(19)
(11) EP 2 298 450 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.03.2011  Patentblatt  2011/12

(21) Anmeldenummer: 10009783.1

(22) Anmeldetag:  17.09.2010
(51) Internationale Patentklassifikation (IPC): 
B03C 3/41(2006.01)
B03C 3/68(2006.01)
B03C 3/016(2006.01)
B03C 3/64(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME RS

(30) Priorität: 18.09.2009 DE 102009042113

(71) Anmelder: KMA Umwelttechnik GmbH
53639 Königswinter (DE)

(72) Erfinder:
  • Riebel, Ulrich
    03096 Briesen (DE)
  • Schwentner, Joachim
    03044 Cottbus (DE)

(74) Vertreter: Laufhütte, Dieter et al
LORENZ - SEIDLER - GOSSEL Widenmayerstrasse 23
D-80538 München
D-80538 München (DE)

   


(54) Elektroabscheider und Verfahren zur Partikelabscheidung aus Gasen


(57) Die vorliegende Erfindung betrifft einen Elektroabscheider zum Abscheiden von Stäuben aus Aerosolen, die einen hohen elektrischen Widerstand aufweisen, insbesondere einen Elektroabscheider, zum Abscheiden von Stäuben aus Aerosolen, die einen elektrischen Widerstand aufweisen, mit einer Niederschlagselektrode und einer Hochspannungselektrode, wobei ein Mittel zur Zuführung von Hilfsenergie vorgesehen ist, wodurch die Freisetzung von Ladungen steuerbar ist. Des weiteren wird durch die Erfindung ein Verfahren zur Abscheidung von Stäuben mittels Zuführung von Hilfsenergie dargelegt.




Beschreibung


[0001] Die vorliegende Erfindung betrifft einen Elektroabscheider, zum Abscheiden von Stäuben aus Aerosolen, die einen elektrischen Widerstand aufweisen, mit einer Niederschlagselektrode und einer Hochspannungselektrode. Des weiteren wird durch die Erfindung ein Verfahren zur Abscheidung von Stäuben dargelegt.

[0002] Trockene Elektroabscheider zur Partikelabscheidung aus Gasen funktionieren nach gängiger Lehrmeinung nur für einen spezifischen Staubwiderstand im Bereich 105 bis 1011 Ω cm. Bei Staubwiderständen oberhalb 1010 bis 1011 Ω cm kommt es nach der Lehrmeinung zum sogenannten Rücksprühen.

[0003] Bei hohen Staubwiderständen kann gemäß der Gleichung



[0004] aufgrund der Stromdichte i und des spez. elektrischen Staubwiderstands ρ eine unzulässig hohe Feldstärke E in der auf der Niederschlagselektrode abgelagerten Staubschicht erreicht werden. Das Rücksprühen entsteht dann durch einen elektrischen Durchbruch in der Staubschicht und erzeugt eine Gegen-Corona, die zu einer Neutralisation oder zu einer Ladungsumkehr von Teilchen im Gasraum oder zur Redispergierung bereits abgeschiedener Teilchen führt. Damit kommt der Abscheidevorgang zum Erliegen.

[0005] Ein nicht zu unterschätzendes Problem stellt sich beim Einsatz neuartiger Brennstoffe (Sekundärbrennstoffe) dar, was zunehmend zu Rücksprüh-Problemen im Bereich der Kraftwerke führt. Ferner gilt das Rücksprühen als ein generelles Problem bei der elektrischen Abscheidung von hochohmigen partikelförmigen Industrieprodukten aus Gasströmen.

[0006] Als Obergrenze des in Elektroabscheidern zulässigen Staubwiderstandes wird der Bereich zwischen 1010 bis 1011 Ω cm angegeben. Bei Stäuben mit höherem spez. Widerstand sind verschiedene Maßnahmen bekannt, um die Abscheidbarkeit zu verbessern.

[0007] Insbesondere wird versucht, durch die Wahl des Temperaturbereiches, durch Kontrolle der Feuchtigkeit oder durch Zusatz von Additiven wie SO2 zum Rauchgas den Widerstand zu beeinflussen.

