(19)
(11) EP 2 010 850 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
25.11.2009 Bulletin 2009/48

(21) Application number: 07721816.2

(22) Date of filing: 18.04.2007
(51) International Patent Classification (IPC): 
F27B 9/34(2006.01)
F27D 1/12(2006.01)
F27D 1/02(2006.01)
F27D 1/04(2006.01)
F27D 9/00(2006.01)
(86) International application number:
PCT/CZ2007/000027
(87) International publication number:
WO 2007/121689 (01.11.2007 Gazette 2007/44)

(54)

FURNACE AGGREGATE

OFENAGGREGAT

AGRÉGAT DE FOUR


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 21.04.2006 CZ 20060257

(43) Date of publication of application:
07.01.2009 Bulletin 2009/02

(73) Proprietor: Herbst, Jirí
143 00 Praha 4-Modrany (CZ)

(72) Inventor:
  • Herbst, Jirí
    143 00 Praha 4-Modrany (CZ)

(74) Representative: Duskova, Hana 
Czech Technical University in Prague Patent Centre Zikova 4
166 36 Praha 6
166 36 Praha 6 (CZ)


(56) References cited: : 
EP-A1- 0 082 361
DE-A1- 2 646 960
DE-A1- 1 925 953
DE-A1- 3 236 187
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technology Field



    [0001] This solution deals with new construction of sidewalls and ceilings of furnace aggregates, such as continuous tunnel-type and periodic chamber-type furnaces and applications for ceramic industry, sphere of construction materials.

    Existing Conditions of Technology



    [0002] In the 19th and 20th centuries, firing of construction elements, such as burnt bricks, brick blocks or roof coverings has undergone rapid development from chamber furnace where the original heating medium was wood, via circular furnaces with heating medium coal to continuous tunnel furnaces with heating media coal, furnace oil or gas. Common feature of these firing aggregates was unalterable construction and material used for building these applications. Sidewalls and ceilings of these firing aggregates were built of ceramic firebricks joint by refractory mortar.

    [0003] Intermediate stage of the development was construction of horizontal, suspended ceiling of these aggregates, which increased capacity of the plants and facilitated implementation of automation for loading and unloading of goods being fired.

    [0004] Another stage of development of the firing aggregates construction in the 50s of the 20th century was implementation of refractory concrete for construction of sidewalls using ceramic fiber plates and mats for additional insulation of these aggregates. This development, i.e. implementation of new materials, resulted in reduced volume of the firing aggregates' sidewalls, accelerated assembly works and overall reduction of costs for building these aggregates.

    [0005] The most progressive solution is the system of monolithic segments, cast directly on site into metal-sheet trapeze modules where the sidewalls and ceiling form a single unit. This solution is represented by the French company CERIC.

    [0006] Even though this solution was an indisputable progress, in particular in reducing costs for construction of furnace aggregates, when this solution was adopted in Europe, America and Africa, more than 20 years of experience with operation revealed certain deficiencies. These include especially the lifetime and subsequent problems with repairs of these plants. Despite clear advantages of refractory cements with high content of clay, concretes tend to dehydrate in the course of time and due to harmful pollutants from firing the ceramic materials and repairs using additional concreting or shotcreting (Torkret method) are rather short-lived. Lifetime of these furnace aggregates is limited by the lifetime of refractory cast linings.

    Principle of the Invention



    [0007] Disadvantages mentioned above are eliminated by a furnace aggregate according to claim 1 consisting of two sidewalls, ceiling formed by modules of ceramic fiber mats, input and output gates, where this furnace aggregate is in direction from the input gate divided into pre-heating, firing and cooling zones. The subject matter of the new solution is that the sidewalls are in their lower parts, to the height of inserted carriage with material to be fired, formed by lines of alternately laid large-format ceramic blocks equipped vertically and horizontally with interlocking joints and with continuous openings in vertical direction. Distance between centers of these openings is L and distance of centers to the closer edge of the large-format ceramic block is U2. Above these lines of blocks is a labyrinth created from minimum one line of sidewall stones with interlocking on both sides or of interlocking plates. Above this labyrinth are again lines of alternately placed blocks with continuous openings.

    [0008] From the outside of the furnace the labyrinth and lines of blocks created above it are covered by lining made of insulating bricks. Such aligned sidewall is covered with ceramic fiber insulation, insulation plates and outer encasement, all this mutually connected and stabilized by fireproof steel anchors.

