(19) |
 |
|
(11) |
EP 1 852 938 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
07.04.2010 Bulletin 2010/14 |
(22) |
Date of filing: 05.05.2006 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
Antenna radome
Antennengehäuse
Radome d'antenne
|
(84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE
SI SK TR |
(43) |
Date of publication of application: |
|
07.11.2007 Bulletin 2007/45 |
(73) |
Proprietor: Cobham Advanced Composites Limited |
|
Stevenage
Hertfordshire SG1 2DH (GB) |
|
(72) |
Inventors: |
|
- McNair, Peter A. C.
Stevenage
Hertfordshire SG1 2DH (GB)
- Baker, Claire
Stevenage
Hertfordshire SG1 2DH (GB)
|
(74) |
Representative: Haley, Stephen |
|
Gill Jennings & Every LLP
Broadgate House
7 Eldon Street London EC2M 7LH London EC2M 7LH (GB) |
(56) |
References cited: :
EP-A- 0 155 599
|
GB-A- 2 221 351
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] Antenna housings are an essential part of most radar and/or communication/control
systems, providing protection for antennas from the environment, necessary aerodynamic
characteristics and improved RF stealth.
[0002] The term "radome" generally refers to housings for an antenna or collection of antennas.
Antennas generally do not "look" through every part of a radome and the area through
which signals are passed (transmitted and/or received) is termed the "electromagnetic
window". In order to ensure optimum electrical performance, the design and/or material
of this electromagnetic window may differ compared to more structural parts of a radome.
[0003] Thermosetting composite materials are currently used for the manufacture of high
performance radomes, such as aircraft nose cones. At the top end of electrical and
mechanical performance of known materials are quartz fibre reinforced cyanate ester
composites. These are very high cost materials. In certain situations where a trade-off
on electrical performance can be made, lower cost glass fibre reinforced epoxy composites
are used.
[0004] For some radomes, the electrical performance of quartz cyanate ester is not sufficient
and for these radomes, providing the mechanical performance can be met, PTFE (polytetrafluoroethylene)
may be used. However, the use of PTFE often sacrifices mechanical performance. Where
mechanical performance cannot be met with a solid PTFE radome, it may be possible
to use a hybrid build, where PTFE is used in the window area but the radome structure
is of a stronger material, but again a trade-off must be made in this case.
[0005] The present invention seeks to overcome the aforementioned problems.
[0007] According to the present invention there is provided a housing for an antenna, the
housing comprising:
an electromagnetic window portion through which electromagnetic signals are passed
in use, characterised in that a layer of a wall of the electromagnetic window is formed from self reinforced polypropylene
(PP-PP).
[0008] Furthermore, the present invention provides the use of self reinforced polypropylene
(PP-PP) in a housing for an antenna.
[0009] Self reinforced polypropylene (PP-PP) is a new material which has certain mechanical
and electrical properties, the implementation of which leads to low cost mass, high
performance radomes. Because of these properties, PP-PP can be used in all or part
of a radome build, including the electromagnetic window area. Although the mechanical
properties of PP-PP are known in other technical fields, there has, until now, been
no suggestion that the electrical properties of this material could also be beneficial,
nor that such properties can be exploited in the field of antenna housing design.
[0010] Examples of the present invention are described below with reference to the accompanying
drawings in which:
Figure 1 a shows a cross-sectional view of an example of an antenna housing of a known
shape;
Figure 1b shows a perspective view of an example of an antenna housing of a known
shape;
Figure 2a shows an example of an antenna housing according to the present invention
which comprises a single-layer self reinforced polypropylene (PP-PP) wall;
Figure 2b shows an example of an antenna housing according to the present invention
which comprises multiple layers, including outer layers of self reinforced polypropylene
(PP-PP) wall;
Figure 2c shows an example of an antenna housing according to the present invention
which comprises multiple layers, including outer layers and a core layer of self reinforced
polypropylene (PP-PP) wall, where the core layer is thicker than the structural foam
layers; and
Figure 2d shows an example of an antenna housing according to the present invention
which comprises multiple layers, including outer layers and a core layer of self reinforced
polypropylene (PP-PP) wall, where the core layer is thinner than the structural foam
layers.
