(19)
(11) EP 2 035 758 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
28.07.2010 Bulletin 2010/30

(21) Application number: 07786886.7

(22) Date of filing: 28.06.2007
(51) International Patent Classification (IPC): 
F25B 11/00(2006.01)
F04F 13/00(2009.01)
F25B 11/02(2006.01)
(86) International application number:
PCT/EP2007/056487
(87) International publication number:
WO 2008/000793 (03.01.2008 Gazette 2008/01)

(54)

A COOLING DEVICE

KÜHLVORRICHTUNG

MÉCANISME DE RÉFRIGÉRATION


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 30.06.2006 TR 200603359

(43) Date of publication of application:
18.03.2009 Bulletin 2009/12

(73) Proprietor: Arçelik Anonim Sirketi
34950 Istanbul (TR)

(72) Inventors:
  • KERPICCI, Husnu
    34950 Istanbul (TR)
  • KURTULUS, Tolga
    34950 Istanbul (TR)


(56) References cited: : 
US-A- 3 367 125
US-A- 4 209 992
US-A1- 2002 069 667
US-A- 3 371 706
US-A- 4 683 725
US-A1- 2006 130 512
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a cooling device wherein a high performance is provided by increasing the compressor inlet pressure of the refrigerant fluid.

    [0002] In hermetic compressors utilized in appliances such as refrigerators, air conditioners etc. the compression activity is achieved by a piston that moves to and fro by means of a crank mechanism in the cylinder, the refrigerant fluid aspirated into the cylinder is compressed by the piston and discharged out of the cylinder as the exhaust valve is opened. The refrigerant having a certain pressure sucked into the compressor is pumped to be compressed to a greater pressure; the sucked and pumped gas pressure determines the compression rate. The power consumed at the compressor is proportional to the compression rate. The refrigerant fluid returning from the refrigerant cycle reaches the compressor with a reduced pressure and the suction of the low pressure refrigerant results in the increase of the power consumed for compression and decrease in the performance of the compressor. The temperature of the refrigerant fluid must be kept as low as possible as the pressure thereof is increased while being sucked into the compressor casing. Failing that, the density of the refrigerant fluid is decreased thus adversely affecting the thermodynamic efficiency. During the refrigerant cycle, auxiliary charging units called turbo chargers or supercharging devices driven by the compressor motor are utilized in order to draw in more refrigerant fluid into the compressor from the refrigerant cycle. These units increase the inlet gas pressure, however driving of these units situated in the compressor casing directly by the compressor motor reduces the efficiency of the compressor and also the temperature of the refrigerant fluid at inlet of the compressor cannot be reduced.

    [0003] In the patent document no. US6659732, in a hermetic compressor a "supercharging device" is utilized that provides to deliver a greater amount of the refrigerant fluid to the cylinder. The movement of a driving pulley disposed on a lower end of a crankshaft is transmitted to another pulley in the suction chamber and to a fan connected to this pulley by means of transmitting means such as the belt or gears. The refrigerant is delivered to the suction chamber wherein the fan operates by means of a suction pipe, one end of which is connected to the evaporator and thus the amount of the refrigerant drawn into the cylinder head is increased by the fan and from thereon is delivered to the refrigerant cycle. Another type of supercharged cooling device is shown in document US-A-3 367 125 which is considered to represent the closest prior art.

    [0004] The aim of the present invention according to claim 1, is the realization of a cooling device wherein a greater cooling performance is provided by increasing the inlet pressure of the refrigerant fluid into the compressor without increasing the temperature.

    [0005] The cooling device realized in order to attain the aim of the present invention is explicated in the attached claims.

    [0006] In the cooling device of the present invention, a supercharging device is utilized which is connected to the refrigerant line that connects the elements of the refrigerant cycle such as the evaporator, the condenser and the capillary tube wherein the refrigerant circulates, providing to increase the pressure of the refrigerant at the inlet of the compressor by transmitting the movement energy received from the pressurized refrigerant at the outlet of the compressor to the refrigerant at the inlet of the compressor. The supercharging device comprises a turbine that moves by the effect of the high pressure refrigerant at the compressor outlet and a pump that is actuated by the drive of the turbine that provides to deliver the low pressure refrigerant received from the refrigerant line to the compressor after increasing the pressure thereof.