    [0009] Encasement of large-format ceramic blocks, i.e. the furnace sidewalls, is in the cooling zone of the furnace equipped with horizontal inlet piping with fan and has incoming branch pipes to inner space of continuous openings in line of blocks above the labyrinth and outgoing branch pipes from continuous openings in the last, uppermost line of blocks to the horizontal outlet piping. Sidewalls created as described are at their top edge equipped with fireproof reinforcement and inner side of this reinforcement is equipped with interlocking joints for mounting the ceiling onto the sidewalls. Ceiling is formed by module assemblies made of ceramic fiber mats equipped on sides with interlocking joints, which are placed close next to each other and allow mutual connection.

    [0010] A single module assembly is formed by two modules fitted together by the interlocking joints, which are made of ceramic fiber mats mounted to at least one ceramic anchor. For securing their position the ceramic mats are horizontally traversed by at least one spike, which passes through at least one opening formed in the body of ceramic anchor and through coaxially placed at least one puncture formed in ceramic fiber mat.

    [0011] Anchors are led outside the ceramic fiber mats by means of a head adjusted for mounting the assembly to a welded structure from pressed profiles located above each line of ceramic fiber mats in direction of longitudinal axis of such line. Thus created module assemblies have ends adjusted for settling to the interlocking joints on sidewalls reinforcement of the furnace aggregate.

    [0012] Top surface of module assemblies is in most cases equipped with covering layer of chemically and heat resistant PVC foil, in particular in cases where protection against steam permeability must be ensured, where reducing atmosphere; overpressure in furnace are present, etc. This covering layer also facilitates cleaning of the furnace aggregate ceiling.

    [0013] As an advantage, the continuous openings in pre-heating and firing zones may be filled with bulk or loosened insulation material.

    [0014] Outer encasement of sidewalls is made either by lining from facing front bricks attached to the basic support and insulation part of the sidewall by refractory anchors or by "Jekl" four-sided profiles anchored to the floor and covered by corrugated or trapeze metal sheet.

    [0015] In one possible arrangement the ceiling module assemblies are equipped on their bottom part with a layer of protective coating.

    [0016] In another possible arrangement the ceiling module assemblies are equipped on their bottom part with multilateral mutually interlocking cover plates made of insulation refractory material anchored in the body of module assembly. Cover plates are installed in cases where composition of exhausts formed during the firing process is so aggressive that the exhausts have destructive impact on the ceiling modules, on ceramic fiber mats.

    [0017] Profiles are advantageously formed by a pair of U-profiles oriented with their backs to each other where the space between them accommodates the anchor heads. Such heads and U-profiles have coaxial openings perpendicular to the longitudinal axis of module assemblies, through which is led a ceramic stick to secure them in position. Conveniently, the profiles of one module assembly are mutually connected by supporting beams for mechanical handling with the assembly and also the profiles of adjacent module assemblies are mutually connected by tightening bolts.

    [0018] The advantage of presented solution, considering the sidewalls construction, is in particular the reduction of volume as well as volume mass of these sidewalls - roughly by one half compared to traditional lining and by one third compared to assembly duration. Another advantage of new sidewalls is more effective and faster cooling, exploitation of waste heat and possibility to shorten the cooling zone. Reduced construction costs and energy demands of the plant are also not a negligible advantage. Sidewalls allow fast repairs and re-lining without the need for long downtimes of the furnace and for dismantling its accessories.

    [0019] Considering the new construction of ceiling, by far the greatest advantage is elimination of demanding support structures for the construction. Quality is increased and on-site labor intensity is reduced because the module assemblies are mounted on welded structures from profiles with anti-chemical and anti-corrosive treatment already at the production plant and on-site they are only settled into reinforced refractory concrete sidewall head lintels into created interlocks and tightened together by tightening bolts.

    [0020] All this contributes to increased pace of assembly works and to final reduction of costs. As a consequence, new construction of the furnace ceiling ensures also its longer lifetime.

