(19)
(11) EP 2 298 850 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
23.03.2011  Patentblatt  2011/12

(21) Anmeldenummer: 10012045.0

(22) Anmeldetag:  08.05.2003
(27) Früher eingereichte Anmeldung:
 08.05.2003 EP 03725176
(51) Internationale Patentklassifikation (IPC): 
C10G 9/20(2006.01)
C22C 30/00(2006.01)
C22C 38/40(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 25.07.2002 DE 10233961

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
03725176.6 / 1525289

(71) Anmelder: Schmidt + Clemens GmbH & Co. KG
51789 Lindlar (DE)

(72) Erfinder:
  • Wölpert, Peter
    34289 Zierenberg (DE)
  • Ganser, Benno
    63755 Alzenau (DE)
  • Jackobi, Dietlinde
    50733 Köln (DE)
  • Kirchheiner, Rolf
    58644 Iserlohn (DE)

(74) Vertreter: Tilmann, Max Wilhelm et al
König Szynka Tilmann von Renesse Patentanwälte Partnerschaft Lohengrinstrasse 11
40549 Düsseldorf
40549 Düsseldorf (DE)

 
Bemerkungen:
Diese Anmeldung ist am 30-09-2010 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen


(57) Bei einem Verfahren zum thermischen Spalten von Kohlenwasserstoffen in Anwesenheit von Dampf, wird das Einsatzgemisch durch außenbeheizte Rohre mit wendelförmigen Innenrippen geführt und zur Vergleichmäßigung der Temperatur in der Rohrwandung und über den Rohrquerschnitt sowie zur Verminderung der Ablagerung von Pyrolysekoks an der Rohrinnenwand eine Drallströmung im Gasgemisch erzeugt und mit zunehmendem radialem Abstand von den Rippen allmählich in eine Kemzone mit überwiegend axialer Strömung eingeleitet wird.


Beschreibung


[0001] Die Erfindung bezieht sich auf ein Verfahren und ein Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen in Anwesenheit von Dampf, bei dem das Einsatzgemisch durch außenbeheizte Rohre mit wendelförmigen Innenrippen geführt wird.

[0002] Für die Hochtemperaturpyrolyse von Kohlenwasserstoffen (Erdölderivate) haben sich Röhrenöfen bewährt, bei denen ein Kohlenwasserstoff/WasserdampfGemisch bei Temperaturen über 750 °C durch Reihen aus einzelnen oder mäanderförmig angeordneten Rohren (Crackrohrschlangen) aus hitzebeständigen Chrom-Nickel-Stahllegierungen mit hoher Oxidations- beziehungsweise Zunderbeständigkeit und hoher Aufkohlungsbeständigkeft geführt wird. Die Rohrschlangen bestehen aus vertikal verlaufenden geraden Rohrabschnitten, die über U-förmige Rohrbogen miteinander verbunden oder parallel zueinander angeordnet sind; sie werden üblicherweise mit Hilfe von Seitenwand- und teilweise auch mit Hilfe von Bodenbrennern beheizt und besitzen daher eine den Brennern zugekehrte sogenannte Sonnenseite sowie eine dem gegenüber um 90" versetzte, das heißt in Richtung der Rohrreihen verlaufende sogenannte Schattenseite. Dabei liegen die mittleren Rohrwandtemperaturen (TMT) teilweise über 1000 °C.

