(19)
(11) EP 1 608 928 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
29.09.2010 Bulletin 2010/39

(21) Application number: 04721949.8

(22) Date of filing: 19.03.2004
(51) International Patent Classification (IPC): 
F28F 1/02(2006.01)
F28F 1/04(2006.01)
F28D 1/053(2006.01)
(86) International application number:
PCT/GB2004/001215
(87) International publication number:
WO 2004/083762 (30.09.2004 Gazette 2004/40)

(54)

METHOD FOR PROVIDING FLAT TUBE DESIGNS FOR AN AUTOMOTIVE HEAT EXCHANGER

VERFAHREN ZUR AUSLEGUNG VON FLACHROHREN FÜR KRAFTFAHRZEUG-WÄRMETAUSCHER

PROCÉDÉ POUR LA CONFIGURATION DE TUBES PLATS POUR ÉCHANGEUR DE CHALEUR DE VÉHICULE AUTOMOBILE


(84) Designated Contracting States:
DE FR GB

(30) Priority: 19.03.2003 GB 0306269

(43) Date of publication of application:
28.12.2005 Bulletin 2005/52

(73) Proprietor: Calsonic Kansei UK Limited
Llanelli, Carmarthenshire SA14 8HU (GB)

(72) Inventor:
  • YUAN, Youming, Calsonic Kansei UK Limited
    Carmathenshire SA14 8HU (GB)

(74) Representative: Davies, Gregory Mark 
Urquhart-Dykes & Lord LLP Churchill House
Churchill Way Cardiff CF10 2HH
Churchill Way Cardiff CF10 2HH (GB)


(56) References cited: : 
EP-A- 0 596 507
EP-A- 0 990 828
US-A- 5 476 141
EP-A- 0 881 448
DE-A- 19 921 407
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a method for providing flat tube designs and in particular to a method for providing flat tube designs for use in automotive heat exchangers, particularly automotive HVAC heat exchangers.

    [0002] Automotive air-conditioning industry has been experiencing significant changes in recent years due to environmental concerns. Concerns about the damaging impact of the chloroflurocarbon refrigerant (CFC) to the ozone layer have led to its complete replacement by the hydroflurocarbon refrigerant (HFC) R134a. Although HFC refrigerant is known to have limited ozone depleting effects, it still has a significantly high global warming potential, about 1,300 times higher than carbon dioxide gas of the same amount. This is increasingly becoming environmentally unacceptable. Such environmental pressure has led to international treaties, protocols and proposed legislation in some countries to either ban completely the use of HFC refrigerants over a short period of time, or to penalise its usage by levying a hefty environmental tax. Therefore, increased efforts and investment have been made by the automotive industry to seek new alternative refrigerants, which can eliminate or alleviate the environmental impacts of mobile HVAC system.

    [0003] Carbon dioxide has been shown to be one of the most promising candidates for an environmentally friendly refrigerant. CO2 has been used before the adoption of CFC refrigerant and it is still used as a refrigerant in deep freezing industry today. Due to the particular thermophysical properties of carbon dioxide (its low critical temperature of about 31°C), however, when used for mobile air conditioning, it has to be operated in a transcritical cycle in most mobile air conditioning usage, when the ambient air temperature is likely to be high. Thus in a mobile CO2 air conditioning system, the heat exchanger that dissipates heat to the ambient air (also known as gas cooler) has to operate in a high pressure supercritical state, usually over 100 bar. Its operation in supercritical state also means that in part of the gas cooler the temperature tends to be very high and that the refrigerant temperature varies significantly (known as temperature slide) through the gas cooler.

    [0004] It is known that in a transcritical air-conditioning cycle, the cooling capacity and energy efficiency, known as coefficient of performance, which is defined as the ratio of cooling capacity to the power consumed, depends strongly on high gas cooler effectiveness and low gas cooler pressure loss. This can only be realized through careful refrigerant tube design and optimal combination of tube with the airside heat transfer surfaces such as louvered airways.

    [0005] Flat tubes with multiple circular section geometry channels have been designed for both the conventional and CO2 air conditioning systems. While the circular section geometry channel offers good strength characteristics, it is not most effective in maximizing heat transfer conductance for the same tube cross-section.