[0011] Self reinforced polypropylene (PP-PP) is an example of a new generation of "self
reinforced polymers", which have resulted from recent developments in the thermoplastics
industry. In this type of composite material the reinforcement fibre is a highly aligned
polymer, which is chemically similar or identical to the matrix material. According
to the present invention, PP-PP is used in antenna housings ("radomes"), in which
electrical and mechanical properties must be optimised whilst minimising cost.
[0012] Standard grade PP-PP material contains carbon black to protect against UV degradation
of the polymer. The introduction of carbon black through the bulk of the material
is not desirable for radomes because it increases electrical loss: carbon heats up
in response to electromagnetic radiation and the strength of transmitted and received
electromagnetic signals is correspondingly diminished. Hence, for radome applications
non-carbon loaded PP-PP material is appropriate in such cases.
[0013] For most applications, protection against UV degradation is necessary for radomes
and is typically achieved either by introduction of a pigmented surface film, by introduction
of an alternative additive (either to the radome material itself or to a surface layer
such as a paint), or by painting the radome, as opposed to the use of carbon black
containing PP-PP. Optimisation of this finishing and protection scheme may form part
of the product development cycle and testing for radomes. For radomes in vehicle applications
(where frictional forces, arising as the radome shears the air, generate static charges)
a relatively thin surface layer of carbon is preferable as a static dissipative layer,
which is, for example, introduced as a carbon containing film. Painting is also an
option and is typical for current radome designs. The use of thermoplastic films to
provide a surface finish is possible in PP-PP applications.
[0014] A relatively small number of radome applications do not require high performance
(e.g. low frequency, short range applications) and in this case the radome may be
produced with standard, lower cost, carbon-containing PP-PP.
[0015] The approximate electrical properties of non-carbon loaded PP-PP are provided below.
The measured properties are comparable to PTFE (polytetrafluoroethylene). Table 1
below gives measured electrical properties for known radome materials and PP-PP, for
a typical radome operational frequency of 10 GHz.
Table 1
|
Dielectric constant |
Electrical Loss |
PP-PP |
2.1 |
0.0015 |
PTFE |
2.05 |
0.001 |
Quartz/ Cyanate Ester |
3.2 |
0.005 |
E Glass/ Epoxy |
4.0 |
0.02 |
[0016] From an electrical point of view the dielectric constant and electrical loss are
important design parameters. An electromagnetic wave takes longer to pass through
a given region with a dielectric constant greater than unity (1), than through the
same region of air. The delay is proportional to the refractive index of the material
(which in turn equals the square root of the dielectric constant). This delay is particularly
significant when considering the performance of a curved radome, in which different
parts of an incident electromagnetic field are potentially delayed by different amounts,
leading to defocussing effects and/or beam deflection.
[0017] From the above comments, it follows that these effects are proportional to the refractive
index. An ideal radome material (which does not exist) would have a dielectric constant
of 1, equivalent to air for practical purposes. Materials with dielectric constants
closest to 1 are generally best in terms of a radome design, which is why PTFE and
PP-PP are attractive radome materials in terms of their electrical properties.
[0018] The electrical loss provides a measure of the proportion of electromagnetic energy
lost as heat. "Lossy" radome materials reduce the strength of transmitted and received
electromagnetic signals, necessitating higher power transmitters and/or lower noise
receivers. Although all radome materials are lossy to some degree, materials such
as PTFE and PP-PP are described as "low loss" and offer superior performance.
[0019] PP-PP represents a bridge in mechanical properties between the "conventional" radome
materials of e.g. glass fibre reinforced plastics and homogenous polymers such as
PTFE and PP. PP-PP radomes are suitable for a number of semi-structural applications.