[0003] Die Lebensdauer der Crackrohre hängt sehr wesentlich von der Kriechbeständigkeit und der Aufkohiungsbeständigkelt sowie von der Verkokungsgeschwindigkeit des Rohrwerkstoffs ab. Maßgeblich für die Verkokungsgeschwindigkeit, das heißt für das Anwachsen einer Schicht von Kohlenstoffablagerungen (Pyrolysekoks) an der Rohrinnenwand sind neben der Art der eingesetzten Kohlenwasserstoffe die Spaltgastemperatur im Bereich der Innenwand und die sogenannte Crackschärfe, hinter der sich der Einfluß des Systemdrucks und der Verweilzeit im Rohrsystem auf die Äthylenausbeute verbirgt. Die Spaltschärfe wird anhand der mittleren Austrittstemperatur der Spaltgase (z. B. 850 °C) eingestellt. Je höher die Gastemperatur in der Nähe der Rohr-Innenwand über dieser Temperatur liegt, um so stärker wächst die Schicht des Pyrolysekokses, deren isolierende Wirkung die Rohrwandtemperatur weiter steigen läßt. Obgleich die als Rohrwerkstoff zur Verwendung kommenden Chrom-Nickel-Stahllegierungen mit 0,4 % Kohlenstoff über 25 % Chrom und über 20 % Nickel, beispielsweise 35 % Chrom, 45 % Nickel und gegebenenfalls 1 % Niob eine hohe Aufkohlungsbeständigkeit besitzen, diffundiert der Kohlenstoff an Fehlstellen der Oxidschicht in die Rohrwandung und führt dort zu einer erheblichen Aufkohlung, die bis zu Kohlenstoffgehalten von 1% bis 3% in Wandtiefen von 0,5 bis 3 mm gehen kann. Verbunden damit ist eine erhebliche Versprödung des Rohrwerkstoffs mit der Gefahr einer Rißbildung bei thermischer Wechselbelastung insbesondere beim An- und Abfahren des Ofens.

[0004] Um die Kohlenstoffablagerungen (Verkokung) an der Rohrinnenwand abzubauen, ist es erforderlich, den Crackbetrieb von Zeit zu Zeit zu unterbrechen und den Pyrolysekoks mit Hilfe eines Dampf/Luft-Gemischs zu verbrennen. Dies erfordert eine Betriebsunterbrechung von bis zu 36 Stunden und beeinträchtigt daher erheblich die Wirtschaftlichkeit des Verfahrens.

[0005] Bekannt ist aus der britischen Patentschrift 969 796 auch die Verwendung von Crackrohren mit Innenrippen. Solche Innenrippen ergeben zwar eine um viele Prozente, beispielsweise um 10 % größere Innenoberfläche und demzufolge einen besseren Wärmeübergang; sie sind aber auch mit dem Nachteil eines im Vergleich zu einem Glattrohr erheblich erhöhten Druckverlusts infolge Reibung an der vergrößerten Rohr-Innenoberfläche verbunden. Der höhere Druckverlust erfordert einen höheren Systemdruck, dadurch verändert sich zwangsläufig die Verweilzeit und verschlechtert sich die Ausbeute. Hinzu kommt daß sich die bekannten Rohrwerkstoffe mit hohen Gehalten an Kohlenstoff und Chrom nicht mehr durch Kaltverformen, beispielsweise Kaltziehen profilieren lassen. Sie besitzen den Nachteil, daß sich Ihre Verformbarkeit mit zunehmender Warmfestigkeit stark verringert. Dies hat dazu geführt, daß die im Hinblick auf die Äthylenausbeute erwünschten hohen Rohrwandtemperaturen von beispielsweise bis 1050 °C die Verwendung von Schleudergußrohren erfordern. Da sich Schleudergußrohre jedoch nur mit zylindrischer Wandung herstellen lassen, bedarf es besonderer Formgebungsverfahren, beispielsweise einer elektrolytisch abtragenden Bearbeitung oder eines formgebenden Schweissverfahrens, um Innen-Rippenrohre herzustellen.

[0006] Vor diesem Hintergrund liegt der Erfindung das Problem zugrunde, die Wirtschaftlichkeit des thermischen Spaltens von Kohlenwasserstoffen in Röhrenöfen mit außenbeheizten Rohren mit wendelförmigen Innenrippen zu verbessern.

[0007] Die Lösung dieser Aufgabe besteht in einem Verfahren, bei dem in unmittelbarer Nachbarschaft der Rippen vorzugsweise eines Schleudergußrohrs eine Drallströmung erzeugt und mit zunehmendem radialem Abstand von den Rippen in eine Kemzone überwiegend axialer Strömung überführt wird. Der Übergang zwischen der Außenzone mit der Drallströmung und der Kemzone mit der überwiegend axialen Strömung vollzieht sich allmählich, beispielsweise parabolisch.

