(19)
(11) EP 2 327 881 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.06.2011  Patentblatt  2011/22

(21) Anmeldenummer: 10178105.2

(22) Anmeldetag:  18.04.2007
(27) Früher eingereichte Anmeldung:
 18.04.2007 EP 07106407
(51) Internationale Patentklassifikation (IPC): 
F04C 14/18(2006.01)
F04C 2/18(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR MK RS

(30) Priorität: 19.04.2006 DE 102006018124

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
07106407.5 / 1847713

(71) Anmelder: Schwäbische Hüttenwerke Automotive GmbH
73433 Aalen-Wasseralfingen (DE)

(72) Erfinder:
  • Lamparski, Christof
    88441 Mittelbiberach (DE)

(74) Vertreter: Schwabe - Sandmair - Marx 
Patentanwälte Stuntzstraße 16
81677 München
81677 München (DE)

 
Bemerkungen:
Diese Anmeldung ist am 21-09-2010 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Verstellbare Rotationspumpe mit Verschleißminderung


(57) Die Erfindung betrifft eine Rotationspumpe mit regelbarem Fördervolumen, umfassend:
a) ein Gehäuse (3, 6),
b) eine in dem Gehäuse (3, 6) gebildete Förderkammer mit einem Einlass (4) für ein Fluid auf einer Niederdruckseite und einem Auslass (5) für das Fluid auf einer Hochdruckseite der Pumpe,
c) wenigstens einen in der Förderkammer um eine Drehachse (R2) drehbaren Förderrotor (2),
d) ein zu einer Stirnseite des Förderrotors (2) angeordnetes oder den Förderrotor umgeben des Stellglied (15), das für die Verstellung des Fördervolumens in dem Gehäuse (3, 6) hin und her bewegbar ist,
e) wobei das Stellglied (15) in Richtung seiner Bewegbarkeit mit einer von dem Bedarf eines mit dem Fluid zu versorgenden Verbrauchers abhängigen Stellkraft beaufschlagbar ist,
f) und eine in dem Gehäuse (3, 6) gebildete Laufbahn (3a), die das Stellglied (15) an einer Stellglied-Gleitfläche (15a) in einem Gleitkontakt führt,
g) wobei ein Gleitmaterial, das wenigstens eines aus Laufbahn (3a) und Stellglied- Gleit fläche (15a) bildet, aus wenigstens einem aus Kunststoff, Keramik, Nitrid, einer Nickel phosphorverbindung oder einem Gleitlack besteht oder von einer DLC-Beschichtung, einer Ferroprint-Beschichtung oder einer Nano-Beschichtung gebildet wird.




Beschreibung


[0001] Die Erfindung betrifft eine Rotationspumpe mit verstellbarem, vorzugsweise regelbarem Fördervolumen und ein Verfahren zu deren Herstellung. Die Rotationspumpe kann insbesondere als Schmierölpumpe für die Schmierölversorgung eines Verbrennungsmotors, insbesondere eines Kraftfalrrzeugsmotars, verwendet werden.