PP-PP is also a relatively low cost material, and can be used to manufacture radomes
where PTFE has been ruled out due to poor mechanical performance. The properties of
self reinforced polypropylene are compared with glass epoxy in the Table 2 below:
Table 2
|
PTFE |
Self reinforced Polypropylene |
Glass epoxy (for Comparison) |
Density (g/ cm3) |
2.14 |
0.92 |
2 |
Dielectric Constant @ 10 GHz |
2.05 |
2.1 |
4.1 |
Dielectric Loss @ 10 GHz |
0.001 |
0.0015 |
0.02 |
Tensile Modulus (GPa) |
0.3 - 0.8 |
4.2 |
25 |
Tensile Strength (MPa) |
20 - 30 |
120 |
350 |
Flexural Modulus (MPa) |
350 - 650 |
3.5 |
28 |
Maximum Use Temperature (°C) |
260 |
~100 |
~130 |
Melting Temperature (°C) |
N/a degrades at ~400 |
175 |
n/a |
Cost/ m2 for 0.5 mm thick material or equivalent) |
£12 / m2 (approximated) |
£2.5 / m2 |
£12 / m2 |
[0020] Radomes range in size from smaller than egg-cups to large geodesic dome structures
such as ground stations, and are used in fields such as vehicle applications (including
ground based and air vehicles).
[0021] Figure 1 a shows a cross-section through an example of a radome wall 1 (for example,
for use as a nose cone for a missile / fast jet application). Figure 1b illustrates
an example of a more complex radome shape 2. The use of PP-PP is not limited to any
particular class of radome shape.
[0022] As shown in Figure 2a, the simplest radome wall is a single layer 3 of PP-PP material,
referred to as a "solid" radome. This type of radome may be appropriate when operation
at a single frequency, low frequency or over a relatively narrow band of frequencies
is required.
[0023] Better electrical performance is typically obtainable by using a sandwich structure
in which the radome wall comprises more than one layer of distinct material, as shown
in Figures 2b to 2d. Typical radome wall builds comprise three layers as shown in
Figure 2b. Such a radome wall comprises a first PP-PP outer layer 4, a structural
foam layer 5, and a second PP-PP outer layer 6, and is referred to as an "A-sandwich".
Further radome examples, shown in Figures 2c and 2d, have five layers in total. This
includes a first PP-PP outer layer 4, a first structural foam layer 7, a PP-PP core
8, a second structural foam layer 9, and a second PP-PP outer layer 6, and is referred
to as a "C-sandwich". Other builds are possible, for example further multi-layer designs.
The one or more structural foam layers 5, 7, 9 have excellent electrical performance
(they comprise mostly air), but poor mechanical performance.
[0024] The example of Figure 2c, where the core layer is thicker than the structural foam
layers, is referred to as a "fat" C-sandwich; an alternative form of the C-sandwich
build is one in which the central core is thinner, for example as shown in Figure
2d; this is sometimes referred to as a "thin" C-sandwich.
[0025] The layer thicknesses are selected in order to optimise the radome performance over
a range of incident angles and operating frequencies. The layer thicknesses depend
on the electrical (specifically the dielectric) properties of the wall materials.
The two main approaches are (a) to make the radome as thin as possible (known as an
"electrically thin" radome) and (b) to tune the radome in some way (in the same way
that anti-reflection films are used in optics, for example in the blooming of camera
lens surfaces). The use of PP-PP in radomes does not limit the radomes to operation
at a particular frequency.
[0026] One exemplary technical field in which the present invention may be employed is as
a satellite communication radome for commercial aircraft. The radome wall builds of
Figures 2a to 2d are preferably optimised for operation in the frequency band 10.95
to 12.75 GHz (Television Receive Only (TVRO) satellite band) and 0 to 75 degrees angle
of incidence. The builds typically range in thickness from approximately 11 mm (solid
wall) to approximately 18.2 mm. Actual build dimensions depend on frequency and the
use of PP-PP in radomes does not limited the radome to specific dimensions.