    [0007] The supercharging device is disposed outside of the compressor casing and thus provides the refrigerant conveyed to the suction side of the compressor from the refrigerant line, to be delivered into the compressor casing without raising the temperature thereof and thus preventing expansion.

    [0008] In the cylinder inside the compressor, the power required to compress the refrigerant and the piston leaks that occur during compression are decreased by increasing the pressure of the refrigerant at the compressor inlet by means of the supercharging device, providing to increase the amount of the refrigerant pumped at the same stroke volume by the cylinder thus increasing capacity.

    [0009] The supercharging device is preferably connected in between the compressor outlet pipe disposed at the outlet of the compressor and the compressor return pipe disposed at the side wherein the refrigerant enters the compressor.

    [0010] The refrigerant in the compressor outlet pipe is delivered to the turbine via a turbine inlet pipe, and the refrigerant after activating the turbine is delivered to the refrigerant line by the turbine outlet pipe after leaving the turbine. The low pressure refrigerant received from the evaporator is delivered to the pump via a pump inlet pipe and the refrigerant activated by the pump to increase the pressure is then delivered to the compressor return pipe by the pump outlet pipe.

    [0011] The entry and exit of the refrigerant in the inlet and return pipes of the compressor into the supercharging device is controlled by automatic multi-way valves and one-way valves.

    [0012] In another embodiment of the cooling device of the present invention, the turbine part of the supercharging device is connected between the condenser outlet and the evaporator inlet providing to expand the refrigerant to be delivered to the evaporator, thus the use of an additional expansion element for example the capillary tube is deemed unnecessary.

    [0013] The cooling device realized in order to attain the aim of the present invention is illustrated in the attached figures, where:

    [0014] Figure 1 - is the schematic view of a cooling device wherein a supercharging device is used in the refrigerant cycle.

    [0015] Figure 2 - is the schematic view of a cooling device wherein a supercharging device connected between the compressor inlet and return pipes is used.

    [0016] Figure 3 - is the schematic view of a cooling device wherein a supercharging device connected between the condenser outlet and the evaporator inlet is used.

    [0017] The elements illustrated in the figures are numbered as follows:
    1. 1. Cooling device
    2. 2. Compressor
    3. 3. Condenser
    4. 4. Evaporator
    5. 5. Refrigerant line
    6. 6. Supercharging device
    7. 7. Turbine
    8. 8. Pump
    9. 9. Compressor outlet pipe
    10. 10. Compressor return pipe
    11. 11. Turbine inlet pipe
    12. 12. Turbine outlet pipe
    13. 13. , 113. Multi-way valve
    14. 14. , 114. One-way valve (check valve)
    15. 15. Pump inlet pipe
    16. 16. Pump outlet pipe


    [0018] The cooling device (1) comprises a compressor (2) for activating the refrigerant, a condenser (3) that condenses the refrigerant and delivers to the outside surroundings, an evaporator (4) providing to cool the ambient environment by the circulating refrigerant within absorbing the heat, a refrigerant line (5) wherein the refrigerant circulates and that connects together the refrigerant cycle elements such as the compressor (2), condenser (3) and evaporator (4).

    [0019] The cooling device (1) of the present invention comprises a supercharging device (6) connected to the refrigerant line (5) that provides to increase the pressure of the refrigerant entering the compressor (2), having a turbine (7) that moves by the effect of the refrigerant at the pump-out side of the compressor (2) and a pump (8) that is activated by the drive of the turbine (7) that provides the refrigerant delivered from the refrigerant line (5) to the suction side of the compressor (2) to be increased in pressure and sent to the compressor (2).

    [0020] The supercharging device (6) transfers the movement energy received from the pressurized refrigerant on the pump-out side of the compressor (2) to the refrigerant on the suction side of the compressor (2) thus power from a separate motor or from the compressor (2) motor is not required to operate the supercharging device (6).

    [0021] The supercharging device (6) is situated outside of the compressor (2) casing and thus provides the refrigerant delivered to the suction side of the compressor (2) from the refrigerant line (5) to be sent into the compressor (2) casing without increasing the temperature thereof hence preventing expansion.