    [0006] EP0881448 A describes a multi-bored flat tube having outermost unit passages located at both ends of the tube and intermediate unit passages between the outermost unit passages. The outermost unit passage has a circular-based inner surface in cross-section, such as a circumferentially smooth curved shape in cross-section like a perfect circular shape or elliptical shape, or has a circular-based inner surface in cross-section having a plurality of inner fins extending in a longitudinal direction of the tube. The intermediate unit passage has a non-circular based cross-sectional shape, such as a rectangular, triangular, trapezoidal, or circular based shape including a plurality of inner fins.

    [0007] EP 0990828 A2 discloses a multichannel flat tube for a heat exchanger comprising a plurality of parallel flow channels. The channels are adjacent to one another in a transversal direction with regard to the tube and have an oval cross-section. The outer surfaces of the tube have a wave-shaped cross-section corresponding to the flow channels in such a way that the flat tube is thinner in the vertical direction of the tube between each two flow channels than in the area of a respective flow channel.

    [0008] An improved arrangement has now been devised.

    [0009] According to a first aspect, the present invention provides a method for providing flat tube designs for an automotive heat exchanger according to claim 1.

    [0010] According to a further aspect, the present invention provides a method for providing flat tube designs for an automotive heat exchanger according to claim 2.

    [0011] The present invention provides flat tube designs with non-circular cross-section channel geometry, that are narrow to reduce airside pressure drop, strong to withstand high pressure, of light weight and that also offer higher heat conductance and lower pressure drop compared to flat tube with circular cross-section channel with the same tube cross-section size.

    [0012] It is preferred that the tube is extruded, the channels preferably being formed in the extrusion process. The tube is preferably used in an HVAC gas cooler having a working fluid operating in a substantially supercritical state. Preferably the tube material is aluminium. Preferably the refrigerant is CO2.

    [0013] The invention will now be further described, in specific embodiments, by way of example only and with reference to the accompanying drawings, in which:

    Figure 1 is a schematic sectional view of a tube with triangular cross-section channels;

    Figure 2 is a graphic representation of effects on channel width on performance compared with a comparable circular section channel tube;

    Figure 3 is a schematic sectional view of a tube with rectangular cross-section channels;

    Figure 4 is a graphic representation of effect on channel width for the tube with rectangular section channels compared with a comparable circular section channel tube;

    Figure 5 is a schematic sectional view of a tube in accordance with waisted rectangular cross-section channels;

    Figure 6 is a graphic representation of effect on channel width for the tube of Figure 5 compared to a comparable circular section channel tube; and

    Figure 7 is a graphic comparison between refrigerant temperature in a triangular cross-section channel tube and a comparable circular cross-section channel tube.



    [0014] In the embodiment referred to, a heat exchange tube (1), typically of extruded aluminium material is provided with a series of substantially parallel working fluid (refrigerant) channels 2. Typically the tubes extend between headers and are stacked in a row having air-gaps between adjacent tubes. An airway or fin matrix may be provided in thermal contact with adjacent spaced tubes in order to maximise heat transfer. Typically, where aluminium is used, the heat exchanger is brazed together.

    [0015] One of the preferred realisations of the invention is a flat tube 1 with multiple channels 2 of triangular cross-section. The second realisation is a flat tube of multiple channels of rectangular cross-section and yet a third realisation is a flat tube of multiple channels with a shape modified from rectangular cross-section.

    [0016] The performance of the three realisations are compared to the benchmark round channel flat tubes under the same overall tube cross-section size. The maximum channel dimension in the tube minor axis direction is fixed as the same as the round channel diameter. The variation of the total heat conductance for each tube, incorporating a typical airside surface design and airside flow condition, and of the pressure drop through one tube, for a fixed tube length, are calculated with the variation of the channel width. The merits of each design are judged by these two performance parameters compared to the benchmark circular cross-section channel flat tube.

    [0017] To achieve light weight, under a fixed overall tube cross-section, it is necessary to maximize total channel cross-section area, this maximisation of total channel area also helps in reducing the refrigerant pressure drop. Compared to the benchmark circular cross-section channel tube, all three realisations result in increased total channel cross-section area and therefore provide a lighter tube design.

    [0018] The maximisation of total channel cross-section area needs also to result in a tube design having sufficient structural robustness. Therefore, the maximum dimension of the channel in the tube minor axis direction should be no more than a fixed fraction of the tube minor axis dimension. Similarly, over any intersection line between the tube end surface and any plane perpendicular to the tube end surface, the ratio of the total length falling into the channels to the total line length should not be greater than a fixed fraction. The exact value of these fraction numbers should ideally be a function of the desired burst pressure and the yield stress of the tube material.