[0002] Schmierölpumpen von Kraftfahrzeugen werden in Abhängigkeit von der Drehzahl des mit Schmieröl zu versorgenden Motors angetrieben, üblicherweise direkt oder über ein mechanisches Getriebe vom Motor. Die Drehzahl der Pumpe steigt dementsprechend mit der Drehzahl des Motors. Da Rotationspumpen ein konstantes spezifisches Fördervolumen haben, d. h. pro Umdrehung bei jeder Drehzahl im Wesentlichen die gleiche Flüssigkeitsmenge fördern, steigt das Fördervolumen proportional mit der Pumpendrehzahl, Der Bedarf des Motors steigt bis zu einer gewissen Grenzdrehzahl ebenfalls in etwa proportional zur Motordrehzahl, knickt nach Erreichen der Grenzdrehzahl jedoch ab oder flacht zumindest ab, so dass die Rotationspumpe bei Überschreiten der Grenzdrehzahl über den Bedarf fördert. Um die überschüssige Fördermenge nicht verlustbehaftet in ein Reservoir leiten zu müssen, wurden verstellbare Rotationspumpen entwickelt. Als Beispiele verstellbarer Rotationspumpe sind innenachsige und außenachsige Zahnradpumpen aus der DE 102 22 131 B4 bekannt. Des Weiteren sind verstellbare Flügelzellenpumpen bekannt. Die Pumpen umfassen jeweils ein hin und her bewegbares Stellglied. In den genannten Beispielfällen ist der Förderrotor entweder ein Zahnrad oder ein Flügelrad, Bei den bekannten innenachsigen Zahnradpumpen und Flügelzellenpumpen wird durch die Bewegung des Verstellglieds die Exzentrizität zwischen zwei miteinander kämmenden Zahnrädern oder die Exzentrizität zwischen dem Flügelrad und dem Stellglied entsprechend dem Bedarf des Verbrauchers verstellt. Bei außenachsigen Zahnradpumpen wird die axiale Eingriffslänge zweier Zahnräder verstellt. Für die Verstellung wird das jeweilige Stellglied mit einer Stellkraft beaufschlagt, beispielsweise unmittelbar mit der Hochdruckflüssigkeit. Der Stellkraft wirkt ein Federglied entgegen. Bei Pumpen der genannten Art, die in zunehmendem Maße aus Leichtmetalllegierungen, insbesondere Al-Legierungen hergestellt werden, unterliegen überraschenderweise die in Reibkontakt stehenden Flächen des Pumpengehäuses und des Stellglieds einem besonderen Verschleiß und bestimmen die Lebensdauer der Pumpe.

[0003] Es ist eine Aufgabe der Erfindung, die Lebensdauer von verstellbaren Rotationspumpen des Verdrängertyps zu verlängern.

[0004] Die Erfindung geht von einer Rotationspumpe vom Verdrängertyp aus, die ein Gehäuse mit einer Förderkammer, einen in der Förderkammer um eine Drehachse drehbaren Förderrotor und wenigstens ein in dem Gehäuse hin und her bewegbares Stellglied umfasst. Das Stellglied kann den Förderrotor umgeben oder vorzugsweise zu einer Stirnseite des Förderrotors angeordnet sein. Ein den Förderrotor umgebendes Stellglied kann insbesondere bei innenachsigen Pumpen, beispielsweise Zahnringpumpen und Flügelzellenpumpen, vorgesehen und als drehbar gelagerter Exzenterring wie aus der DE 102 22 131 B4 oder der EP 0 846 861 B1 bekannt oder als Hubring gebildet sein. Bevorzugt wird jedoch ein Stellglied, das wie von Außenzahnradpumpen bekannt, beispielsweise der DE 102 22 131 B4, zu einer Stirnseite des Förderrotors angeordnet ist und die Förderkammer an der betreffenden Stirnseite axial abdichtet Ein derartiges Stellglied bildet einen Stellkolben, der längs der Drehachse des Förderrads hin und her axial bewegbar ist. Ein den Förderrotors umgebendes Stellglied ist drehbar oder schwenkbar gelagert, kann aber alternativ auch linear bewegbar gelagert sein. Die Förderkammer weist eine Niederdruckseite und eine Hochdruckseite auf Auf der Niederdruckseite ist wenigstens ein Einlass und auf der Hochdruckseite ist wenigstens ein Auslass für ein zu förderndes Fluid angeordnet. Die Niederdruckseite der Förderkammer und der gesamte stromaufwärtige Teil des Systems, in dem die Pumpe eingebaut ist, bilden die Niederdruckseite der Pumpe. Die Hochdruckseite der Förderkammer und der gesamte sich daran anschließende, stromabwärtige Teil des Systems bilden die Hochdruckseite der Pumpe. Die Niederdruckseite erstreckt sich bis zu einem Reservoir für das Fluid, und die Hochdruckseite erstreckt sich bis wenigstens zu der stromabwärtigsten Verbrauchsstelle, die hohen Fluiddruck benötigt.
Das Stellglied ist in Richtung seiner Bewegbarkeit mit einer Stellkraft beaufschlagbar, die von dem Druck des Fluids der Hochdruckseite der Pumpe abhängt oder einer anderen für den Bedarf maßgeblichen Größe des Systems. Der Druck kann unmittelbar an dem Auslass der Förderkammer oder einem nachgelagerte Pumpenauslass oder von einer weiter stromabwärts im System gelegenen Stelle, beispielsweise der letzten Verbrauchsstelle, abgenommen werden. In die Bildung der Stellkraft kann statt des Drucks oder zusätzlich zu dem Druck beispielsweise die Temperatur des Fluids einfließen oder einer Komponente im System, in dem die Pumpe eingebaut ist, beispielsweise eine Motortemperatur. Gegebenenfalls werden andere oder weitere physikalische Größen für die Bestimmung der Stellkraft herangezogen. Die Stellkraft kann mittels eines zusätzlichen Stellglieds, beispielsweise eines Elektromotors, erzeugt werden. Bevorzugter ist jedoch das Stellglied unmittelbar mit dem Druck des Fluids beaufschlagbar, d. h. es wird im Betrieb der Pumpe mit dem Druckfluid beaufschlagt. Das Stellglied wird in bevorzugten Ausführungen, insbesondere in Ausführungen, in denen es mit dem Druckfluid beaufschlagt wird, der Stellkraft entgegenwirkend mit einer Elastizitätskraft beaufschlagt. Die Elastizitätskraft wird von einem Elastizitätsglied erzeugt, vorzugsweise von einer mechanischen Feder.