    Overview of Figures in Drawings



    [0021] Example of arrangement of the presented solution is schematically outlined in the attached drawings. Fig. 1A and 1B show two views of vertically and horizontally interlocking ceramic large-format block and fig. 2A shows interlocking sidewall stone and fig. 2B shows interlocking plate. Fig. 3A represents cross section through the continuous tunnel furnace and fig. 3B offers axonometric view on part of the sidewall equipped with cooling system. Fig. 4 schematically outlines forming of the ceiling of the continuous tunnel furnace. Fig. 5 outlines front view on module assembly of ceramic mats with anchors led between the U-profiles connected by flat cross beam, fig. 6 then shows construction of sidewalls and ceiling of continuous tunnel furnace.

    Example of the Invention Application



    [0022] Based on experience with operation and repairs of furnace aggregates bodies built upon existing systems, a new system of construction of sidewalls and ceiling of furnace aggregate is designed, in particular for continuous tunnel furnaces for ceramic industry.

    [0023] Continuous tunnel furnace consists of two sidewalls, ceiling formed by modules made of ceramic fiber mats and finally of input and output gates. In direction from the input gate, the furnace is divided into pre-heating, firing and cooling zones.

    [0024] Firstly, construction of the furnace sidewalls will be described, where fig. 3A represents cross section through such sidewall and fig. 3B shows axonometric view on part of the sidewall equipped with cooling system. The sidewalls are in their lower parts, to the height of inserted carriage with material to be fired, formed by lines of alternately laid large-format ceramic blocks 1 equipped with vertical and horizontal interlocking joints, hereinafter referred to as the blocks 1, which have continuous openings 2 in vertical direction, as shown in fig. 1A, 1B and 3B. Distance between centers of these openings 2 is L and distance of center of given continuous opening 2 to the closer edge of the block 1 is L/2.

    [0025] Above these lines of blocks 1 one or more lines of both-sided interlocking sidewall stones 3 are created, in this case a single line, see fig. 3A, which in direction to the inside of the furnace is offset by width of insulation brick 4. In presented example this is the 4th line from the sidewall base. The purpose of this line of interlocking sidewall stones 3 is to create a labyrinth, which will decrease ambient temperature and contributes to protection of steel structure of furnace carriage. In tunnel furnaces designed for higher temperatures the labyrinth may be doubled and formed for instance by interlocking plate 31, fig. 2B. Above this line of interlocking sidewall stone 3 are again lines of alternately placed blocks 1 with continuous openings 2. Sidewall insulation is provided from outside the furnace where the insulation lining of the line of blocks 1 is made onto the line of interlocking sidewall stones 3. This insulation lining will substantially ensure steep and efficient insulation of the sidewall, in particular in the firing zone of the furnace body. Such aligned sidewall is on the whole of its area covered with ceramic fiber insulation 5, for instance with sibral mat 13 - 30 mm thick for temperature up to 1250 °C. Thickness of the mat is to be determined upon calculation of heat transmission. Onto the ceramic fiber mat 5 are applied insulation plates 6, for instance ROCKWOOL for temperatures ranging from 600 °C to 700 °C, which are covered by outer encasement 7. In given example, the outer encasement 7 is realized by lining made of decorative front bricks 16, 115 mm wide. Outer encasement 7 is connected with the base and insulation parts of the sidewall by anchors made of fireproof steel formed for instance by wires or bands with maximum thickness 2 mm. Outer encasement 7 may also be created by other means, for instance by "Jekl" four-sided profiles anchored to the floor and the sidewall finish is then realized by covering using corrugated or trapeze metal sheet. This encasement 7, apart from creating aesthetic finish, serves also as a support for burners, cooling, fans, measuring or regulation devices.

    [0026] Continuous openings 2 inside the refractory sidewall, in the cooling zone of the furnace sidewalls, serve for heat distraction from these sidewalls, indirectly they also increase cooling effect of this zone.

    [0027] Encasement 7 is in the cooling zone of the furnace, fig. 3, equipped with horizontal inlet piping 8 with fan, which is not shown in the drawing. Inlet piping 8 has incoming branch pipes 81, which are usually led perpendicular, to inner space of continuous openings 2 in line of blocks 1 placed above line of sidewall stone 3 and then it is led by outgoing branch pipes 91 from continuous openings 2 in the last, uppermost line of blocks 1 to the horizontal outlet piping 9.

    [0028] In pre-heating and firing zones of the furnace it is advantageous that the continuous openings 2 are filled with bulk or loosened insulation material, which increases insulation properties of mentioned parts of sidewalls of the furnace aggregate, thus eventually decreasing power consumption.