[0027] The layer thicknesses are determined so as to optimise the electrical performance
of the radome. In general terms the inclusion of more layers (i.e. A-sandwich and
C-sandwich) gives better electrical performance than the simplest solid build, particularly
over a wider bandwidth (range of operating frequencies). Similarly, C-sandwich builds
give better potential electrical performance than the A-sandwich builds.
[0028] PP-PP can be used for any one or more of the layer(s) within any radome build. In
particular, builds which involve PP-PP and other materials e.g. Kevlar® or quartz
cyanate ester are possible.
1. A housing (1) of an antenna, the housing comprising:
an electromagnetic window portion through which electromagnetic signal are passed
in use, characterised in that a layer (3) of a wall of the electromagnetic window is formed from self reinforced
polypropylene PP-PP.
2. A housing (1) according to claim 1, wherein the housing is arranged to house multiple
antennas.
3. A housing (1) according to claim 1 or 2, wherein the self reinforced polypropylene
PP-PP is non-carbon loaded self-reinforced polypropylene.
4. A housing (1) according to any preceding claim, wherein the electromagnetic window
portion further comprises means for protecting the self reinforced polypropylene PP-PP
against ultraviolet degradation.
5. A housing (1) according to claim 4, wherein the means for protecting the self reinforced
polypropylene PP-PP against ultraviolet degradation comprises a surface layer, the
surface layer further comprising one of a pigmented surface film and a painted surface
layer.
6. A housing (1) according to claim 5, wherein the surface layer includes carbon.
7. A housing (1) according to any preceding claim, wherein the electromagnetic window
portion is curved.
8. A housing (1) according to any preceding claim, wherein the housing is substantially
conical in shape.
9. A housing (1) according to any preceding claims, wherein the electromagnetic window
comprises multiple layers.
10. The housing (1) according to claim 9, wherein the multiple layers includes two outer
layers of self reinforced polypropylene PP-PP formed on either side of a first foam
layer.
11. The housing (1) according to claim 10, the housing further comprising a core layer
of self reinforced polypropylene PP-PP and a second foam layer, the electromagnetic
window is arranged such that the self reinforced polypropylene (PP-PP) core layer
is formed between the first and second foam layers.
12. The use of self reinforced polypropylene PP-PP in a housing (1) for an antenna.
13. The use of self reinforced polypropylene PP-PP in an electromagnetic window portion,
through which signals are passed in use, of a housing for an antenna.
1. Gehäuse (1) einer Antenne, umfassend:
eine elektromagnetische Fensterpartie, durch welche im Betrieb elektromagnetische
Signale fließen, dadurch gekennzeichnet, dass eine Schicht (3) einer Wand des elektromagnetischen Fensters aus selbstverstärktem
Polypropylen PP-PP ausgebildet ist.
2. Gehäuse (1) nach Anspruch 1, wobei das Gehäuse zur Aufnahme mehrerer Antennen angeordnet
ist.
3. Gehäuse (1) nach Anspruch 1 oder 2, wobei das selbstverstärkte Polypropylen PP-PP
ein nicht-leitfähiges selbstverstärktes Polypropylen PP-PP ist.
4. Gehäuse (1) nach einem der vorhergehenden Ansprüche, wobei das elektromagnetische
Fenster weiter ein Mittel zum Schutz des selbstverstärkten Polypropylens PP-PP gegen
Ultraviolettschädigung umfasst.
5. Gehäuse (1) nach Anspruch 4, wobei das Mittel zum Schutz des selbstverstärkten Polypropylens
PP-PP gegen Ultraviolettschädigung eine Oberflächenschicht aufweist, die entweder
einen pigmentierten Oberflächenfilm oder eine lackierte Oberflächenschicht umfasst.