[0008] Bei dem erfindungsgemäßen Verfahren nimmt die Drallströmung die sich an den Rippenflanken ablösenden Wirbel auf, so daß es nicht zu einer lokalen Rückführung der Wirbel nach Art einer in sich geschlossenen kreisförmigen Strömung in die Rippentäler kommt. Trotz der offensichtlich längeren Wege der Partikel durch die Spiralbahnen, ist die mittlere Verweilzeit niedriger als im Glattrohr und ausserdem homogener über den Querschnitt (vgl. Fig. 7). Bestätigt wird dies durch die höhere Gesamtgeschwindigkeit im Profilrohr mit Drall (Profil 3) gegenüber dem Rohr mit geraden Rippen (Profil 2). Dies ist insbesondere dann gewährleistet, wenn die Drallströmung im Bereich der Rippen bzw. die Rippen in einem Winkel von 20" bis 40°, beispielsweise 30°, vorzugsweise 25° bis 32,5° bezogen auf die Rohrachse verlaufen.

[0009] Bei dem erfindungsgemäßen Verfahren wird das über den Rohrumfang zwischen Sonnen- und Schattenseite zwangsläufig unterschiedliche Wärmeangebot in der Rohrwandung und im Rohrinnem ausgeglichen und dabei die Wärme rasch nach innen zur Kemzone abgeführt. Damit verbunden ist eine Verringerung der Gefahr einer lokalen Überhitzung des Prozeßgases an der Rohrwand und der dadurch verursachten Entstehung von Pyrolysekoks. Außerdem ist die thermische Beanspruchung des Rohrwerkstoffs infolge des Temperaturausgleichs zwischen Sonnen- und Schattenseite geringer, was zu einer Verlängerung der Lebensdauer führt. Schließlich kommt es bei dem erfindungsgemäßen Verfahren auch zu einer Vergleichmäßigung der Temperatur über den Rohrquerschnitt mit der Folge einer besseren Olefinausbeute. Der Grund hierfür ist, dass es ohne den erfindungsgemäßen radialen Temperaturausgleich im Rohrinnem an der heißen Rohrwand zu einem Übercracken und in der Rohrmitte zu einer Rekombination von Spaltprodukten kommen würde.

[0010] Des weiteren bildet sich beim Glattrohr und verstärkt bei Rippenprofilen mit durch Rippen um mehr als 5 %, beispielsweise 10 % vergrößertem Innenumfang eine für turbulente Strömungen charakteristische Schicht laminarer Strömung mit stark reduziertem Wärmeübergang. Sie führt zu verstärkter Bildung von Pyrolysekoks mit ebenfalls schlechter Wärmeleitfähigkeit. Beide Schichten zusammen erfordem ein höheres Wärmeeinbringen beziehungsweise eine höhere Brennerleistung. Dies erhöht die Rohrwandtemperatur (TMT) und verkürzt demzufolge die Lebensdauer.

[0011] Die Erfindung vermeidet dies dadurch, dass der Innenumfang des Profils um maximal 5%, beispielsweise 4% oder auch 3,5%, bezogen auf den Umfang des die Rippentäler berührenden Hüllkreises beträgt. Der Innenumfang kann jedoch auch um bis 2% kleiner sein als der Hüllkreis. Anders ausgedrückt: der relative Profil-Umfang beträgt maximal 1,05 bis 0,98% des Hüllkreis-Umfangs. Dementsprechend beträgt die Flächendifferenz des erfindungsgemäßen Profilrohrs, d.h. dessen abgewickelte Innenfläche, bezogen auf ein Glattrohr mit dem Hüllkreisdurchmesser maximal + 5% bis - 2% bzw. das 1,05 bis 0,98-fache der Glattrohrfläche.

[0012] Das erfindungsgemäße Rohrprofil erlaubt ein geringeres spezifisches Rohrgewicht (kg/m) im Vergleich zu einem Rippenrohr, bei dem der Innenumfang des Profils mindestens 10% größer ist als der Umfang des Hüllkreises. Dies zeigt ein Vergleich zweier Rohre mit gleichem hydraulischen Durchmesser und demgemäß gleichem Druckverlust sowie gleichem wärmetechnischen Ergebnis.

[0013] Ein weiterer Vorteil des erfindungsgemäßen, auf den Hüllkreis-Umfang bezogenen Profil-Umfangs (relativer Profil-Umfang) besteht in einem rascheren Aufheizen des Einsatzgases bei reduzierter Rohrwandtemperatur.