    [0029] Binding material for individual vertical layers of sidewalls, it means for ceramic blocks 1, ceramic fiber insulation 5 and insulation plates 6, designed in given example is a sealant maximum 2 mm thick, for instance ALU 1250 or other equivalent. For lining made of insulation bricks 4 was used mortar supplied by manufacturer of these insulation bricks 4.

    [0030] Basic element of the sidewall is therefore the supporting, mutually vertically and horizontally interlocking ceramic large-format block 1. Continuous openings 2 created inside the block 1 allow faster cooling of sidewalls and products located in the cooling: zone of the furnace aggregate, faster and energetically less demanding heating and firing in pre-heating and firing zones of the furnace.

    [0031] Size of ceramic large-format blocks 1 is determined as optimum ratio between mass and speed of assembly with respect to stability of sidewalls and it can be adjusted according to specific conditions. The same applies to dimensions of vertical openings 2 and size of mutual interlocking.

    [0032] Pre-heated air warmed by means of vertical openings 2 in the cooling zone, where cold air is blown in, cools down the sidewalls as well as the goods and simultaneously it serves in the pre-heating zone of the furnace aggregate for drying, or, due to its purity, it may be used as air for burners.

    [0033] Sidewalls created as described are at their top edge terminated with reinforcement 20 made of refractory concrete and inner side of the reinforcement is equipped with interlock for mounting the ceiling on sidewalls.

    [0034] Ceiling, fig. 4, is formed by module assemblies made of ceramic fiber mats 10 equipped on sides with interlocking joints, which are placed as completed units by minor mechanization on site onto assembled and reinforced ceiling.

    [0035] Module assemblies assembled in the production plant consist of welded structures from lightweight steel profiles with anti-chemical and anti-corrosive treatment, on which the modules of ceramic fiber mats 10 are suspended by means of ceramic or steel anchors.

    [0036] Each module assembly, fig. 5, is formed by two parallel lines of ceramic fiber mats 10 interlocked by interlocking joints traversed by minimum one ceramic anchor 12 located at a given line in parallel with them.

    [0037] Mutually coaxial ceramic fiber mats 10 forming the modules have in their bodies at least one puncture 11 and ceramic anchors 12 are equipped with openings 111 located coaxially with these punctures 11. Given example contains three punctures 11 and openings 111, through which spikes 13 are traversed serving for connection of ceramic fiber mats 10.

    [0038] Ceramic anchors 12 are led outside the ceramic fiber mats 10 by means of a head 14 adjusted for mounting the assembly to a welded structure from pressed profiles 15 located above each line of ceramic fiber mats 10 in direction of longitudinal axis of such line and having their ends adjusted for settling to the interlocking joints on reinforcement 20. Reinforced interlocking of sidewalls simultaneously prevents heat transmission to the outside environment.

    [0039] In given example this is realized using profiles 15, which are formed by a pair of U-profiles oriented with their backs to each other and the space between them accommodates the heads 14 of ceramic anchors 12. Each head 14 and U-profiles have coaxial openings perpendicular to the longitudinal axis of module assemblies, through which is led a ceramic, or optionally from also anti-corrosive steel, stick 18 to secure their mutual position. Top surface of module assemblies is already in the production plant equipped with covering layer 21 of chemically and heat resistant PVC foil.

    [0040] After assembly, the ceiling module assemblies are equipped on their bottom part either with a layer of protective coasting of special engobe or with multilateral mutually interlocking cover plates 17 made of insulation refractory material anchored in the body of module assembly. Top parts of individual profiles 15 are mutually connected by supporting beams 19, which allow their easy handling during settling to the interlock of reinforcement 20, see fig. 5.

    [0041] Mutual connection and sealing as a protection against heat transmission through module assemblies is best solved by mutual tightening and possibly also by other tightening of supporting steel welded structures by tightening bolts, which are not shown in the drawings. These tightening bolts simultaneously allow to regulate required dilatation joints between the module assemblies during operation of furnace aggregates.

    [0042] Covering layer 21 of module assemblies is formed by PVC foil, mutually glued by plastic sealant. In case of overpressure in the furnace aggregate this solution eliminates possibility of exhausts leaking to the atmosphere and from the other side it covers and prevents the ceramic module assemblies from depositing of wastes. It allows easy regular cleaning of outer surface of the furnace aggregate ceiling using industrial vacuum cleaner without any problems.