6. Gehäuse (1) nach Anspruch 5, wobei die Oberflächenschicht Kohlenstoff enthält.
7. Gehäuse (1) nach einem der vorhergehenden Ansprüche, wobei die elektromagnetische
Fensterpartie gebogen ist.
8. Gehäuse (1) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse im Wesentlichen
kegelförmig ist.
9. Gehäuse (1) nach einem der vorhergehenden Ansprüche, wobei das elektromagrietische
Fenster mehrfache Schichten aufweist.
10. Gehäuse (1) nach Anspruch 9, wobei die mehrfachen Schichten zwei Außenschichten von
selbstverstärktem Polypropylen PP-PP umfassen, die auf beiden Seiten einer ersten
Schaumstoffschicht ausgebildet sind.
11. Gehäuse (1) nach Anspruch 10, weiter umfassend eine Kernschicht aus selbstverstärktem
Polypropylen PP-PP und eine zweite Schaumstoffschicht, wobei das elektromagnetische
Fenster so angeordnet ist, dass die Kernschicht aus selbstverstärktem Polypropylen
PP-PP zwischen der ersten und der zweiten Schaumstoffschicht ausgebildet ist.
12. Anwendung von selbstverstärktem Polypropylen PP-PP in einem Gehäuse (1) für eine Antenne.
13. Anwendung von selbstverstärktem Polypropylen PP-PP in einer elektromagnetischen Fensterpartie
eines Gehäuses für eine Antenne, durch welche im Betrieb Signale fließen.
1. Dôme (1) pour antenne comprenant:
une fenêtre électromagnétique faisant partie du dôme, à travers laquelle passent des
signaux électromagnétiques en cours d'usage, caractérisé en ce qu'une couche (3) de paroi de la fenêtre électromagnétique est réalisée en polypropylène
PP-PP auto-renforcé.
2. Dôme (1) selon la revendication 1, caractérisé en ce que le dôme est destiné à recevoir plusieurs antennes.
3. Dôme (1) selon la revendication 1 ou 2, caractérisé en ce que le polypropylène PP-PP auto-renforcé est un polypropylène auto-renforcé non chargé
carbone.
4. Dôme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la fenêtre électromagnétique faisant partie du dôme comporte par ailleurs des moyens
de protection du polypropylène PP-PP auto-renforcé contre la dégradation par les rayons
ultraviolets.
5. Dôme (1) selon la revendication 4, caractérisé en ce que les moyens de protection du polypropylène PP-PP auto-renforcé contre la dégradation
par les rayons ultraviolets comportent une couche superficielle, cette couche superficielle
comprenant une pellicule superficielle pigmentée et une couche superficielle peinte.
6. Dôme (1) selon la revendication 5, caractérisé en ce que la couche superficielle comprend du carbone.
7. Dôme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la fenêtre électromagnétique faisant partie du dôme est courbée.
8. Dôme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dôme est de forme essentiellement conique.
9. Dôme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la fenêtre électromagnétique comporte des couches multiples.
10. Dôme (1) selon la revendication 9, caractérisé en ce que les couches multiples comportent deux couches extérieures de polypropylène PP-PP
auto-renforcé formées de part et d'autre d'une première couche de mousse.
11. Dôme (1) selon la revendication 10, caractérisé en ce que le dôme comporte par ailleurs une couche intérieure de polypropylène PP-PP auto-renforcé
et une deuxième couche de mousse, la fenêtre électromagnétique étant disposée de manière
à ce que la couche intérieure de polypropylène PP-PP auto-renforcé soit formée entre
les première et deuxième couches de mousse.
12. Utilisation de polypropylène PP-PP auto-renforcé dans un dôme (1) pour antenne.
13. Utilisation de polypropylène PP-PP auto-renforcé dans une fenêtre électromagnétique
faisant partie d'un dôme pour antenne, à travers laquelle passent des signaux électromagnétiques
en cours d'usage.


REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description