[0014] Die erfindungsgemäße Drallströmung verringert die Laminarschicht ganz erheblich; sie ist zudem mit einem zum Rohrzentrum gerichteten Geschwindigkeitsvektor verbunden, der die Verweilzeit von Crack-Radikalen beziehungsweise Spaltrodukten an der heißen Rohrwand sowie deren chemische und katalytische Umsetzung zu Pyrolysekoks verringert. Zusätzlich werden die bei Innenprofilrohren mit hohen Rippen nicht unerheblichen Temperaturunterschiede zwischen Rippentälem und Rippen durch die erfindungsgemäße Drallströmung ausgeglichen. Damit vergrößert sich der zeitliche Abstand zwischen zwei notwendigen Entkokungen. Ohne die erfindungsgemäße Drallströmung ergibt sich zwischen den Rippenkuppen und dem Grund der Rippentäler ein nicht unerheblicher Temperaturunterschied. Die Verweilzeit der zur Verkokung neigenden Spaltprodukte ist bei mit wendelförmigen Innenrippen versehenen Crackrohren kürzer; Dies ist im Einzelfall von der Beschaffenheit der Rippen abhängig.

[0015] Das Diagramm zeigt:
obere Kurve: Profil 6: 16° Steigung
mittlere Kurve: Profil 3: 30° Steigung
untere Kurve: Profil 4: 3 Rippen mit 30° Steigung


[0016] Der Kurvenverlauf zeigt deutlich, dass die höhere Umfangsgeschwindigkeit des Profils 6 mit 4,8 mm hohen Rippen innerhalb der Rippentäler aufgezehrt wird, während die Umfangsgeschwindigkeit des erfindungsgemäßen Profils mit einer Rippenhöhe von nur 2 mm in den Kern der Strömung eindringt. Die Umfangsgeschwindigkeit des Profils 4 mit nur 3 Rippen ist zwar annähernd so hoch, bewirkt aber keine spiralförmige Beschleunigung der Kernströmung.

[0017] Das erfindungsgemäße Profil bewirkt nach dem Kurvenverlauf im Diagramm der Fig. 2 eine spiralförmige Beschleunigung in den Rippentälern (oberer Kurvenast), die weite Bereiche des Rohrquerschnitts erfasst und damit eine Homogenisierung der Temperatur im Rohr bewirkt. Die geringere Umfangsgeschwindigkeit an den Rippenkuppen (unterer Kurvenast) gewährleistet darüber hinaus, dass es nicht zu Verwirbelungen und Rückströmungen kommt.

[0018] In Fig. 3 sind drei Versuchsrohre mit ihren Daten im Querschnitt dargestellt, darunter auch das erfindungsgemäße Profil 3. Die Diagramme geben jeweils den Temperaturverlauf über den Rohrhalbmesser (Radius) auf der Schatten-und der Sonnenseite wieder. Ein Vergleich der Diagramme zeigt die geringere Temperaturdifferenz zwischen Rohrwand und -zentrum sowie die geringere Gastemperatur an der Rohrwand bei dem erfindungsgemäßen Profil 3.

[0019] Die erfindungsgemäße Drallströmung gewährleistet, daß die Schwankung der Innenwandtemperatur über den Rohrumfang, das heißt zwischen Sonnen- und Schattenseite unter 12° C liegt, obgleich die üblicherweise in parallelen Reihen angeordneten Rohrschlangen eines Röhrenofens mit Hilfe von Seitenwandbrennem lediglich auf einander gegenüberliegenden Seiten beheizt beziehungsweise mit Verbrennungsgasen beaufschlagt werden und die Rohre somit jeweils eine den Brennem zugekehrte Sonnenseite und eine um 90° dazu versetzte Schattenseite besitzen. Die mittlere Rohrwandtemperatur, das heißt die Differenz der Rohrwandtemperatur zwischen Sonnen- und Schattenseite führt zu inneren Spannungen und bestimmt daher die Lebensdauer der Rohre. So ergibt die aus dem Diagramm der Fig. 4 ersichtliche Verringerung der mittleren Rohrwandtemperatur eines erfindungsgemäßen Rohrs mit acht Rippen einer Steigung von 30", einem Rohrinnendurchmesser von 38,8 mm und einem Rohraußendurchmesser von 50,8 mm, somit einer Höhendifferenz zwischen Rippentälem und-Rippenkuppen von 2 mm von 11° im Vergleich zu einem durchmessergleichem Glattrohr, bezogen auf eine mittlere Lebensdauer von 5 Jahren, bei einer Betriebstemperatur von 1050 °C eine rechnerische Lebensdauererhöhung auf etwa 8 Jahre.