[0008] Ein weiterer Ansatz besteht in der Reduzierung der Stromstärke an der Niederschlagselektrode. Dabei soll jedoch gleichzeitig eine hohe Feldstärke aufrecht erhalten werden, um eine gute Abscheidung der geladenen Teilchen sicher zu stellen. Eine bekannte Maßnahme hierzu ist der Einsatz einer gepulsten Hochspannungsversorgung. Hiermit wird erreicht, dass nur während der kurzzeitigen Spannungsspitzen ein Stromfluss stattfindet, so dass der Stromfluss im zeitlichen Mittel reduziert ist. Die Einstellung der mittleren Stromstärke erfolgt über die Häufigkeit der Pulse. Damit kann die Abscheidung deutlich verbessert werden (enhancement factor) und eine Abscheidbarkeit der Stäube bis in den Bereich um 1013 Ω cm erreicht werden [K.R. Parker, Applied Electrostatic Precipitation, Chapman & Hall, London 1997, pp 166 - 172, 230 - 240]

[0009] Für viele potentielle Anwendungen von Elektroabscheidern ist dies aber nicht ausreichend, da spezifische Staubwiderstände von bis zu 1017 Ω cm in der Praxis vorkommen und das Tastverhältnis bei der gepulsten Hochspannungsversorgung nicht in einem entsprechend weiten Bereich angepasst werden kann. Tatsächlich müßte man, um die Abscheidung von Stäuben mit speziellen Widerständen von bis zu 1017 Ω cm zu beherrschen, die Stromdichte um bis zu 6 Größenordnungen, bis in den Bereich von pA/m2, reduzieren können. Dies stellt jedoch nach den bisher aus dem Stand der Technik bekannten Ansätzen ein unlösbares Problem dar.

[0010] Der Erfindung liegt daher die Aufgabe zu Grunde, eine Vorrichtung und ein Verfahren aufzuzeigen, die ein zuverlässiges Abscheiden von hochohmigen Stäuben, insbesondere im Bereich größer 1011 Ω cm gewährleisten.

[0011] Die vorliegende Aufgabe wird durch einen Elektroabscheider mit den Merkmalen des Anspruch 1 gelöst. Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung sind Gegenstand der abhängigen Unteransprüche 2 bis 19. Weiterhin wird die Aufgabe durch ein Verfahren nach den Merkmalen des Anspruchs 20 gelöst, mit den vorteilhaften Weiterbildungen gemäß den abhängigen Unteransprüchen 21 bis 24.

[0012] Die erfindungsgemäße Vorrichtung zum Abscheiden von Stäuben aus einem Aerosol mit einem elektrischen Widerstand weist mindestens eine Niederschlagselektrode und eine Hochspannungselektrode auf. Zwischen der Hochspannungs- und der Niederschlagselektrode ist ein elektrisches Feld in Abhängigkeit des an der Hochspannungselektrode angelegten Potentials erzeugbar, in welchem die Staubpartikel statisch durch eine Corona-Entladung aufgeladen werden. Die geladenen Staubpartikel wandern durch den Abscheideraum zur Niederschlagselektrode hin und lagern sich auf dieser ab, die Partikel erzeugen also einen Stromfluss in Richtung der Niederschlagselektrode. Um das Rücksprühen der hochohmigen Staubpartikel von der Niederschlagselektrode zurück in den Raum zu vermeiden, muß die Stromdichte der Coronaentladung an der Niederschlagselektrode gesenkt werden. Erfindungsgemäß weist die Vorrichtung dafür mindestens ein Mittel zur Zuführung von Hilfsenergie an die Hochspannungselektrode auf, wodurch die Freisetzung von Ladungen steuerbar ist. Insbesondere werden durch die zugeführte Hilfsenergie Ladungen auf der Oberfläche der Hochspannungselektrode oder im an der Oberfläche angrenzenden Bereich freigesetzt.

[0013] Mit der erzeugten Hilfsenergie lassen sich demnach auch sehr geringe Stromstärken steuern bzw. einstellen und somit die Stromdichten auf der Niederschlagselektrode bis hinunter in den Bereich von 1 nA/m2 zuverlässig und ausreichend empfindlich einstellen, wodurch die Wahrscheinlichkeit des Rücksprühens der abgelegten Partikel erheblich reduzierbar ist. Das Potential der Hochspannungselektrode und die Stromstärke sind folglich unabhängig voneinander regelbar.