    [0043] The basis of new construction of the ceiling is therefore implementation of ceramic fiber mats 10 arranged in modules where these ceramic fiber mats 10 have special shape, which allows their mutual interlocking and assembly of module assemblies on a steel structure of surface treated- welded structure made of pressed sheet, for instance advantageously in a form of U-profiles. This solution allows that the ceiling module assemblies, assembled already in the production plant, are placed by minor mechanization directly on site onto assembled sidewalls of the furnace aggregate. Such design of the ceiling combines in one unit both refractory construction and insulation protection. Supporting structure for module assemblies may serve for installation of technology for heating, cooling and regulation of furnace aggregates. Fig. 6 schematically shows connection of the ceiling and sidewalls of the furnace aggregate.

    Industrial Applicability



    [0044] Proposed solution of bodies of firing aggregates has greatest usability in ceramic industry, for new constructions, in the sphere of low-cost, fast and efficient repairs and reconstructions, especially for bodies of furnace aggregates designed on the basis of refractory concrete lining. It is a system of tunnel, i.e. continuous and chamber, periodic furnaces.

    [0045] The system of the ceiling design using module assemblies manufactured in the production plant may be successfully applied also in the sphere of aggregates in metallurgy, foundry and steel industry, which predominantly exploit ceramic modules without interlocking, which are individually assembled and mounted directly into the construction of given aggregates.


    Claims

    1. Furnace aggregate consisting of two sidewalls, ceiling formed by modules made of ceramic fiber mats, input and output gates, where this furnace aggregate, in direction from the input gate, is divided into pre-heating, firing and cooling zones, characterized by the fact that the sidewalls are in their lower parts, to the height of inserted carriage with material to be fired, formed by lines of alternately laid large-format ceramic blocks (1) equipped with vertical and horizontal interlocking joints, which have continuous openings (2) in vertical direction, where the distance between centers of these openings is (L) and distance of centers to the closer edge of the block (1) is (L/2), above these lines of blocks (1) a labyrinth is created from at least one line of both-sided interlocking sidewall stones (3) or interlocking plate (31) and above this labyrinth are again lines of blocks (1) placed alternately on each other with continuous openings (2), from outside the furnace the labyrinth and lines of blocks (1) created above it are provided with lining from insulation bricks (4) and such aligned sidewall is covered by assembly mutually joint by refractory steel anchors and formed by ceramic fiber insulation (5), insulation plates (6) and outer encasement (7), which is in the cooling zone of the furnace equipped with horizontal inlet piping (8) with fan and which has incoming branch pipes (81) to inner space of continuous openings (2) in line of blocks (1) above the labyrinth and has outgoing branch pipes (91) from continuous openings (2) in the last, uppermost line of blocks (1) to the horizontal outlet piping (9), sidewalls created as described are at their top edge equipped with refractory reinforcement (20) and its inner side is equipped with interlock for settling the ceiling onto sidewalls, where the ceiling is formed by module assemblies placed close next to each other and allowing mutual connection, consisting of ceramic fiber mats (10) equipped on their sides with interlocking joints and having in their bodies at least one puncture (11), where single module assembly is formed by two modules of ceramic fiber mats (10) interlocked by interlocking joints mounted to at least one ceramic anchor (12), where these ceramic fiber mats (10) are for securing their position horizontally traversed by at least one spike (13) passing through at least one opening (111) formed in the body of ceramic anchor (12) and through at least one puncture (11) formed in ceramic fiber mat (10) and placed coaxially with the opening (111), where the ceramic anchors (12) are led outside the ceramic fiber mats (10) by means of a head (14) adjusted for mounting the assembly to a welded structure from pressed profiles (15) located above each line of ceramic fiber mats (10) in direction of longitudinal axis of such line, thus created module assemblies have ends adjusted for settling to the interlocking joints on sidewalls reinforcement (20) of the furnace aggregate.
     
    2. Furnace aggregate according to the claim 1 characterized by the fact that the top surface of module assemblies is equipped with covering layer (21) of chemically and heat resistant PVC foil.
     