[0005] Das Stellglied steht mit dem Gehäuse in einem Gleitkontakt, indem das Gehäuse eine Laufbahn und das Stellglied eine Stellglied-Gleitfläche bilden und das Stellglied mittels seiner Gleitfläche von der Laufbahn in dem Gleitkontakt geführt wird. Das Stellglied kann zusätzlich noch anderweitig geführt werden, beispielsweise in einem Schwenkgelenk, bevorzugter wird es jedoch nur von der Laufbahn geführt.

[0006] Nach der Erfindung wird oder werden die Stellglied-Gleitfläche oder die Laufbahn aus einem Gleitmaterial gebildet. Das Gleitmaterial kann insbesondere ein Kunststoff, ein keramisches Material, ein Nitrid, eine Nickelphosphorverbindung, ein Gleitlack, eine DLC-Beschlchtung, eine Ferroprint-Beschichatung oder eine Nano-Beschichtung sein. Das Gleitmaterial kann eine Oberflächenbeschichtung bilden. Falls das Gleitmaterial ein Kunststoff ist, kann das betreffende Bauteil, d. h. ein die Laufbahn bildendes Gehäuseteil oder das Stellglied, ausschließlich oder doch zumindest im Wesentlichen aus dem Gleitmaterial bestehen In bevorzugten Aus führungen besteht sowohl die Stellglied-Gleitfläche als auch die Laufbahn aus einem Gleitmaterial, entweder je dem gleichen oder jeweils aus einem anderen Gleitmaterial. Verschleißminderungen werden jedoch auch bereits erzielt, wenn entweder nur die Stellglied-Gleitfläche oder nur die Laufbahn aus dem Gleitmaterial besteht, wobei der Verwendung des Gleitmaterials für die Stellglied-Gleitfläche der Vorzug gegeben wird.