[0020] Die Temperaturverteilung zwischen Sonnen- und Schattenseite für die drei Profile der Fig.3 ergibt sich aus dem Diagramm der Fig. 5. Bemerkenswert ist dabei das niedrigere Niveau der Temperatur-Kurve für das Profil 3 im Vergleich zum Glattrohr (Profil 0) und die erheblich geringere Schwankungsbreite der Profil 3-Kurve im Vergleich zu der Profil 1-Kurve.

[0021] Eine besonders günstige Temperaturverteilung stellt sich ein, wenn die Isothermen von der Rohrinnenwand zum Kern der Strömung spiralförmig verlaufen.

[0022] Eine gleichmäßigere Verteilung der Temperatur über den Querschnitt ergibt sich insbesondere, wenn sich die Umfangsgeschwindlgkeit innerhalb von 2 bis 3 m aufbaut und dann Ober die gesamte Rohrlänge konstant bleibt.

[0023] Das erfindungsgemäße Verfahren sollte im Hinblick auf eine hohe Olefinausbeute bei vergleichsweise kurzer Rohrlänge so betrieben werden, daß der Homogenitätsfaktor der Temperatur Ober den Querschnitt und der auf den hydraulischen Durchmesser bezogene Homogenitätsfaktor der Temperatur im Verhältnis zum Homogenitätsfaktor eines Glattrohrs (H) über 1 liegt. Dabei sind die Homogenitätsfaktoren wie folgt definiert:



[0024] Das erfindungsgemäße Strömungsbild aus Kern- und Drallstömung läßt sich mit einem Rippenrohr erreichen, bei dem der Flankenwinkel der jeweils über die Länge eines Rohrstücks durchgehenden Rippen, das heißt der Außenwinkel zwischen den Rippenflanken und dem Radius des Rohrs 16° bis 25°, vorzugsweise 19° bis 21° beträgt. Ein derartiger Flankenwinkel gewährleistet insbesondere in Verbindung mit einer Rippensteigung von 20° bis 40°, beispielsweise 22,5° bis 32,5°, daß sich in den Rippentälem nicht eine mehr oder weniger in sich geschlossene, hinter die Rippenflanken in die Rippentäler zurückkehrende Wirbelströmung ergibt, die in den Rippentälem zum Entstehen unerwünschter "Twisters", das heißt von geschlossenen Wirbelzöpfen führt. Vielmehr lösen sich die sich in den Rippentälem entstehenden Wirbel von den Rippenflanken ab und werden von der Drallströmung aufgenommen. Die von den Rippen induzierte Drallenergie beschleunigt die Gaspartikel und führt zu einer höheren Gesamtgeschwindigkeit. Dies führt zu einer Verminderung und Vergleichmäßigung der Rohrwandtemperatur und zu einer Vergleichmäßigung der Temperatur und der Verweildauer über den Rohrquerschnitt.

[0025] Die Beschaffenheit des erfindungsgemäßen Rippenrohrs ergibt sich aus der Darstellung eines Rohrsegments in Fig. 6 und den zugehörigen charakteristischen Parametern
  • hydraulischer Durchmesser Dh in mm, Ri ≤ Dh / 2
  • Flankenwinkel β
  • Rippenhöhe H
  • Hüllkreis-Radius Ra=RI+H und Da=2 x Ra
  • Zentrumswinkel α
  • Krümmungsradius R = Ra (sin α / 2 sin β+ sin α)
  • Hüllkreis-Umfang 2 Π Ra
  • Winkel im schiefwinkligen Dreieck γ = 180 - (α + β)
  • Innen-Radius RI = 2R (sin γ / sin α) - R
  • Rippenhöhe H = Ra - RI
  • Profil-Umfang Up = 2 x Rippenzahl x πR /180 (2 β + α)
  • Rippenfläche FR
  • Fläche des Hüllkreises Fa = π Da2 / 4
  • Fläche des Innenkreises FI = Π · DI
  • Profilfläche innerhalb des Hüllkreises FP = FR · Rippenzahl
  • Profil-Umfang UP = (1,05 bis 0,98) · 2 Π Ra