[0014] Geeignete Mittel zur Erzeugung der Hilfsenergie, mit der sehr geringe Stromstärken steuerbar sind, stellen vorteilhafterweise geeignete Bestrahlungsmittel zur Erzeugung von Licht, insbesondere UV-Licht oder radioaktiven Strahlen bzw. Röntgenstrahlung dar. Bei der Freisetzung von Ladungen mit Hilfe von Photoelektronen liegt bevorzugt die Hochspannungselektrode auf negativem Potential, da die UV-Strahlung generell nur negative Ladungen aus der Oberfläche der Hochspannungselektrode freisetzen kann.

[0015] Vorteilhafte Bestrahlungsmittel sind bevorzugt ein oder mehrere Hg-Gasentladungslampen und bzw. oder Bogenlampen und bzw. oder Halogenlampen und bzw. oder UV-Leuchtdioden.

[0016] Es kann vorgesehen sein, dass mittels des Bestrahlungsmittels die Oberfläche der Hochspannungselektrode vollständig oder zumindest teilweise bestrahlbar ist. Dadurch ist die Stromausbeute auf Grund der Abmessung der bestrahlten Fläche der Hochspannungselektrode regelbar. Ferner kann durch die gezielte Bestrahlung einzelner Oberflächensegmente der Oberfläche der Hochspannungselektrode der Stromfluß gezielt an bestimmten Stellen erzeugt bzw. beeinflußt werden.

[0017] Die Plazierung der Bestrahlungsmittel ist vorteilhafterweise beliebig innerhalb der Vorrichtung vorzunehmen, besonders bevorzugt ist mindestens ein Bestrahlungsmittel innerhalb der Gehäusewand der Vorrichtung zum Abscheiden von Stäuben und/oder auf bzw. innerhalb einer oder mehrerer Elektroden, beispielsweise der Hochspannungselektrode, Niederschlagselektrode oder einer weiteren beliebigen Elektrode, angeordnet. Dies entspricht einer besonders günstigen und platzsparenden Anordnung des oder der geeigneten Bestrahlungsmittel.

[0018] Zum Schutz der verwendeten Bestrahlungsmittel, insbesondere der Betrahlungsmittel zur Erzeugung von Licht, ist es denkbar, dass diese durch eine lichtdurchlässige, bevorzugt UV-Licht durchlässige, Hülle bzw. wenigstens durch ein Fenster schützend umgeben sind. Die Hülle bzw. das Fenster dienen zur Vermeidung von Ablagerungen der abgeschiedenen Materialen auf dem Bestrahlungsmittel, welche die Funktionalität dieser während des Betriebes bemerkbar einschränken könnten. Durch die lichtdurchlässigen, insbesondere UV-Licht durchlässigen Stoffe wird trotzdem eine unbeeinträchtigte Strahlungsfunktion der Mittel gewährleistet.

[0019] Da sich auf der erwähnten Schutzvorrichtung ebenfalls abgeschiedene Materialen absetzen können und dadurch die Durchlässigkeit dieser einschränken können, ist bevorzugt ein Mittel zur Reinigung der Fenster bzw. der Hülle an dem Bestrahlungsmittel angeordnet.

[0020] Statt der verwendeten Bestrahlungsmittel kann alternativ ein Glühdraht als Mittel zur Zuführung der Hilfsenergie vorgesehen sein, welcher mit der Hochspannungselektrode verbunden bzw. verbindbar ist. Die kontrollierbare Freisetzung von Ladungen erfolgt in diesem Fall durch eine thermisch induzierte Emission von Elektronen aus der Oberfläche der Hochspannungselektrode.

[0021] In einer besonders bevorzugten Ausführungsvariante umfaßt das Mittel mindestens eine isolierte Hilfselektrode, die in unmittelbarer Nähe zur Hochspannungselektrode angeordnet ist. Mit der Verwendung einer Hilfselektrode ist die Hilfsenergie zur Steuerung der Stromstärke in Form einer Barriereentladung zuführbar. Denkbar ist, dass die Barriereentladung im Grenzbereich zwischen der Hochspannungselektrode und der isolierenden Schicht der Hilfselektrode bzw. zumindest in einzelnen Teilsegmenten der genannten Schicht mittels der Hilfselektrode provozierbar ist. Die Entladungen, d.h. die Freisetzung von Ladungen, ist durch die Vorrichtung steuerbar bzw. präzise einstellbar. Abhängig von der Kontaktgeometrie und dem anliegenden elektrischen Potential der Hochspannungselektrode kann ein Teil der Ladungen einer Polarität aus der Barriereentladung entweichen, die abzuscheidenden Staubpartikel aufladen und diese folglich auf der Niederschlagselektrode abscheiden.