[0007] Die Erfindung beruht auf der Erkenntnis, dass für den Verschleiß Furchung, andererseits aber auch Adhäsion maßgeblich sein kann. Adhäsion kann insbesondere dann der Verschleiß bestimmende Reibmechanismus sein, wenn die im Gleitkontakt stehenden Reibpartner so glatt sind, dass der Reibmechanismus der Furchung oder Abrasion in den Hintergrund tritt. So wurde bei verstellbaren Außenzahnradpumpen festgestellt, dass die zu den Stirnseiten des axial bewegbaren Förderrotors angeordneten Stellglieder, nämlich die beiden Stellkolben, einem beachtlichen Schwingreibverschleiß unterliegen. Die für die Einstellung des Fördervolumens erforderlichen Verstellbewegungen können den Schwingreibverschleiß nicht verursachen. Die Verstellbewegungen sind zu langsam. Den Verstellbewegungen sind jedoch Oszillationen mit im Vergleich zu den Regelbewegungen kurzen Hüben und weitaus höherer Frequenz überlagert. Zwischen den Gleitflächen der Stellglieder und der Laufbahn des Pumpengehäuses kommt es daher zur Adhäsion mit der Folge, dass örtlich Materialverschweißungen auftreten, die durch die Verstellbewegungen losgebrochen werden. Nach der Erfindung werden die Gleitpartner, d. h. die Gleitfläche des Stellglieds oder der mehreren Stellglieder und die Laufbahn oder mehreren Laufbahnen des Gehäuses, so gestaltet, dass die Adhäsionsneigung im Reibungssystem im Vergleich zu den für die Gleitpartner üblichen Oberflächen aus Aluminiumlegierungen deutlich verringert wird. Das Gleitmaterial ist vorteilhafterweise so gewählt, dass es eine Adhäsionsenergie bzw. freie Oberflächenenergie aufweist, die höchstens halb so groß wie die Adhäsionsenergie von reinem Aluminium ist. Diese Bedingung wird insbesondere von Kunststoffmaterialien und keramischen Materialien, vorzugsweise Metalloxidkeramiken, aber auch von den vorstehend genannten weiteren Gleitmaterialien erfüllt. Die Adhäsionsenergie oder freie Bindungsenergie nimmt mit der Dichte der freien Elektronen zu. Die Forderung nach einer niedrigen Adhäsionsenergie erfüllen demnach Materialien mit einer niedrigen Dichte freier Elektronen.

[0008] Eine als Gleitmaterial besonders geeignete Materialgruppe sind temperaturfeste Thermoplaste. Das Polymer oder die gegebenenfalls mehreren Polymere des Kunststoffgleitmaterials sind vorteilhafterweise gleitmodifiziert, d. h. der Kunststoff enthält einen Gleitzusatz, durch den die Gleiteigenschaften verbessert werden. Solch ein Gleitmaterial ist auch bestens in den Fällen geeignet, in denen nur einer der Gleitpartner des Reibsystem aus Gleitmaterial besteht. Ein bevorzugter Gleitzusatz ist Graphit. Alternativ kommt als Gleitzusatz vor allem ein Polymer aus der Gruppe der Fluorpolymere in Frage. Ein bevorzugtes Beispiel aus dieser Gruppe ist Polytetrafluorethylen (PTFE). Besonders bevorzugt sind dem Polymer, Copolymer, der Polymernlischung oder dem Polymerblend als Gleitzusatz sowohl Graphit als auch wenigstens ein Fluorpolymer, bevorzugt PTFE, beigemischt. Der Anteil des Gleitzusatzes sollte wenigstens 10 Gew.-% insgesamt betragen, bevorzugter beträgt der Anteil des Gleitzusatzes insgesamt 20 % ± 5 %. Falls unterschiedliche Materialien den Gleitzusatz bilden, sollten die einzelnen Anteile zumindest im Wesentlichen gleich sein. So werden Kunststoffgleitmaterialien bevorzugt, die 10 ± 2 Gew.-% Graphit und 10 ± 2 Gew.-% Fluorpolymer enthalten. Als vorteilhaft wird auch die Zugabe von Fasermaterial angesehen, wobei als Fasermaterial Carbonfasern der Vorzug gegeben wird. Glasfasern sollten nicht zugegeben werden, da sie an der Oberfläche der aus dem Gleitmaterial gebildeten Gleitschicht feine Nadelspitze bilden können und daher die Gleiteigenschaften verschlechtern. Das Kunststoffgleitmaterial enthält vorzugsweise 10 ± 5 Gew.-%, bevorzugter 10 ± 3 Ges.-% Fasermaterial,