    3. Furnace aggregate according to the claim 1 or 2 characterized by the fact that the continuous openings (2) in pre-heating and firing zones are filled with bulk or loosened insulation material.
     
    4. Furnace aggregate according to any of claims 1 to 3 characterized by the fact that the outer encasement (7) of sidewalls is made of lining from decorative front bricks (16) attached to the basic support and insulation part of the sidewall by refractory anchors.
     
    5. Furnace aggregate according to any of claims 1 to 4 characterized by the fact that the ceiling module assemblies are equipped on their bottom part with a layer of protective coating.
     
    6. Furnace aggregate according to any of claims 1 to 5 characterized by the fact that the ceiling module assemblies are equipped on their bottom part with multilateral mutually interlocking cover plates (17) made of insulation refractory material anchored in the body of module assembly.
     
    7. Furnace aggregate according to any of claims 1 to 6 characterized by the fact that the profiles (15) are formed by a pair of U-profiles oriented with their backs to each other where the space between them accommodates the heads (14) of ceramic anchors (12), while these heads (14) and U-profiles have coaxial openings perpendicular to the longitudinal axis of module assemblies, through which is led a ceramic stick (18) to secure their mutual position.
     
    8. Furnace aggregate according to any of claims 1 to 7 characterized by the fact that the profiles (15) of one module assembly are mutually connected by supporting beams (19) for mechanical handling with the assembly.
     
    9. Furnace aggregate according to any of claims 1 to 8 characterized by the fact that the profiles (15) of adjacent module assemblies are mutually connected by tightening bolts.
     


    Ansprüche

    1. Ofenaggregat, der aus zwei Seitenwänden, aus modularen Keramik - Fasermatten gebildeter Decke, Eingangs- sowie Ausgangstor besteht, wobei der Ofenaggregat in Richtung von der Eingangstür auf Aufheizzone, Brennzone und Abkühlzone aufgeteilt wird, dadurch gekennzeichnet, dass die Unterteile der Wänden bis zu der Höhe des Einschiebwagens mit Brenngut aus Reihen von abwechselnd übereinander aufgelegten großformigen Keramikblocksteine (1) bestehen, die vertikal und horizontal mit Schlossverbindungen versehen sind, in denen in Vertikalrichtung Durchlauföffnungen (2) ausgespart werden, wobei der Abstand der Mittelpunkte dieser Öffnungen (L) beträgt und Abstand dieser Mittelpunkte von dem näheren Blockrand (1) (L/2) beträgt, über diesen Blockreihen (1) ist ein aus mindestens einer Reihe von Wandsteinen mit beiderseitigen Schlossverbindungen (3) oder einer Schlossplatte (31) bestehender Labyrinth aufgestellt und über diesem Labyrinth sind wieder Reihen von abwechselnd übereinander aufgelegten Blöcke (1) mit Durchlauföffnungen (2) aufgestellt, aus der Außenseite der Ofenwand befinden sich der Labyrinth und die über diesem Labyrinth aufgestellten Blockreihen (1), die mit Anmauerung aus Isoliersteinen (4) versehen sind und die solcherweise ausgerichtete Wand ist mittels hitzebeständigen Stahlankern mit miteinander verbundener Baugruppe, bestehender aus keramischer Gespinstisolation (5), Isolierungsplatten (6) und Außenummantelung (7), die in der Abkühlzone des Ofens mit einer horizontalen Eintrittsleitung (8) mit Gebläse versehen ist, und die durch Einlaufabzweige (81) in den Innenraum der Durchlauföffnungen (2) der letzten Blockreihe (1) über dem Labyrinth eingeleitet wird und die durch Ausgangsabzweige (91) aus den Durchlauföffnungen (2) der letzten, oberen Blockreihe (1) in die horizontale Ausgangsleitung (9) ausgemündet wird, und die solcherweise gebildeten Längswände sind bei derer Oberkante mit hitzebeständiger Armierung (20) versehen, derer Innenseite mit Schloss für Einsetzung der Decke zu den Wänden versehen ist, wobei die Decke mit dicht nebeneinander angebrachten, miteinander vereinbaren modularen Baugruppen aus Keramik - Fasermatten (10) gebildet ist, die an den Seitenwänden mit Schlossverbindungen versehen sind und die im Körper mindestens einen Einstich (11) eingerichtet haben, wobei eine der modularen Baugruppen aus zwei, über Schlossverbindungen ineinander hineinfallende modulare Keramik - Fasermatten (10), die mindestens auf einen Keramik - Anker (12) aufgesetzt sind, besteht, wobei diese Keramik - Fasermatten (10) zum Zweck der Lagesicherung horizontal mit mindestens einer, durch mindestens eine Öffnung (111) durchgehenden, im Körper des Keramik-Ankers (12) erstellten Spitze (13) und durch mindestens einen, fluchtend mit der Öffnung (111) positionierten, in der Keramik - Fasermatte (10) erstellten Einstich (11) durchgewirkt sind, die Keramik-Anker (12) sind außerhalb der Keramik - Fasermatten (10) mit einem Kopfteil (14), der für Montage der Baugruppe auf Schweißstück aus der über jeder Reihe der Keramik - Fasermatten (10) in Richtung der Längsachse dieser Reihe positionierten Pressprofilen (15) angepasst wird, herausgeführt, die Enden der solcherweise erstellten modularen Baugruppen sind für Einsetzung auf den Schloss der Armierungsarmatur (20) für Wände des Ofenaggregates gestaltet.
     