    [0022] The refrigerant pumped by the compressor (2) is directed towards the turbine (7) providing the turbine (7) to rotate. The refrigerant upon leaving the turbine (7) reaches the condenser (3). The turbine (7) transfers the movement to the pump (8) and the pressure of the refrigerant coming from the evaporator (4) outlet to the suction side of the compressor (2) is increased by the pump (8) (Figures 1, 2).

    [0023] In an embodiment of the present invention, the cooling device (1) comprises a compressor outlet pipe (9) disposed on the pump-out side of the compressor (2), a compressor return pipe (10) disposed on the suction side of the compressor (2) and the supercharging device (6) is connected in between the compressor outlet pipe (9) and the compressor return pipe (10). The refrigerant is directed from the compressor outlet pipe (9) to the turbine (7) part of the supercharging device (6), and the refrigerant activated by the pump (8) driven by the turbine (7) is directed to the compressor return pipe (10) (Figure 2).

    [0024] In this embodiment, the cooling device (1) furthermore comprises a turbine inlet pipe (11) that delivers the refrigerant in the compressor outlet pipe (9) to the turbine (7), a turbine outlet pipe (12) that delivers the refrigerant activating the turbine (7) once again to the refrigerant line (5) after it leaves the turbine (7), a multi-way valve (13) having one inlet and two outlets, that provides the refrigerant in the compressor outlet pipe (9) to be directed partially or entirely to the turbine inlet pipe (11), a one-way valve (check valve) (14) that provides to direct the refrigerant that activates the turbine (7) to the condenser (3) after leaving the turbine (7), a pump inlet pipe (15) that delivers the refrigerant received from the evaporator (4) to the pump (8), a pump outlet pipe (16) for delivering the refrigerant activated by the pump (8) to the compressor return pipe (10), a multi-way valve (113) for directing the refrigerant received from the evaporator (4) outlet partially or entirely to the pump (8), and a one-way valve (check valve) (114) that directs the refrigerant received from the pump outlet pipe (16) to the compressor return pipe (10) (Figure 2).

    [0025] In this embodiment, the refrigerant pumped out by the compressor (2) reaches the multi-way valve (13) passing through the compressor outlet pipe (9). The multi-way valve (13) directs the refrigerant partially or entirely to the turbine (7) by means of the turbine inlet pipe (11) depending on the data received, providing to rotate the turbine (7). The refrigerant upon leaving the turbine (7) reaches the one-way valve (14) through the turbine outlet pipe (12) and from there to the condenser (3). The turbine (7) transfers the motion to the pump (8) and the pressure of the refrigerant at the outlet of the evaporator (4) that is directed to the pump (8) via the multi-way valve (113) is increased by means of the pump (8). The refrigerant is then sent to the one-way valve (114) by means of the pump outlet pipe (16) and from there to the compressor return pipe (10).

    [0026] The multi-way valve (13) at the compressor outlet pipe (9) and the multi-way valve (113) at the compressor return pipe (10) are controlled automatically, providing the supercharging device (6), when necessary, to be de-energized or the refrigerant to be sent partially to the supercharging device (6) depending on the data received from the pressure and temperature sensors disposed in the refrigerant line (5).

    [0027] In another embodiment of the present invention, the turbine (7) part of the supercharging device (6) is connected between the condenser (3) outlet and the evaporator (4) inlet, since the required refrigerant expansion for inlet to the evaporator (4) is provided in the turbine (7), the necessity for an additional expansion element, for example the use of a capillary tube is no longer needed (Figure 3).

    [0028] In this embodiment, the turbine inlet pipe (11) is connected to the condenser (3) outlet and the turbine outlet pipe (12) is connected to the evaporator (4) inlet. The high pressure refrigerant leaving the condenser (3) is delivered to the turbine (7) via the turbine inlet pipe (11), and since the refrigerant now expanded and depressurized while activating the turbine (7) has attained the condition for entering the evaporator (4) and the expanded refrigerant is sent directly to the evaporator (4) inlet after leaving the turbine (7). The pump (8) driven by the turbine (7) provides to increase the pressure of the refrigerant at the inlet of the compressor (2) as in the previous embodiment (Figure 3).