[0009] Als Gleitmaterial bevorzugte Kunststoffe enthalten 70 ± 10 Gew,-% Polymermaterial. Obgleich grundsätzlich Polymermischungen oder Polymerblends als Basismaterial in Frage kommen, enthält das Kunststoffgleitmaterial bevorzugt nur eine Art von Polymer. Polymere mit ihren langen Kohlenwasserstoffketten haben eine sehr geringe Dichte freier Elektronen und auch entsprechend wenig freie Plätze für freie Elektronen des Gleitpartners. In dieser Hinsicht sind amorphe Polymere mit ihren verknäulten Molekülketten besonders vorteilhafte Der Kristallinitätsgrad des Polymermaterials sollte möglichst niedrig sein. Andererseits sollte das Polymermaterial keine praktisch ins Gewicht fallende Entropieelastizität haben. Die untere Einsatztenrperatur sollte bei -40 °C, besser darunter liegen. Die Dauergebrauchstemperatur sollte wenigstens +150 °C betragen. Innerhalb dieses Gebrauchstemperaturbereichs sind eine geringe Kriechneigung, ausreichende mechanische Festigkeit und Formstabilität gefordert, Für den Einsatz im Fahrzeugbau sollte das Kunststoffgleitmaterial ferner resistent gegen Kraftstoffe sein. Generell ist Resistenz gegen das geförderte Fluid zu fordern. Von Vorteil ist ferner, wenn das Gleitmaterial auch harte Partikel einbetten kann, die durch Furchung, d. h. Abrieb, entstehen können. Bevorzugte Polymermaterialien sind:
  • Polysulfon (PSU) oder insbesondere Polyethersulfon (PES), auch Copolymerisate aus PES und Polysulfon (PSU),
  • Polyphenylensulfid (PPS)
  • Polyetherketone, nämlich PAEK, PEK oder insbesondere PEEK
  • Polyphtalamid (PPA)
  • und Polyamid (PA)


[0010] Das Stellglied ist in bevorzugten ersten Ausführungsformen aus dem Kunststoffgleitmaterial geformt, vorzugsweise im Spritzguss. Vorzugsweise besteht es in derartigen Ausführungen aus dem Kunststoff, Grundsätzlich können in dem Kunststoff jedoch Einlegeteile eingebettet sein; in diesem Sinne besteht das Stellglied zumindest im Wesentlichen aus dem Kunststoff gleitmaterial, Anstatt des Stellglieds kann auch ein Gehäuseteil, das die Laufbahn bildet, aus dem Kunststoffgleitmaterial geformt sein, vorzugsweise im Spritzguss und allein aus dem Kunststoff oder im vorstehenden Sinne zumindest im Wesentlichen aus dem Kunststoff bestehen. In einer demgegenüber bevorzugten Variante ist das Gehäuse aus einem Metall, vorzugsweise einem Leichtmetall geformt, und die Laufbahn wird von einem aus dem Kunststoffgleitmaterial bestehenden Einsatzteil, vorzugsweise einer Laufbuchse, gebildet. Grundsätzlich können auch das Stellglied und ein die Laufbahn bildendes Gehäuseteil, insbesondere Einsatzteil, jeweils aus dem Kunststoffgleitmaterial geformt sein. Im Rahmen der ersten Ausführungsformen wird es besonders bevorzugt, wenn nur das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial besteht, die Laufbahn hingegen von einem Kunststoffgleitmaterial oder gegebenenfalls einem anderen Gleitmaterial nur als Oberflächenbeschichtung oder als unbeschichtete Metalloberfiläche gebildet wird.