[0022] Vorteilhaft ist, wenn die Hilfselektrode vollständig oder zumindest teilweise von einem Dielektrikum umhüllt ist, um die Isolierung der Hilfselektrode von der Hochspannungselektrode zu bezwecken. Denkbar ist auch, dass ein vorhandener Luftspalt mit definierten und bekannten Abmessungen als Dielektrikum zwischen den beiden Elektroden fungiert. Geeignete Materialien zur Ausbildung eines Dielektrikums sind insbesondere Polymer, Glas, Keramik oder sonstige isolierende Stoffe.

[0023] Zur Erzeugung der Barriereentladung an der Oberfläche der Hochspannungselektrode ist bevorzugt eine Wechselspannung an der Hilfselektrode anlegbar. Dadurch werden Ladungen in der insbesondere dielektrischen Isolierung verschoben und es kommt zum Auftreten der Barriereentladungen im Bereich zwischen Dielektrikum und Hochspannungselektrode.

[0024] Vorteilhaft ist, dass die angelegte Wechselspannung hinsichtlich Frequenz und Amplitude einstellbar ist, insbesondere im Frequenzbereich von 0,1 Hz bis 1 MHz, besonders bevorzugt 50 Hz, und im Amplitudenbereich bevorzugt von 100 V bis 20 kV. Der durch die abgeschiedenen Staubpartikel im elektrischen Feld erzeugte Stromfluß, der auf der Teilchenbewegung zur Niederschlagselektrode hin beruht, ist damit durch die Einstellmöglichkeit der Amplitude sowie der Frequenz der an der Hilfselektrode anliegenden Wechselspannung beeinflußbar bzw. gezielt steuerbar.

[0025] Technisch aufwendig, aber möglich ist eine elektrische Verschaltung der Hilfselektrode, bei der das mittlere Potential dieser an das Potential der Hochspannungselektrode angekoppelt ist. In diesem Fall liegen nur geringe Spannungen am Dielektrikum an, so dass dieses bevorzugt dünner ausgeführt ist, wodurch höhere Stromdichten erreichbar sind.

[0026] Denkbar ist, dass ein Trenntransformator zur Kopplung der mittleren Potentiale der Hilfs- und Hochspannungselektrode vorgesehen ist, welche über einen definierten Kopplungspunkt miteinander koppelbar sind.

[0027] Vorteilhaft ist auch, wenn ein Mittel zur Messung der Stromstärke vorgesehen ist, wodurch Veränderungen der Stromstärke aufgrund von Änderungen der Staubschicht auf der Niederschlagselektrode oder aufgrund von Verschmutzungen und Ablagerungen an den Mitteln zur Zuführung der Hilfsenergie erkannt und gegebenenfalls durch eine Nachregelung kompensierbar sind. Um die Stromausbeute zu erhöhen oder den Stromfluß bevorzugt an gezielten Stellen zu beeinflussen, kann es vorgesehen sein, dass die Hochspannungselektrode eine vollständige oder zumindest teilweise aufgetragene Beschichtung an der Oberfläche aufweist, die eine niedrigere Elektronen-Austrittsarbeit aufweist. Dadurch wird der Ladungsaustritt an bestimmten Stellen der Hochspannungselektrode gezielt gefördert.

[0028] Weiterhin erfindungsgemäß ist ein Verfahren zur Abscheidung von Stäuben mit elektrischem Widerstand aus Aerosolen mit einer Vorrichtung, die eine Hochspannungselektrode und eine Niederschlagselektrode aufweist, wobei die Hochspannungselektrode mit einer Gleichspannung unterhalb der Corona-Einsatzspannung betrieben wird und dieser Hilfsenergie zur kontrollierten Freisetzung von Ladungen, insbesondere auf oder an der Oberfläche der Hochspannungselektrode, zugeführt wird. An der Hochspannungselektrode wird eine Gleichspannung im Bereich zwischen wenigen kV bis hin zu etwa 150 kV angelegt. Durch die angelegte Gleichspannung wird ein elektrisches Feld im Bereich zwischen der Hochspannungselektrode und der Niederschlagselektrode angelegt, dessen Flußrichtung in Richtung der Niederschlagselektrode zeigt. Mittels der Zuführung von Hilfsenergie kann gezielt die Freisetzung von Ladungen auf der Oberfläche bzw. im oberflächennahen Bereich gesteuert und folglich der auftretende Stromfluß im Feld der Vorrichtung kontrolliert und beeinflußt werden. Damit wird unabhängig voneinander das Potential und die Stromstärke der Coronaentladung geregelt, wobei die Stromstärke vorzugsweise in einem weiten Bereich, bevorzugt bis zu der Größenanordnung von µA/m2, besonders bevorzugt bis zu der Größenanordnung von pA/m2, zuverlässig und mit ausreichender Empfindlichkeit eingestellt werden kann.