    [0029] In this embodiment, the refrigerant that is pumped out by the compressor (2) is sent directly to the condenser (3) after leaving the compressor (2). The refrigerant, after leaving the condenser (3) is delivered to the turbine via the turbine inlet pipe (11). The refrigerant activating the turbine (7) leaves the turbine (7) with a lower pressure and is delivered to the evaporator (4) inlet via the turbine outlet pipe (12). The refrigerant delivered from the evaporator (4) to the pump (8) by means of the multi-way valve (113) and the pump inlet pipe (15), regains pressure in the pump (8) part of the supercharging device (6) and is sent to the compressor return pipe (10).

    [0030] In the cooling device (1) of the present invention, by means of the supercharging device (6) disposed between the pump-out side of the compressor (2) and suction side of the compressor (2), the pressure of the refrigerant at the compressor (2) inlet is increased and the power required to be consumed for compression in the compressor (2) and the piston leaks during the compression are decreased. Capacity increase is provided by means of increasing the amount of refrigerant pumped in the same stroke volume in the cylinder. The load of the condenser (3) is decreased by means of the refrigerant rotating the turbine (7) expanding by some amount at the outlet of the compressor (2) and thus a smaller size condenser (3) can be used. Since sufficient expansion is provided in the turbine (7) of the supercharging device (6), the use of an additional expansion element such as the capillary tube is not required. Considerable increase in the compressor (2) coefficient of performance is provided, and together with increasing the efficiency of the compressor (2), it is also possible to downsize the compressor (2).


    Claims

    1. A cooling device (1) comprising a compressor (2), a condenser (3), an evaporator (4) being connected together by a refrigerant line (5) wherein the refrigerant circulates and a supercharging device (6) connected to the refrigerant line (5) and characterized by the supercharging device (6) providing to increase a pressure of the refrigerant entering the compressor (2), comprising

    - a turbine (7) that moves by the effect of the refrigerant at the pump-out side of the compressor (2) and

    - a pump (8), that is activated by the drive of the turbine (7) and that provides the refrigerant delivered from the refrigerant line (5) to the suction side of the compressor (2) by increasing the pressure of the refrigerant and that sends the refrigerant to the compressor (2).


     
    2. A cooling device (1) as in Claim 1, characterized by the supercharging device (6) that is disposed outside of the compressor (2) casing.
     
    3. A cooling device (1) as in Claim 1 or 2, characterized by a compressor outlet pipe (9) situated on the pump-out side of the compressor (2), a compressor return pipe (10) situated on the suction side of the compressor (2) and the supercharging device (6) connected in between the compressor outlet pipe (9) and the compressor return pipe (10).
     
    4. A cooling device (1) as in Claim 3, characterized by a turbine inlet pipe (11) that delivers the refrigerant in the compressor outlet pipe (9) to the turbine (7), a turbine outlet pipe (12) that delivers the refrigerant activating the turbine (7) again to the refrigerant line (5) after it leaves the turbine (7), a pump inlet pipe (15) delivering the refrigerant received from the evaporator (4) to the pump (8), and a pump outlet pipe (16) for delivering the refrigerant activated by the pump (8) to the compressor return pipe (10).
     
    5. A cooling device (1) as in Claim 3 or 4, characterized by a multi-way valve (13) comprising one inlet and two outlets, that provides the refrigerant in the compressor outlet pipe (9) to be directed partially or entirely to the turbine inlet pipe (11), a one-way valve (check valve) (14) that provides to direct the refrigerant activating the turbine (7) to the condenser (3) after leaving the turbine (7), another multi-way valve (113) for directing the refrigerant received from the evaporator (4) outlet partially or entirely to the pump (8), and a one-way valve (check valve) (114) that directs the refrigerant received from the pump outlet pipe (16) to the compressor return pipe (10).
     
    6. A cooling device (1) as in Claim 5, characterized by pressure and temperature sensors disposed in the refrigerant line (5) and multi-way valves (13, 113) that provide the supercharging device (6), when necessary, to be de-energized or the refrigerant to be sent partially to the supercharging device (6) depending on the data received from the pressure and temperature sensors.
     
    7. A cooling device (1) as in Claim 1 or 2, characterized by the supercharging device (6) comprising the turbine (7) that is connected between the condenser (3) outlet and the evaporator (4) inlet.
     
    8. A cooling device (1) as in Claim 7, characterized by the turbine inlet pipe (11) connected to the condenser (3) outlet and a turbine outlet pipe (12) connected to the evaporator (4) inlet.
     