    [0019] The performance of this realisation, compared to the round channel case, is shown in Figure 2. It shows that for a fixed tube width illustrated here, a channel width (triangle base dimension) greater than 0.5 mm offers improved heat transfer conductance at the same or very slight increase in pressure drop. Considering, however, the structural requirements, the ratio of channel width to the triangle height should be limited by a maximum of about 3. Thus the optimal range of channel dimension should give 30° < α < 65°.

    [0020] To verify the preferred triangular channel design, some three dimension CFD simulations have been done to compare with the benchmark round channel flat tube. Figure 7 shows the result of the refrigerant temperatures in a flat tube of preferred triangular channel and in a benchmark circular cross-section channel flat tube. It can be seen that preferred triangular channel tube is more effective and cools the refrigerant to the same extent as a circular cross-section channel tube of a third longer length. For the same length, the new triangular channel tube will give a heat transfer rate about 7% higher.

    [0021] Figure 3 shows the second realisation with rectangular channel. In this realisation the total channel cross-section area is increased by 27% compared to the benchmark round channel case and correspondingly the weight of the tube is reduced significantly. To maintain the structural robustness, the limitation on the two ratios as discussed in first realisation still holds.

    [0022] As in Figure 2, the performance of the flat tube of the second realisation versus the channel width, compared again to the benchmark round channel tube is shown in Figure 4. The optimal performance range, offering better or equivalent under the same or much lower pressure drop, is 0.5 < w/H <2.2.

    [0023] A further and third realisation is schematically shown in Figure 5. The rectangular channel in the second realisation is modified to improve structural robustness of the rectangular channel. This design still offers weight reduction compared to the benchmark round channel flat tube. To maintain the structural robustness, again the limitation on the two ratios as discussed in first realisation still holds.

    [0024] The performance of the flat tube of the third realisation versus the channel width is shown in Figure 6. Again a optimal ratio of channel width to the maximum channel height is identified as between 0.6 and 1.6.

    [0025] In general, for optimum performance, it has been found that the ratio of the maximum channel dimension in section in the tube minor axis direction to the tube minor axis dimension is less than a factor of the ratio between the bursting pressure and the tube material yield stress:


    where A is a safety factor and A < 1.

    [0026] For optimum performance, it has also been found that the ratio of the sum of the length of all the channel widths to the tube major axis dimension is less than a factor of the ratio between the bursting pressure and the tube material yield stress:


    where B is a safety factor and B < 1.


    Claims

    1. A method for providing flat tube designs for an automotive heat exchanger, wherein the tube (1) comprises a plurality of flow channels (2) extending in the longitudinal direction of the tube, the channels having substantially non-circular cross-sectional geometry,
    characterised in that the tube (1) is designed to have a predetermined burst pressure (Pburst) for the yield stress (σyeild) of the material and wherein a user defined safety factor (A) is included in a calculation to define the maximum channel dimension (H) in section in the tube minor axis direction to the tube minor axis dimension (Ltminor), according to the ratio:


    where A < 1.
     
    2. A method for providing flat tube designs for an automotive heat exchanger, wherein the tube (1) comprises a plurality of flow channels (2) extending in the longitudinal direction of the tube, the channels having substantially non-circular cross-sectional geometry,
    characterised in that the tube (1) is designed to have a predetermined burst pressure (Pburst) for the yield stress (σyeild) of the material and wherein a user defined safety factor (B) is included in a calculation to define the sum of the length of all the channel widths (Swi) to the tube major axis dimension (Ltmajor), according to the ratio:


    where B < 1.
     
    3. A method according to claim 1 or 2, wherein:

    i) the tube (1) is extruded; and/or

    ii) the tube (1) is used in an HVAC gas cooler having a working fluid operating in a substantially supercritical state; and/or

    iii) the tube (1) is used in an HVAC gas cooler having CO2 as a working fluid operating in a substantially supercritical state.


     
    4. A method according to any preceding claim, wherein:

    i) the tube (1) is of aluminium material; and/or

    ii) the minor axis dimension of the tube (1) is substantially in the range 1 mm to 2.5 mm.