[0029] Vorteilhafterweise wird das erfindungsgemäße Verfahren zu Abscheidung von Stäuben mit elektrischem Widerstand mit einem Elektroabscheider nach einem der Ansprüche 1 bis 19 durchgeführt. Bei allen Vorrichtungsvarianten erfolgt dabei die Steuerung der Freisetzung von Ladungen bzw. die Kontrolle des Stromflusses nach dem Prinzip der Zuführung von Hilfsenergie an die Hochspannungselektrode mittels eines der beschriebenen Mittel gemäß der vorgeschlagenen Ausführungsvarianten.

[0030] Denkbar ist, dass Ladungen aus der Oberfläche der Hochspannungselektrode und/oder mittels einer Barriereentladung zwischen Dielektrikum und Hochspannungselektrode freigesetzt werden.

[0031] Von Vorteil kann darin bestehen, dass Änderungen bzw. Variationen der auftretenden und gemessenen Stromstärke durch eine Nachregelung kompensiert werden.

[0032] Die vorteilhafte Kompensation der gemessenen Stromstärke kann bevorzugt mittels Variation der an der Hochspannungselektrode anliegenden Spannung und bzw. oder einer an einer Hilfselektrode anliegenden Wechselspannung und bzw. oder der Bestrahlungsintensität eines Bestrahlungsmittels und bzw. oder der Stärke des Dielektrikums und bzw. oder der Abmessung der eingesetzten Elektroden erfolgen. Weitere Einzelheiten und Vorteile der Erfindung werden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Dabei zeigen:
Figur 1:
den prinzipiellen Aufbau der erfindungsgemäßen Vorrichtung mit einer Hilfselektrode,
Figur 2:
eine Weiterbildung des prinzipiellen Aufbaus aus Figur 1 mit einem Trenntransformator und
Figur 3:
eine Vielzahl von technischen Realisierungsmöglichkeiten der erfin- dungsgemäßen Vorrichtung.


[0033] Fig. 1 skizziert den prinzipiellen Aufbau einer Vorrichtung zur elektrischen Abscheidung von Stäuben aus Aerosolen, bei der die Hilfsenergie zur Steuerung der Stromstärke in Form einer Barriereentladung zugeführt wird. Die für die Erzeugung des elektrischen Feldes erforderliche Hochspannung wird durch die Vorrichtung 2 generiert und liegt an der Hochspannungselektrode 1 an, mit der das elektrische Feld in Richtung der Niederschlagelektrode 5 erzeugt wird. Die Hilfselektrode 10 befindet sich in unmittelbarer Nähe zur Hochspannungselektrode 1 und ist von dieser durch ein isolierendes Dielektrikum 15 getrennt. Das isolierende Dielektrikum 15 kann die Hilfselektrode 10 vollständig oder teilweise umhüllen und besteht zum Beispiel aus einem der Stoffe Polymer, Glas oder Keramik. Alternativ kann das Dielektrikum 15 auch durch einen Luftspalt realisiert sein.

[0034] Zur Erzeugung der Barriereentladung wird die Hilfselektrode 10 mit einer Wechselspannung, die durch die Vorrichtung 11 erzeugt wird, angeregt. Dadurch werden Ladungen in der dielektrischen Isolierung 15 verschoben, und es kommt zum Auftreten der Barriereentladung im Bereich zwischen der Isolierung 15 der Hilfselektrode 10 und der Hochspannungselektrode 1. Ein Teil der bei der Barriereentladung erzeugten Gasionen kann sich im Gleichfeld der Hochspannungselektrode 1 zur Niederschlagselektrode 5 bewegen. Der damit verbundene Stromfluß kann durch die Wahl der Wechselspannungsfrequenz und -amplitude der Vorrichtung 11, die Hochspannung an der Hochspannungselektrode 1, die Stärke des Dielektrikums 15 und die Abmessungen der Elektroden 1, 5, 10 in sehr weiten Grenzen variiert werden.