    2. Ofenaggregat nach dem Anspruch 1, dadurch gekennzeichnet, dass die Oberflächen der modularen Baugruppen mit Deckschicht (21) aus chemischsowie temperaturbeständiger PVC-Folie versehen sind.
     
    3. Ofenaggregat nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Durchlauföffnungen (2) in der Aufheiz- sowie Brennzone mit lockerem oder aufgelöstem Isolierstoff ausgefüllt sind.
     
    4. Ofenaggregat nach jedem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Außenummantelung (7) der Wänden mit Anmauerung aus den mit dem Grund- und Isolierungsteil der Wand mittels hitzebeständigen Ankern verbundenen Blendsteinen (16) gebildet ist.
     
    5. Ofenaggregat nach jedem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die modularen Baugruppen für die Decke auf der unteren Fläche mit einer Schicht von Schutzestrich versehen sind.
     
    6. Ofenaggregat nach jedem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die modularen Baugruppen für die Decke auf der unteren Fläche mit miteinander allseitig mit Schloss versehenen, in Körper der modularen Baugruppe verankerten Deckplatten (17) aus Isolier- hitzebeständigen Stoff versehen sind.
     
    7. Ofenaggregat nach jedem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Profile (15) aus einem Paar von U-Profilen, die zueinander rücklings orientiert sind bestehen, wobei in den Raum dazwischen sind Köpfe (14) der Keramik-Ankern (12) herausgeführt, wobei in diesem Kopfteil (14) sowie in den U-Profilen sind fluchtend, senkrecht zur Längsachse der modularen Baugruppen Öffnungen ausgespart, durch die eine Keramik-Stange (18) zur Lagesicherung durchläuft.
     
    8. Ofenaggregat nach jedem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Profile (15) einer modularen Baugruppe miteinander mit Balken (19) für mechanische Handhabung der Baugruppe verbunden sind.
     
    9. Ofenaggregat nach jedem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Profile (15) der angrenzenden modularen Baugruppen miteinander mit Spannschrauben verbunden sind.
     