[0026] Die Rippen und die zwischen den Rippen befindlichen Rippentäler können im Querschnitt spiegelsymmetrisch ausgebildet sein und aneinandergrenzen beziehungsweise eine Wellenlinie mit jeweils gleichen Krümmungsradien bilden. Der Flankenwinkel ergibt sich dann zwischen den Tangenten der beiden Krümmungsradien im Berührungspunkt und dem Radius des Rohrs. Dabei sind die Rippen verhältnismäßig flach; Rippenhöhe und Flankenwinkel werden so aufeinander abgestimmt, dass der hydraulische Durchmesser des Profils aus dem Verhältnis 4 x freier Querschnitt/Profilumfang gleich oder grösser ist als der Innenkreis des Profils. Der hydraulische Durchmesser liegt daher im inneren Drittel der Profilhöhe. Damit steigen die Rippenhöhe und die Zahl der Rippen mit zunehmendem Durchmesser so, daß die Drallströmung in der für die Wirkung des Profils erforderlichen Richtung und Stärke erhalten bleibt.

[0027] Zwischen den Rippen bzw. in den Rippentälem ergibt sich eine größere Strömungsgeschwindigkeit (Fig. 2), die zu einem Selbstreinigungseffekt, daher zu weniger Ablagerungen von Pyrolysekoks führt.

[0028] Werden die Rippen durch Auftragsschweißen bzw. Aufbauschweißen unter Verwendung eines Schleudergussrohrs hergestellt, dann bleibt die Rohrwandung zwischen den einzelnen Rippen im wesentlichen unverändert, so dass die Rippentäler auf einem gemeinsamen Kreis liegen, der dem Innenumfang des Schleudergussrohrs entspricht.

[0029] Versuche haben ergeben, daß - unabhängig vom Innendurchmesser der Rohre - insgesamt 8 bis 12 Rippen ausreichend sind, um das erfindungsgemäße Strömungsbild zu erreichen.

[0030] Bei dem erfindungsgemäßen Rippenrohr beträgt das Verhältnis der Quotienten der Wärmeübergangskoeffizienten QR / Q0 zum Quotienten der Druckverluste ΔPR/ΔP0 im Wasserversuch unter Benutzung und Beachtung der Ähnlichkeitsgesetze und Verwendung der für ein Naphta/Wasserdampf-Gemisch vermittelten Reynoldszahlen, vorzugsweise 1,4 bis 1,5, wobei R ein Rippenrohr und 0 ein Glattrohr kennzeichnet.

[0031] Die Überlegenheit des erfindungsgemäßen Rippenrohrs (Profil 3) im Vergleich zu einem Glattrohr (Profil 0) sowie einem Rippenrohr mit achsparallelen Rippen (Profil 1), bei denen der radiale Abstand zwischen den Rippentälern und den Rippenkuppen 4,8 mm beträgt veranschaulichen die Daten der nachfolgenden Tabelle. Die Rippenrohre besaßen sämtlich 8 Rippen sowie denselben Hüllkreis.
PROFIL 0 1 3
Fluidtemp. bei 9950 mm in der Mitte Tm [°C] 843,6 848,1 843,0
Fluidtemp. bei 9950 mm am Rand Tr [°C] 888,9 894 874,8
Temperaturspanne bei 9950 mm ΔT=Tr-Tm [°C] 45,3 45,9 31,8
Homogenitätsfaktor zum Glattrohr Hat Ht=ΔT0/ΔTx 1 0,9869281 1,4245283
Hydr. Durchmesser dn [m] 0,0380 0,0256 0,0344
bezogener Homogenitätsfaktor bzgl. hydr. Ø zum Glattrohr H:H=ΔT0•dx/ΔTx•d0 1 0,8477193 1,3420556
Rang H: 2 2 1


[0032] Dabei ist der hydraulische Durchmesser wie folgt definiert:


er entspricht vorzugsweise dem Innendurchmesser eines vergleichbaren Glattrohrs und ergibt dann einen Homogenitätsfaktor von 1 ,425.