[0035] Technisch aufwendig, aber möglich sind auch elektrische Schaltungen, bei denen das mittlere Potential der Hilfselektrode 10 an das der Hochspannungselektrode 1 angekoppelt ist. In diesem Fall liegen nur geringere Spannungen am Dielektrikum 15 an, so dass das Dielektrikum 15 dünner ausgeführt werden kann und höhere Stromdichten erreicht werden können.

[0036] Fig. 2 zeigt eine solche Anordnung mit der Hochspannungselektrode 1, der Hilfselektrode 10, dem Dielektrikum 15, dem Trenntransformator 20 und dem Kopplungspunkt 21. Hilfselektrode 10 und Hochspannungselektrode 1 sind über einen Eingang des Trenntransformators 20 miteinander verschaltet. Am zweiten Eingang wird der Trenntransformator über die Vorrichtung 11 mit einer in Frequenz und Amplitude definierten Wechselspannung gespeist. Die Gleichspannung der Vorrichtung 2 wird über den Koppelpunkt 21 in den Trenntransformator 20 eingekoppelt.

[0037] Die Frequenz der durch die Vorrichtung 11 generierten Wechselspannung läßt sich im Bereich von 0,1 Hz bis 1 MHz variieren. Besonders einfach und vorteilhaft ist die Verwendung einer Wechselspannungsfrequenz von 50 Hz, da dies einer standardmäßigen Netzversorgungsspannung entspricht.

[0038] Die konfigurierte Amplitude der Wechselspannung liegt typischerweise im Bereich von 100 V bis 20 kV.

[0039] Bei der konstruktiven Realisierung ist eine sehr große Vielfalt von Varianten möglich, wovon einige bildlich in Figur 3 dargestellt sind.

[0040] Die Hochspannungselektrode 1 kann als tragender Teil der erfindungsgemäßen Vorrichtung ausgeführt sein und eine oder mehrere Hilfselektroden 10 mit dem umgebenden Dielektrikum 15 können auf der Oberfläche der Hochspannungselektrode 1 anliegen (Fig. 3a), mit einem Luftspalt 16 von der Oberfläche der Hochspannungselektrode 1 abgehoben sein (Fig. 3b) oder in die Oberfläche der Hochspannungselektrode 1 eingelassen sein (Fig. 3c).

[0041] Umgekehrt kann die Hilfselektrode 10 mit dem umgebenden Dielektrikum 15 als das tragende Teil der erfindungsgemäßen Vorrichtung ausgeführt sein, und die Hochspannungselektrode 1 kann auf der Oberfläche der Hilfselektrode 10 anliegen (Fig. 3d, Fig. 3e), mit einem Luftspalt 16 von der Oberfläche der Hilfselektrode 10 abgehoben sein (Fig. 3f) oder in das Hilfselektrode 10 umgebende Dielektrikum 15 eingelassen sein (Fig. 3g).

[0042] Weiterhin kann zusätzlich auch die Hochspannungselektrode 1 mit einem Dielektrikum umhüllt sein (Fig. 3d), wenn nur sehr geringe Stromdichten erzeugt werden sollen und das Dielektrikum eine hinreichende Leitfähigkeit besitzt.


Ansprüche

1. Elektroabscheider zum Abscheiden von Stäuben mit einem hohen elektrischen Widerstand mit mindestens einer Niederschlagselektrode (5) und einer Hochspannungselektrode (1),
dadurch gekennzeichnet,
dass mindestens ein Mittel zur Zuführung von Hilfsenergie an die Hochspannungselektrode (1) vorgesehen ist, wodurch die Freisetzung von Ladungen steuerbar ist.
 
2. Elektroabscheider gemäß Anspruch 1, dadurch gekennzeichnet, dass das Mittel zur Zuführung von Hilfsenergie wenigstens ein Bestrahlungsmittel zur Erzeugung von Licht, insbesondere UV-Licht umfaßt, wobei vorzugsweise das Bestrahlungsmittel mindestens eine Hg-Gasentladungslampe und/oder Bogenlampe und/oder Halogenlampe und/oder UV-Leuchtdiode aufweist.
 