     
    5. A method according to any preceding claim, wherein::

    i) the operational pressure of the fluid in the tube (1) is substantially at or above 100 bar; and/or

    ii) the channels (2) comprise substantially triangular section channels; and/or

    iii) the substantially triangular section channels are arranged in tessellating relationship substantially side-by-side in a row,

    preferably wherein the triangular section of the channels (2) conforms substantially to an isosceles triangle with the corresponding base angles (α) substantially in the range 30° ≤α ≤65°.
     
    6. A method according to any preceding claim, wherein the channels (2) comprise substantially rectangular section channels, preferably the channel width (w) to height (H) ratio is substantially in the range 0.5 ≤w/H ≤2.2.
     
    7. A method according to any of claims 1 to 5, wherein the channels (2) comprise channels conforming substantially to a rectangular section having narrowed waisted mid-channel along its width, preferably wherein the ratio of channel width (w) to maximum channel height (H) is substantially in the range 0.6 ≤w/H ≤1.6.
     


    Ansprüche

    1. Verfahren zur Bereitstellung von Gestaltungen von Flachrohren für einen Automobil-Wärmetauscher, wobei das Rohr (1) eine Vielzahl von StrömungsKanälen (2) aufweist, welche sich in longitudinaler Richtung des Rohres erstrecken, wobei die Kanäle im Wesentlichen eine nicht-kreisförmige Querschnittsgeometrie aufweisen,
    dadurch gekennzeichnet, dass das Rohr (1) dazu gestaltet ist, einen vorbestimmten Berstdruck (Pberst) für die Streckgrenze (σstreck) des Materials aufzuweisen, wobei ein nutzerdefinierter Sicherheitsfaktor (A) in die Berechnung zur Bestimmung des maximalen Kanalausmaßes (H) im Abschnitt in Richtung der Nebenachse des Rohres zu dem Ausmaß der Nebenachse des Rohres (Ltneben) einbezogen wird, gemäß dem Verhältnis


    mit A < 1.
     
    2. Verfahren zur Bereitstellung von Gestaltungen von Flachrohren für einen Automobil-Wärmetauscher, wobei das Rohr (1) eine Vielzahl von StrömungsKanälen (2) aufweist, welche sich in longitudinaler Richtung des Rohres erstrecken, wobei die Kanäle im Wesentlichen eine nicht-kreisförmige Querschnittsgeometrie aufweisen,
    dadurch gekennzeichnet, dass das Rohr (1) dazu gestaltet ist, einen vorbestimmten Berstdruck (Pberst) für die Streckgrenze (σstreck) des Materials aufzuweisen, wobei ein nutzerdefinierter Sicherheitsfaktor (B) in die Berechnung zur Bestimmung der Summe der Länge aller Kanalbreiten (Sbr) bezogen auf das Ausmaß der Hauptachse des Rohres (Lthaupt) einbezogen wird, gemäß dem Verhältnis


    mit B < 1.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei

    i) das Rohr (1) extrudiert ist, und/oder

    ii) das Rohr (1) in einem HVAC Gaskühler verwendet wird, wobei das Arbeitsfluid im Betrieb in einem im Wesentlichen überkritischen Zustand ist, und/oder

    iii) das Rohr (1) in einem HVAC Gaskühler verwendet wird, wobei das Arbeitsfluid CO2 ist, welches im Betrieb in einem im Wesentlichen überkritischen Zustand ist.


     
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei

    i) das Rohr (1) aus Aluminiummaterial ist, und/oder

    ii) das Ausmaß der Nebenachse des Rohres (1) im Wesentlichen in dem Bereich 1 mm bis 2,5mm liegt.


     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei

    i) der Betriebsdruck des Fluids in dem Rohr (1) im Wesentlichen bei oder über 100bar liegt, und/oder

    ii) die Kanäle (2) Kanäle mit im Wesentlichen dreieckigen Abschnitten aufweisen, und/oder

    iii) die Kanäle mit im Wesentlichen dreieckigen Abschnitten in tesselierender Relation im Wesentlichen Seite-an-Seite in einer Reihe angeordnet sind,

    wobei vorzugsweise der dreieckige Abschnitt der Kanäle (2) im Wesentlichen konform ist zu einem gleichschenkligen Dreieck und die entsprechenden Basiswinkel (α) im Wesentlichen im Bereich 30° ≤α ≤65° liegen.
     