[0033] Das erfindungsgemäße Rippenrohr ergibt im Wasserversuch einen um den Faktor 2,56 höheren Wärmeübergang (QR) im Vergleich zum Glattrohr bei einem nur um den Faktor 1,76 erhöhten Druckverlust (ΔPR).

[0034] In Fig. 7 sind einem Rohr mit glatter Innenwand (Glattrohr) drei verschiedene Profilrohre gegenübergestellt, darunter ein erfindungsgemäßes Rohr mit 8 Rippen mit einer Steigung von jeweils 30°. Zu jedem Querschnitt sind der hydraulische Durchmesser, die Axialgeschwindigkeit, die Verweilzeit und der Druckverlust angegeben.

[0035] Ausgangsdaten waren die Durchsatzmengen eines in Betrieb befindlichen Glattrohres mit 38 mm Innendurchmesser, der mit dem hydraulischen Durchmesser identisch ist. Diese Daten wurden nach den Ähnlichkeitsgesetzen (gleiche Reynoldszahlen) auf warmes Wasser umgerechnet und den Versuchen zu Grunde gelegt (siehe Verhältnis der Quotienten des Wärmeübergangs und des Druckverlustes für Versuche mit Wasser sowie den bezogenen Homogenitätsfaktor bei der Rechnung mit Gasen).

[0036] Die unterschiedlichen Geschwindigkeitsprofile ergeben sich aus gleichen Durchsatzmengen bei unterschiedlichen hydraulischen Durchmessern (reziprokes Verhältnis).

[0037] Der Vergleich der Geschwindigkeiten bei den im Querschnitt gleichen Profilen 2 und 3 verdeutlicht die bessere Geschwindigkeit, Beschleunigung und Verweilzeit bei den erfindungsgemäßen Rohren (Profil 3). Bei gleichem hydraulischen Durchmesser bewirkt die durch den Drall der Rippen verursachte Geschwindigkeits-Komponente in Umfangsrichtung ein Ablösen der Strömung von der Rohrwand und eine schraubenförmig ansteigende Geschwindigkeit im gesamten Querschnitt.

[0038] Durch die gerichtete, spiralförmige Strömung wird die Wärme von der Rohrwand in die Strömung eingetragen und damit gleichmäßiger verteilt als in einer normalen ungerichteten turbulenten Strömung (Glattrohr, Profile 1 und 2). Gleiches gilt für die Verweilzeit der Partikel. Die spiralförmig gerichtete Strömung verteilt die Partikel gleichmäßiger über den Querschnitt während die Beschleunigung an den Profilflanken die mittlere Verweilzeit reduziert. Der höhere Druckverlust des Profils 3 resultiert aus der Umfangsgeschwindigkeit. Bei Profil 1 liegt die Ursache in der starken Einschnürung der Strömung und dem Reibungsverlust an der großen Innenfläche des Profils.

[0039] Die erfindungsgemäßen Rippenrohre lassen sich je nach Werkstoff beispielsweise aus einem Schleudergußrohr dadurch herstellen, daß die Enden eines Rohres mit achsparallelen Rippen gegeneinander verdreht werden, oder daß das Innenprofil durch Verformen eines Schleudergußrohrs, beispielsweise durch Warmschmieden. Warmziehen oder Kaltverformen über ein Profilwerkzeug, beispielsweise einen fliegenden Dom oder einer Dornstange mit einem dem Innenprofil des Rohrs entsprechenden Außenprofil erzeugt wird.

[0040] Schneidemaschinen zum Innenprofilieren von Rohren sind in verschiedenen Varianten beispielsweise aus der deutschen Patentschrift 195 23 280 bekannt. Diese Maschinen eignen sich auch zum Herstellen eines erfindungsgemäßen Rippenrohrs.

[0041] Beim Warmumformen solite die Umformtemperatur so eingestellt werden, daß es im Bereich der Innenoberfläche zu einer partiellen Zerstörung des Gefügekorns und demzufolge später unter dem Einfluß der Betriebstemperatur zu einer Rekristallisation kommt. Die Folge davon ist ein feinkörniges Gefüge, das eine rasche Diffusion von Chrom, Silizium und/ oder Aluminium durch die austentische Matrix zur Innenoberfläche des Rohrs und dort zum schnellen Aufbau einer oxidischen Schutzschicht führt.