3. Elektroabscheider nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel zur Zuführung von Hilfsenergie wenigstens ein Bestrahlungsmittel zur Erzeugung einer radioaktiven bzw. Röntgenstrahlung umfaßt und/oder dass mittels des Bestrahlungsmittel die Oberfläche der Hochspannungselektrode vollständig oder zumindest teilweise bestrahlbar ist, wobei vorzugsweise das wenigstens eine Bestrahlungsmittel in der Gehäusewand und/oder in wenigstens einer Elektrode (1, 10) angeordnet ist und/oder wobei vorzugsweise das Bestrahlungsmittel zur Erzeugung von Licht, insbesondere UV-Licht, ein lichtdurchlässiges, insbesondere UV-lichtdurchlässiges Fenster oder Schutzhülle aufweist, wobei das Bestrahlungsmittel besonders vorzugsweise ein Mittel zur Reinigung des Fensters bzw. der Schutzhülle vorsieht.
 
4. Elektroabscheider nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel ein Glühdraht ist, der mit der Hochspannungselektrode (1) verbunden bzw. verbindbar ist.
 
5. Elektroabscheider nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel mindestens eine isolierte Hilfselektrode (10) umfaßt, die in unmittelbarer Nähe zur Hochspannungselektrode (1) angeordnet ist, wobei vorzugsweise die Hilfselektrode (10) vollständig oder zumindest teilweise von einem Dielektrikum (15) umhüllt ist, besonders vorzugsweise das Dielektrikum (15) einen Luftspalt (16) zwischen Hochspannungs- (1) und Hilfselektrode (10) umfaßt und ganz besonders vorzugsweise das Dielektrikum (15) Polymer und/oder Glas und/oder Keramik aufweist und wobei bevorzugt an der Hilfselektrode (10) eine Wechselspannung anlegbar ist.
 
6. Elektroabscheider nach Anspruch 5, dadurch gekennzeichnet, dass die angelegte Wechselspannung hinsichtlich Frequenz und Amplitude einstellbar ist, insbesondere im Frequenzbereich von 0,1 Hz bis 1 MHz, besonders bevorzugt 50 Hz, und im Amplitudenbereich von 100 V bis 20 kV.
 
7. Elektroabscheider nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das mittlere Potential der Hilfselektrode (10) an das der Hochspannungselektrode (1) angekoppelt ist.
 
8. Elektroabscheider nach Anspruch 7, dadurch gekennzeichnet, dass ein Trenntransformator (20) zur Kopplung der mittleren Potentiale der Hilfs- (10) und Hochspannungselektrode (1) vorgesehen ist
 
9. Elektroabscheider nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein Mittel zur Messung der Stromstärke vorgesehen ist.
 
10. Elektroabscheider nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Hochspannungselektrode (1) eine vollständige oder teilweise Beschichtung aufweist, die eine niedrigere Elektronen-Austrittsarbeit aufweist.
 
11. Verfahren zur Abscheidung von Stäuben mit elektrischem Widerstand mit einer Vorrichtung, die eine Hochspannungselektrode (1) und mindestens eine Niederschlagselektrode (5) aufweist, wobei die Hochspannungselektrode (1) mit eine Gleichspannung unterhalb der Corona-Einsatzspannung betrieben wird und dieser Hilfsenergie zur kontrollierten Freisetzung von Ladungen zugeführt wird.
 
12. Verfahren nach Anspruch 11 in einer Vorrichtung gemäß einem der Ansprüche 1 bis 10.
 
13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass Ladungen aus der Oberfläche der Hochspannungselektrode (1) und/oder mittels Barriereentladung zwischen den Oberflächen von Hochspannungselektrode (1) und Dielektrikum (15) freigesetzt werden.
 
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass Änderungen oder Variationen der Stromstärke durch eine Nachregelung kompensiert werden.
 
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass mittels Variation der an der Hochspannungselektrode (1) anliegenden Spannung und/oder einer an einer Hilfselektrode (10) anliegenden Wechselspannung und/oder der Bestrahlungsintensität eines Betrahlungsmittels und/oder der Stärke des Dielektrikums (15) und/oder der Abmessung der Elektroden (1, 5, 10) die geänderte Stromstärke kompensiert wird.
 




Zeichnung













Recherchenbericht
















Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Nicht-Patentliteratur