    Ansprüche

    1. Kühlvorrichtung (1), aufweisend einen Kompressor (2), einen Kondensator (3), einen Verdampfer (4), die durch eine Kühlmittelleitung (5) verbunden sind, in der das Kühlmittel zirkuliert, und eine Aufladungseinrichtung (6), die mit der Kühlmittelleitung (5) verbunden ist, und dadurch gekennzeichnet, dass die Aufladungseinrichtung (6) vorsieht, den Druck des Kühlmittels zu erhöhen, das in den Kompressor (2) gelangt, aufweisend:

    - eine Turbine (7), die sich aufgrund der Wirkung des Kühlmittels an der Abpumpseite des Kompressors (2) bewegt; und

    - eine Pumpe (8), die durch den Antrieb der Turbine (7) aktiviert wird, und die vorsieht, dass das Kühlmittel von der Kühlmittelleitung (5) an die Ansaugseite des Kompressors (2) geleitet wird, indem sie den Druck des Kühlmittels erhöht, und die das Kühlmittel zum Kompressor (2) befördert.


     
    2. Kühlvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Aufladungseinrichtung (6) außerhalb des Gehäuses des Kompressors (2) angeordnet ist.
     
    3. Kühlvorrichtung (1) nach Anspruch 1 oder 2, gekennzeichnet durch ein Kompressorauslassrohr (9), das an der Abpumpseite des Kompressors (2) angeordnet ist, ein Kompressorrückführrohr (10), das an der Ansaugseite des Kompressors (2) angeordnet ist, und dadurch, dass die Aufladungseinrichtung (6) zwischen dem Kompressorauslassrohr (9) und dem Kompressorrückführrohr (10) angeschlossen ist.
     
    4. Kühlvorrichtung (1) nach Anspruch 3, gekennzeichnet durch ein Turbineneinlassrohr (11), das das Kühlmittel im Kompressorauslassrohr (9) an die Turbine (7) leitet, ein Turbinenauslassrohr (12), das das Kühlmittel, das die Turbine (7) erneut aktiviert, an die Kühlmittelleitung (5) leitet, nachdem es die Turbine (7) verlassen hat, ein Pumpeneinlassrohr (15), das das Kühlmittel, das es vom Verdampfer (4) erhalten hat, an die Pumpe (8) leitet, und ein Pumpenauslassrohr (16), das das Kühlmittel, das von der Pumpe (8) aktiviert wurde, an das Kompressorrückführrohr (10) leitet.
     
    5. Kühlvorrichtung (1) nach Anspruch 3 oder 4, gekennzeichnet durch ein Mehrwegeventil (13), das einen Einlass und zwei Auslässe aufweist, und das vorsieht, dass das Kühlmittel im Kompressorauslassrohrr (9) teilweise oder ganz zum Turbineneinlassrohr (11) geleitet wird, ein Einwegventil (Sperrventil) (14), das vorsieht, dass das Kühlmittel, das die Turbine (7) aktiviert, an den Kondensator (3) geleitet wird, nachdem es die Turbine (7) verlassen hat, ein weiteres Mehrwegeventil (113), das das Kühlmittel vom Auslass des Verdampfers (4) teilweise oder ganz an die Pumpe (8) leitet, und ein Einwegventil (Sperrventil) (114), das das Kühlmittel vom Pumenauslassrohr (16) an das Kompressorrückführrohr (10) leitet.
     
    6. Kühlvorrichtung (1) nach Anspruch 5, dadurch gekennzeichnet, dass Druck- und Temperatursensoren in der Kühlmittelleitung (5) und den Mehrwegeventilen (13, 113) angeordnet sind, die vorsehen, dass abhängig von den Daten, die von den Druck- und Temperatursensoren empfangen werden, die Aufladungseinrichtung (6) bei Bedarf abschaltet wird, oder dass das Kühlmittel teilweise an die Aufladungseinrichtung (6) geleitet wird.
     
    7. Kühlvorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aufladungseinrichtung (6) die Turbine (7) derart aufweist, dass sie zwischen dem Auslass des Kondensators (3) und dem Einlass des Verdampfers (4) angeordnet ist.
     