[0042] Die erfindungsgemäßen Rippen lassen sich auch durch Auftragsschweißen erzeugen; in diesem Fall kann zwischen den einzelnen Rippen kein gekrümmter Rippengrund entstehen, sondern es bleibt dort der ursprüngliche Verlauf der Innenwandung des Rohrs im wesentlichen erhalten.

[0043] Die Innenoberfläche des erfindungsgemäßen Rohrs sollte eine möglichst geringe Rauhigkeit besitzen; sie kann daher geglättet, beispielsweise mechanisch poliert oder elektrolytisch egalisiert sein.

[0044] Als Rohrwerkstoff eignen sich für den Einsatz in Äthylenanlagen Eisen- beziehungsweise Nickel-Legierungen mit 0,1% bis 0,5% Kohlenstoff, 20 bis 35% Chrom. 20 bis 70% Nickel, bis 3% Silizium, bis 1% Niob, bis 5% Wolfram sowie Zusätzen von Hafnium. Titan, Seltenen Erden, oder Zirkonium, von jeweils bis 0,5% und bis 6% Aluminium.


Ansprüche

1. Rippenrohr zum thermischen Cracken von Kohlenwasserstoffen in Anwesenheit von Dampf, gekennzeichnet durch in einem Winkel von 20° bis 40°, bezogen auf die Rohrachse geneigte Innenrippen mit einem Flankenwinkel von 16° bis 25°.
 
2. Rippenrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Rippen um 22,5° bis 32,5° geneigt gegenüber der Rohrachse verlaufen.
 
3. Rippenrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Profilumfang (Up) + 5 bis - 2% des die Rippentäler berührenden Hüllkreises ausmacht.
 
4. Rippenrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Flankenwinkel (β) der Rippen 16 bis 20° beträgt.
 
5. Rippenrohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rippen und die zwischen den Rippen befindlichen Rippentäler im Querschnitt spiegelsymmetrisch ausgebildet sind.
 
6. Rippenrohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Rippenkuppen und die Rippentäler jeweils ineinander übergehen.
 
7. Rippenrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rippen und die Rippentäler denselben Krümmungsradius (R) besitzen.
 
8. Rippenrohr nach einem der Ansprüche 1 bis 7, gekennzeichnet durch insgesamt sechs bis zwölf Rippen.
 
9. Rippenrohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der hydraulische Durchmesser des Rippenrohrs mindestens gleich dem Durchmesser des Innenkreises (Ri) ist.
 
10. Rippenrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Verhältnis der Quotienten der Wärmeübergangskoeffizienten QR/Q0 zum Quotienten der Druckverluste ΔPR/ΔP0 im Wasserversuch 1,4 bis 1,5 beträgt, wobei R ein Rippenrohr und 0 ein Glattrohr kennzeichnet.
 
11. Rippenrohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Krümmungsradius (R) des Rippenquerschnitts 3,5 bis 20 mm beträgt.
 
12. Rippenrohr nach einem der Ansprüche 1 bis 11, gekennzeichnet durch eine Rippenhöhe (H) von 1,25 bis 3 mm.
 
13. Rippenrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der freie Querschnitt innerhalb des Profilumfangs (Up) 85 bis 95% der Fläche des Hüllkreises (Fa) beträgt.
 
14. Rippenrohr nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Profilfläche (Fp) 40 bis 50% der Ringfläche zwischen dem Hüllkreis und dem Innenkreis beträgt.
 
15. Rippenrohr nach einem der Ansprüche 1 bis 14 aus Schleuderguß aus einer NickelLegierung mit 0,1 bis 0,5% Kohlenstoff, 20 bis 35% Chrom, 20 bis 70% Nickel, bis 3% Silizium, bis 1 % Niob, bis 5% Wolfram sowie jeweils bis 0,5% Hafnium, Titan, Seltene Erdmetalle, Zirkonium und bis 6% Aluminium, Rest Eisen.
 




Zeichnung






















Recherchenbericht










Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente