3).
     
    8. Feeding system according to claim 5, characterized in that a first pump (7) is arranged after the outlet (3b') for the recirculation flow (4', 4") from the high pressure feeder (3) and wherein a tramp material catcher (20) is arranged close to the inlet of said first pump (7).
     
    9. Feeding system according to claim 8, characterized in that the boss (23) of the pump wheel (22) in the first pump (7) is extended such that the boss creates a rotating and separating action in the chip flow above a tramp material pocket (24) in the catcher (20).
     
    10. Feeding system according to claim 8, characterized in that the tramp material catcher is designed with an inspection cover (21) enabling access to the tramp material pocket (24).
     
    11. Feeding system according to any of the preceding claims, characterized in that a branch flow (13') is conveyed from said recirculation flow (4') to said return liquid flow (5), whereby a first pump (7), in said recirculation flow (4'), is coupled in series with a second pump (12'), in said branch flow (13') and in that the flow in said branch flow (13') is regulated against the liquid level in said chute (2).
     
    12. Feeding system according to any of claims 1-6, characterized i n that the feeding system further comprises a second recirculation flow (19), which flow is conveyed from said return liquid flow (5) to said chute (2), which second recirculation flow (19) is regulated against a flow of comminuted cellulose containing material which is entering (18) the feeding system or against the rotary speed of the pockets in said high pressure feeder (3), and that the previously mentioned recirculation flow (4"), hereafter called the first recirculation flow, is entering the high pressure feeder (3) and is regulated against said liquid level in said chute (2).
     
    13. Feeding system according to any of the preceding claims, characterized in that said pockets of the high pressure feeder (3), when having been filled with liquid and comminuted cellulose containing material from the chute (2), contain a mixture with essentially the same relation between liquid and comminuted cellulose containing material as the mixture which is present in the chute (2).
     
    14. Feeding system according to any of the preceding claims, characterized in that a sand trap is installed in said return liquid flow (5) or in said chute (2).
     


    Ansprüche

    1. Zuführvorrichtung zur Zuführung von zerkleinertem cellulosehaltigem Material und Flüssigkeit in einen kontinuierlich arbeitenden Behandlungsbehälter, dabei umfasst diese Zuführvorrichtung eine auf einer ersten Druckstufe arbeitende Rinne (2) mit einem Flüssigkeitsfüllstand und einem Materialfüllstand, eine Hochdruckzuführung (3), die über umlaufende Zellen das Material zusammen mit der gesamten oder einem Teil der Flüssigkeit zu einer zweiten Druckstufe schleust (6), die höher ist als die erste Druckstufe, zur anschließenden Weiterleitung in den Behandlungsbehälter, wobei diese Hochdruckzuführung (3) ferner einen Flüssigkeitsrücklauf (5) zweiter Druckstufe aus dem Behandlungsbehälter aufnimmt und einen Rückführungsstrom (4', 4") an die Rinne (2) oder an die Hochdruckzuführung (3) zurückführt,
    dadurch gekennzeichnet, dass diese Hochdruckzuführung (3) sowohl in Bezug auf die Flüssigkeit als auch in Bezug auf das zerkleinerte cellulosehaltige Material mit diesem Rückführungsstrom (4', 4") offen verbunden ist, wenn eine der Zellen der Hochdruckzuführung (3) so angeordnet ist, dass sich ein Auslauf (3b') für diesen Rückführungsstrom (4', 4") ergibt.
     
    2. Zuführvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass diese Hochdruckzuführung (3) keinerlei Form von Siebvorrichtung enthält, die das zerkleinerte cellulosehaltige Material in irgendeinem Maße am Eintritt in den Rückführungsstrom (4', 4") hindern könnte.
     
    3. Zuführvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass, wenn ein Einlauf einer einzelnen Zelle der Hochdruckzuführung sich in einer Füllposition zur Rinne (2) befindet, der Auslauf der in Füllposition befindlichen Zelle mit dem Rückführungsstrom (4', 4") verbunden ist, wobei sich im Auslauf dieser Hochdruckzuführung im Wesentlichen keine Siebvorrichtungen, d. h. keine Siebplatte, befindet.
     
    4. Zuführvorrichtung nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass die Zuführvorrichtung keinerlei Form von Füllstandsbehälter (11) umfasst.
     
    5. Zuführvorrichtung nach Anspruch 2, 3 oder 4,
    dadurch gekennzeichnet, dass im Rückführungsstrom (4', 4") eine Regelung der Durchflussmenge erfolgt.
     
    6. Zuführvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der aus der Hochdruckzuführung austretende Rückführungsstrom (4', 4") über einen Verhältnisfaktor von 0,8 bis 1,5 mit einer von der Hochdruckzuführung beförderten volumetrischen Hackschnitzelmenge in Beziehung gesetzt wird.
     
    7. Zuführvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Rückführungsstrom (4') in die Rinne (2) einläuft und in Bezug auf eine in die Zuführvorrichtung einlaufende (18) Menge zerkleinerten cellulosehaltigen Materials oder in Bezug auf die Drehgeschwindigkeit der in der Hochdruckzuführung (3) befindlichen Zellen geregelt wird.
     
    8. Zuführvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass nach dem Auslauf (3b') eine erste Pumpe (7) für den aus der Hochdruckzuführung (3) austretenden Rückführungsstrom (4', 4") angeordnet ist, wobei ein Störstofffänger (20) in der Nähe des Einlaufes dieser ersten Pumpe (7) angeordnet ist.
     
    9. Zuführvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Nabe (23) des Pumpenrades (22) in der ersten Pumpe (7) erweitert ist, so dass die Nabe oberhalb einer im Fänger (20) befindlichen Störstofftasche (24) eine Drehbewegung und Abscheidehandlung bewirkt.
     
    10. Zuführvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Störstofffänger mit einem Inspektionsdeckel (21) angelegt ist, der den Zugang zur Störstofftasche (24) ermöglicht.
     
    11. Zuführvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein abgezweigter Teilstrom (13') vom Rückführungsstrom (4') zum Flüssigkeitsrücklauf (5) geführt wird, wobei eine im Rückführungsstrom (4') befindliche erste Pumpe (7) mit einer im Teilstrom (13') befindlichen zweiten Pumpe (12') in Reihe geschaltet ist, und dass die Durchflussmenge in diesem Teilstrom (13') in Bezug auf den Flüssigkeitsstand in der Rinne (2) geregelt wird.
     
    12. Zuführvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zuführvorrichtung ferner einen zweiten Rückführungsstrom (19) beinhaltet, der vom Flüssigkeitsrücklauf (5) zur Rinne (2) geführt wird, wobei dieser zweite Rückführungsstrom (19) in Bezug auf die in die Zuführvorrichtung einlaufende (18) Menge zerkleinerten cellulosehaltigen Materials oder in Bezug auf die Drehgeschwindigkeit der in der Hochdruckzuführung (3) befindlichen Zellen geregelt wird, und dass der zuvor genannte Rückführungsstrom (4"), der nachfolgend als erster Rückführungsstrom bezeichnet wird, in die Hochdruckzuführung (3) einläuft und in Bezug auf den Flüssigkeitsstand in der Rinne (2) geregelt wird.
     
    13. Zuführvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zellen der Hochdruckzuführung (3), nachdem sie mit Flüssigkeit und zerkleinertem cellulosehaltigem Material aus der Rinne (2) gefüllt wurden, ein Gemisch enthalten, dessen Verhältnis zwischen Flüssigkeit und zerkleinertem cellulosehaltigem Material im Wesentlichen identisch mit dem Flüssigkeitsverhältnis des in der Rinne (2) enthaltenen Gemisches ist.
     
    14. Zuführvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Flüssigkeitsrücklauf (5) oder in der Rinne (2) ein Sandfang installiert ist.
     


    Revendications

    1. Système d'alimentation pour fournir un matériau broyé contenant de la cellulose et un liquide à une cuve de traitement fonctionnant en continu, dans lequel ledit système d'alimentation comprend une goulotte (2), qui fonctionne à un premier niveau de pression, avec un niveau de liquide et un niveau de matériau, un dispositif d'alimentation à haute pression (3) qui, au moyen de poches rotatives, écluse (6) le matériau, de concert avec la totalité ou une partie dudit liquide, à un deuxième niveau de pression qui est supérieur audit premier niveau de pression, pour qu'il soit transporté à nouveau vers ladite cuve de traitement, ledit dispositif d'alimentation à haute pression (3) reçoit également un écoulement de liquide de retour (5), en provenance de ladite cuve de traitement, audit deuxième niveau de pression, et fait recirculer un écoulement de recirculation (4', 4") vers ladite goulotte (2) ou vers ledit dispositif d'alimentation à haute pression (3),
    caractérisé en ce que ledit dispositif d'alimentation à haute pression (3) se trouve en condition de connexion ouverte par rapport à la fois audit liquide et audit matériau broyé contenant de la cellulose, avec ledit écoulement de recirculation (4', 4"), lorsque l'une quelconque des poches du dispositif d'alimentation à haute pression (3) se trouve dans une position qui correspond à une sortie (3b') pour ledit écoulement de recirculation (4', 4").
     
    2. Système d'alimentation selon la revendication 1, caractérisé en ce que ledit dispositif d'alimentation à haute pression (3) est dépourvu de toute forme de dispositif de filtrage qui pourrait être capable, dans n'importe quelle mesure, d'empêcher ledit matériau broyé contenant de la cellulose d'entrer dans ledit écoulement de recirculation (4', 4").
     
    3. Système d'alimentation selon la revendication 1, caractérisé en ce que lorsqu'une entrée d'une poche unique du dispositif d'alimentation à haute pression se trouve dans une position de remplissage avec la goulotte (2), alors la sortie de la poche qui se trouve dans la position de remplissage est connectée à l'écoulement de recirculation (4', 4") sensiblement sans aucun dispositif de filtrage, c'est-à-dire sans crépine, dans la sortie en provenance dudit dispositif d'alimentation à haute pression.
     
    4. Système d'alimentation selon la revendication 2 ou 3, caractérisé en ce que ledit système d'alimentation est dépourvu de toute forme de réservoir à niveau (11).
     
    5. Système d'alimentation selon la revendication 2, 3 ou 4, caractérisé en ce qu'une régulation de l'écoulement est effectuée dans ledit écoulement de recirculation (4', 4").
     
    6. Système d'alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit écoulement de recirculation (4', 4"), qui sort du dispositif d'alimentation à haute pression, est rapporté avec un facteur de 0,8 à 1,5 à un écoulement de copeaux volumétrique qui est géré par le dispositif d'alimentation à haute pression.
     
    7. Système d'alimentation selon la revendication 5, caractérisé en ce que l'écoulement de recirculation (4') entre dans la goulotte (2) et est régulé par rapport à un écoulement d'un matériau broyé contenant de la cellulose qui entre (18) dans le système d'alimentation, ou par rapport à la vitesse de rotation des poches dans ledit dispositif d'alimentation à haute pression (3).
     
    8. Système d'alimentation selon la revendication 5, caractérisé en ce qu'une première pompe (7) est agencée après la sortie (3b') pour l'écoulement de recirculation (4', 4") en provenance du dispositif d'alimentation à haute pression (3), et dans lequel un collecteur de matériau parasite (20) est agencé à proximité de l'entrée de ladite première pompe (7).
     
    9. Système d'alimentation selon la revendication 8, caractérisé en ce que le moyeu (23) de la roue de pompe (22) dans la première pompe (7) s'étend de telle façon que le moyeu crée une action de rotation et de séparation dans l'écoulement de copeaux au-dessus d'une poche de matériau parasite (24) dans le collecteur (20).
     
    10. Système d'alimentation selon la revendication 8, caractérisé en ce que le collecteur de matériau parasite est pourvu d'un couvercle d'inspection (21) qui offre un accès à la poche de matériau parasite (24).
     
    11. Système d'alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un écoulement de ramification (13') est transporté à partir dudit écoulement de recirculation (4') jusqu'audit écoulement de liquide de retour (5), avec comme résultat qu'une première pompe (7) dans ledit écoulement de recirculation (4') est couplée en série avec une deuxième pompe (12') dans ledit écoulement de ramification (13'), et en ce que l'écoulement dans ledit écoulement de ramification (13') est régulé par rapport au niveau de liquide dans ladite goulotte (2).
     
    12. Système d'alimentation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le système d'alimentation comprend en outre un deuxième écoulement de recirculation (19), ledit écoulement étant transporté à partir dudit écoulement de liquide de retour (5) jusqu'à ladite goulotte (2), ledit deuxième écoulement de recirculation (19) étant régulé par rapport à un écoulement de matériau broyé contenant de la cellulose qui entre (18) dans le système d'alimentation, ou par rapport à la vitesse de rotation des poches dans ledit dispositif d'alimentation à haute pression (3), et en ce que l'écoulement de recirculation (4") mentionné précédemment, qui est appelé dans la suite le premier écoulement de recirculation, entre dans le dispositif d'alimentation à haute pression (3) et est régulé par rapport audit niveau de liquide dans ladite goulotte (2).
     
    13. Système d'alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites poches du dispositif d'alimentation à haute pression (3), lorsqu'elles ont été remplies avec le liquide et le matériau broyé contenant de la cellulose en provenance de la goulotte (2), contiennent un mélange qui présente sensiblement la même relation entre le liquide et le matériau broyé contenant de la cellulose que le mélange qui est présent dans la goulotte (2).
     
    14. Système d'alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un piège à sable est installé dans ledit écoulement de liquide de retour (5) ou dans ladite goulotte (2).
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description