    Revendications

    1. Agrégat de fourneau constitué de deux parois latérales, du plafond des modules des matelas céramiques de fibre, des portes d'entrée et de sortie, où cet agrégat de fourneau est divisé, dans le sens depuis la porte d'entrée, en zones réchauffante, de mise à feu et réfrigérante, dont la caractéristique essentielle est que les parois sont, dans leur partie inférieure jusqu'à la hauteur du chariot inséré avec le matériau qui sera brûlé, formées par des rangs de blocs de grand format (1) posés d'une façon alternée, équipés des joints de verrouillage verticaux et horizontaux, dans lesquels il y a des creux continus (2) dans le sens vertical, où la distance entre les centres de ces creux est de (L) et la distance des centres à l'extrémité plus proche du bloc (1) est de (L/2), sur ces rangs des blocs (1) il est formé un labyrinthe d'au moins un rang des pierres de mur (3) avec des joints de verrouillage de deux côtés ou bien des plaques de verrouillage (31) et sur ce labyrinthe il y a encore des rangs de blocs (1) avec des creux continus (2) posés d'une façon alternée, du coté extérieur de la paroi du fourneau le labyrinthe et les rangs des blocs (1) formés au-dessus de lui sont fournis par le mur des briques d'isolation (4) et la paroi ainsi alignée est couverte par un ensemble mutuellement joint par des ancres d'acier réfractaire et formé par isolation céramique de fibre (5), plaque d'isolation (6) et revêtement extérieur (7) qui est dans la zone réfrigérante du fourneau équipé d'une conduite horizontale d'admission (8) avec un ventilateur et qui est introduite par des branchements d'admission (81) dans l'espace intérieur des creux continus (2) du rang des blocs (1) posée sur le labyrinthe et aboutit par des branchements d'évacuation (91) des creux continus (2) du dernier rang supérieure des blocs (1) dans la conduite horizontale d'évacuation (9), les parois longitudinales ainsi constituées sont à leur bord supérieur équipées par un renforcement réfractaire (20) dont le côté intérieur est équipé par un verrouillage pour la pose du plafond sur les parois, où le plafond est formé par des ensembles de modules des matelas céramiques de fibre (10) placés étroitement l'un à côté de l'autre, joignables entre eux, équipés des joints de verrouillage des côtés et ayant dans leur corps au moins une piqûre (11), où un ensemble de module est formé par deux modules des matelas céramiques de fibre (10) joins entre eux par les joints de verrouillage et mis à au moins une ancre céramique (12), où ces matelas céramiques de fibre (10) sont, pour assurer leur position, traversées dans le sens horizontal par au moins une barre (13) qui passe par au moins un trou (111) créé dans le corps de l'ancre céramique (12) et par au moins une piqûre (11), positionnée d'une façon coaxiale avec le trou (111), créée dans le matelas céramique de fibre (10), les ancres céramiques (12) sont sorties à l'extérieur des matelas céramiques de fibre (10) par une tête (14) adaptée pour le montage d'un ensemble sur la structure soudée des profilés pressés (15) placés au-dessus de chaque ligne des matelas céramiques de fibre (10) dans le sens de l'axe longitudinale de cette ligne, les ensembles de module ainsi formés sont adaptés aux leurs extrémités pour la pose sur le verrouillage du renforcement (20) des parois de l'agrégat de fourneau.
     
    2. L'agrégat de fourneau, conformément à la revendication 1, caractérisé par le fait que la surface supérieure des ensembles de module est équipée par une couche de revêtement (21) d'une feuille de PVC résistant aux influences chimiques et de chaleur.
     
    3. L'agrégat de fourneau, conformément à la revendication 1 ou 2, caractérisé par le fait que les creux continus (2) dans la zone réchauffante et dans celle de mise à feu sont remplis par le matériau d'isolation friable ou effiloché.
     
    4. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 3, caractérisé par le fait que le revêtement extérieur (7) des parois est fait par le mur des briques de parement (16) joints avec la partie porteuse de base et d'isolation de la paroi par des ancres réfractaires.
     
    5. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 4, caractérisé par le fait que les ensembles de module du plafond sont sur leur surface inférieure équipés d'une couche d'un enduit de protection.
     
    6. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 5, caractérisé par le fait que les ensembles de module du plafond sont sur leur surface inférieure équipés par des plaquettes de recouvrement (17) avec des joins de verrouillage entre elles de tous les côtés et constituées du matériau réfractaire d'isolation, ancrées dans le corps de l'ensemble de module.
     
    7. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 6, caractérisé par le fait que les profilés (15) sont formés par un couple des U profilés orientés avec leurs dos l'un à l'autre, où les têtes (14) des ancres céramiques (12) sont sorties dans l'espace entre ces deux profilés, où dans cette tête (14) et dans les U profilés il y a des trous coaxiaux perpendiculaires à l'axe longitudinale des ensembles de module par lesquels passe un barreau céramique (18) pour assurer leur position.
     
    8. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 7, caractérisé par le fait que les profilés (15) d'un ensemble de module sont assemblés mutuellement par des poutres (19) pour la manutention mécanique avec l'ensemble.
     
    9. L'agrégat de fourneau, conformément à n'importe quelle revendication des 1 à 8, caractérisé par le fait que les profilés (15) des ensembles voisins de module sont assemblés mutuellement par des vis de tension.
     




    Drawing