    8. Kühlvorrichtung (1) nach Anspruch 7, dadurch gekennzeichnet, dass das Turbineneinlassrohr (11) mit dem Auslass des Kondensators (3) verbunden ist, und ein Turbinenauslassrohr (12) mit dem Einlass des Verdampfers (4) verbunden ist.
     


    Revendications

    1. Un dispositif de refroidissement (1) comprenant un compresseur (2), un condenseur (3), un évaporateur (4), tous étant reliés entre eux par une ligne de réfrigérant (5) dans lequel le réfrigérant circule et un dispositif de suralimentation (6) relié à la ligne de refrigérant (5), et caractérisée par le dispositif de suralimentation (6) assurant l'augmentation de la pression du réfrigérant dans le compresseur (2), comprenant

    - une turbine (7) qui se déplace par l'effet du réfrigérant sur le côté de vidange du compresseur (2) et

    - une pompe (8), qui est activée par le lecteur de la turbine (7) et qui fournit le refrigérant provenant de la ligne de réfrigérant (5) vers le côté d'aspiration du compresseur (2) en augmentant la pression du réfrigérant, et qui envoie le réfrigérant dans le compresseur (2).


     
    2. Un dispositif de refroidissement (1) selon la Revendication 1, caractérisé par le dispositif de suralimentation (6) disposé à l'extérieur du boîtier du compresseur (2).
     
    3. Un dispositif de refroidissement (1) selon la revendication 1 ou 2, caractérisé par un tuyau de sortie de compresseur (9) situé sur le côté de vidange du compresseur (2), un tuyau de retour de compresseur (10) situé sur le côté d'aspiration du compresseur (2) et le dispositif de suralimentation (6) relié entre le tuyau de sortie de compresseur (9) et le tuyau de retour de compresseur (10).
     
    4. Un dispositif de refroidissement (1) selon la revendication 3, caractérisé par un tuyau d'entrée de turbine (11) qui transmet le réfrigérant venant du tuyau de sortie de compresseur (9) à la turbine (7), un tuyau de sortie de turbine (12) qui transmet le réfrigérant activant la turbine (7) de nouveau à la ligne de réfrigérant (5) après qu'il sort de la turbine (7), un tuyau d'entrée de pompe (15) transmettant le réfrigérant reçu de l'évaporateur (4) à la pompe (8), et tuyau de sortie de pompe (16) pour transmettre le réfrigérant activé par la pompe (8) au tuyau de retour de compresseur (10).
     
    5. Un dispositif de refroidissement (1) selon la revendication 3 ou 4, caractérisé par une vanne multi-voies (13) comprenant une entrée et deux sorties, qui fournit le réfrigérant dans le tuyau de sortie de compresseur (9) à être dirigée en partie ou entièrement vers le tuyau d'entrée de turbine (11), un clapet anti-retour (clapet) (14) qui sert à diriger le réfrigérant activant la turbine (7) vers le condenseur (3) après qu'il sort de la turbine (7), une autre vanne multi-voies (113) pour diriger le réfrigérant reçu de la sortie de l'évaporateur (4) partiellement ou entièrement vers la pompe (8), et un clapet anti-retour (clapet) (114) qui dirige le réfrigérant provenant du tuyau de sortie de pompe (16) au tuyau de retour de compresseur (10).
     
    6. Un dispositif de refroidissement (1) selon la revendication 5, caractérisé par des capteurs de pression et de température disposés dans la ligne de réfrigérant (5) et des vannes multi-voies (13, 113) qui permettent au dispositif de suralimentation (6), le cas échéant, de se mettre en hors tension ou au réfrigérant d'être envoyé en partie au dispositif de suralimentation (6) en fonction des données reçues des capteurs de pression et de température.
     
    7. Un dispositif de refroidissement (1) selon la revendication 1 ou 2, caractérisé par le dispositif de suralimentation (6) comprenant la turbine (7) qui est connectée entre la sortie du condenseur (3) et l'entrée de l'évaporateur (4).
     
    8. Un dispositif de refroidissement (1) selon la revendication 7, caractérisé par le tuyau d'entrée de turbine (11) connecté à la sortie du condenseur (3), et un tuyau de sortie la turbine (12) connecté à l'entrée de l'évaporateur (4).
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description