    6. Verfahren nach einem der vorstehenden Ansprüche, wobei die Kanäle (2) Kanäle mit im Wesentlichen rechteckigen Abschnitten aufweisen, und die Relation von Kanalbreite (b) zu Kanalhöhe (H) vorzugsweise im Wesentlichen im Bereich 0,5 ≤ w/H ≤2,2 liegt.
     
    7. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Kanäle (2) Kanäle aufweisen, die im Wesentlichen konform zu einem rechteckigen Abschnitt sind und einen verengten taillierten Mittelkanal entlang ihrer Breite aufweisen, wobei vorzugsweise das Verhältnis von Kanalbreite (b) zu der maximalen Kanalhöhe (H) im Wesentlichen in dem Bereich 0,6 ≤w/H ≤1,6 liegt.
     


    Revendications

    1. Procédé pour fournir des modèles de tubes plats pour un échangeur de chaleur d'automobile, dans lequel le tube pour fournir des modèles de tubes plats comprend une pluralité de canaux d'écoulement (2) s'étendant dans la direction longitudinale du tube, la section transversale des canaux présentant une géométrie essentiellement non circulaire,
    caractérisé en ce que le tube pour fournir des modèles de tubes plats est conçu de sorte à avoir une pression d'éclatement prédéterminée (Péclatement) pour la limite d'écoulement (σtension) du matériau et dans lequel un facteur de sécurité (A) défini par un utilisateur est inclus dans un calcul pour définir la dimension de canal maximale (H) en section dans la direction de l'axe secondaire du tube par rapport à la dimension de l'axe secondaire du tube (Ltsecondaire) selon le rapport :


    où A est < 1.
     
    2. Procédé pour fournir des modèles de tubes plats pour un échangeur de chaleur d'automobile, dans lequel le tube pour fournir des modèles de tubes plats comprend une pluralité de canaux d'écoulement (2) s'étendant dans la direction longitudinale du tube, la section transversale des canaux présentant une géométrie essentiellement non circulaire,
    caractérisé en ce que le tube pour fournir des modèles de tubes plats est conçu de sorte à avoir une pression d'éclatement prédéterminée (Péclatement) pour la limite d'écoulement (σtension) du matériau et dans lequel un facteur de sécurité défini par l'utilisateur (B) est inclus dans un calcul pour définir la somme de la longueur de toutes les largeurs de canal (Swi) par rapport à la dimension du grand axe du tube (Ltgrand) selon le rapport :


    où B est < 1.
     
    3. Procédé selon la revendication 1 ou 2, dans lequel :

    i) le tube (1) est extrudé ; et/ou

    ii) le tube (1) est utilisé dans un refroidisseur de gaz CVCA ayant un fluide de travail fonctionnant dans un état essentiellement supercritique ; et/ou

    iii) le tube (1) est utilisé dans un refroidisseur de gaz CVCA ayant du CO2 servant de fluide de travail fonctionnant dans un état essentiellement supercritique.


     
    4. Procédé selon l'une quelconque des revendications précédentes, dans lequel :

    i) le tube (1) est en aluminium ; et/ou

    ii) la dimension de l'axe secondaire du tube (1) est essentiellement comprise dans la plage entre 1 et 2,5 mm.


     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel :

    i) la pression opérationnelle du fluide dans le tube (1) s'élève essentiellement à ou est supérieure à 100 bars ; et/ou

    ii) les canaux (2) comprennent des canaux de section essentiellement triangulaire ; et/ou

    iii) les canaux de section essentiellement triangulaire sont disposés en mosaïque essentiellement les uns à côté des autres dans une rangée,

    de préférence dans lequel la section triangulaire des canaux (2) se conforme essentiellement en un triangle isocèle avec les angles de base (α) correspondants essentiellement dans la plage de 30° ≤ α ≤ 65°.
     
    6. Procédé selon l'une quelconque des revendications précédentes, dans lequel les canaux (2) comprennent des canaux de section essentiellement rectangulaires, de préférence le rapport entre la largeur (w) et la hauteur (H) de canal est essentiellement dans la plage de 0,5 ≤ w/H ≤ 2,2.
     
    7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les canaux (2) comprennent des canaux se conformant essentiellement en une section rectangulaire ayant une partie centrale rétrécie le long de sa largeur, de préférence dans lequel le rapport entre la largeur (w) et la hauteur de canal maximale (H) est essentiellement dans la plage de 0,6 ≤ w/H ≤ 1,6.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description