[0011] In bevorzugten zweiten Ausführungsformen wird wenigstens eine der in Gleitkontakt stehenden Gleitflächen von einer dünnen Gleitschicht gebildet. Das Stellglied oder das die Laufbahn bildende Gehäuseteil besteht oder bestehen unter der oberflächliche Gleitschicht aus einem anderen Material, nämlich einem Trägermaterial. Das Trägermaterial kann insbesondere ein Metall, vorzugsweise ein Leichtmetall sein. Kandidaten für Leichtmetalle sind vor allem Aluminium, Aluminiumlegierungen und Magnesiumlegierungen. In den zweiten Ausführungformen sind vorzugsweise beide Gleitflächen als oberflächliche Gleitschichten aus je einem Gleitmaterial mit gegenüber Aluminium oder Magnesium deutlich geringerer Adhäsionsenergie gebildet sein. Falls nur eine der Gleitflächen der beiden Gleitpartner aus dem Gleitmatciial besteht, handelt es sich vorzugsweise um die Gleitfläche des Stellglieds. Vorteilhaft ist auch eine Kombination einer ersten und einer zweiten Ausführungsform, bei der das Steilglied oder das die Laufbahn bildende Gehäuseteil, vorzugsweise Einsatzteil, zumindest im Wesentlichen aus Kunststoff besteht und das andere Teil eine Oberflächenschicht aus dem Gleitmaterial, beispielsweise ebenfalls aus Kunststoff oder einem keramischen Material auf weise

[0012] Die oberflächliche Gleitschicht kann durch Auftragen des Gleitmaterials oder durch Umwandlung des Trägermaterials gebildet werden. Kunststoffgleitmaterial wird aufgetragen, vorzugsweise wird der aus dem Trägermaterial geformte Rohling mit dem Kunststoff umspritzt. Das Kunststoffgleitmaterial sollte eine thermische Längendehnung aufweisen, die der Längendehnung des Trägermaterials möglichst nahe kommt. Durch Umwandlung leichtmetallischer Trägermaterialien entsteht hingegen eine metallaxidlceramische Gleitschicht oder eine Nitridschicht. Ist das Trägermaterial Aluminium oder eine Aluminiumlegierung, wird die Gleitschicht vorzugsweise durch Eloxieren erhalten. Durch Eloxieren kann insbesondere eine so genannte Hardcoat®-Gleitschicht (HC-Schiclrt) oder bevorzugter eine so genannte Hardcoat®-Glatt-Gleitschicht (HC-GL-Schicht) gebildet werden. Hardcoat®-Glatt-Elektrolyte bestehen aus einer Mischung von Oxalsäure und Additiven. Zur Herstellung von Hardcoat®-Schichten wird in der Regel Schwefelsäure (H2SO4) verwendet. Auch für Magnesium und Magnesiumlegicrungen als Trägermaterial sind anodische Oxidationsverfahren zur Schaffung einer mit Al2O3-Gleitschichten vergleichbaren metallkeramischen Gleitschicht bekannt, beispielsweise das so genannte DOW-Verfahren. In der keramischen Gleitschicht ist vorzugsweise PTFE, verteilt, die Keramik ist sozusagen mit PTFE imprägniert.

[0013] Das Gehäuse oder auch nur ein die Laufbahn bildendes Gehäuseteil kann wie bereits erwähnt insbesondere aus Aluminium oder einer Aluminiumlegierung geformt sein. Das Gehäuse oder das betreffende Gehäuseteil wird vorzugsweise gegossen. Die Aluminiumlegierung ist daher bevorzugt eine Al-Gusslegierung. Falls das Stellglied nicht zumindest im Wesentlichen aus Kunststoffgleitmaterial besteht, wird es bevorzugt aus Aluminium oder einer Aluminiumlegierung, vorzugsweise einer Gusslegierung geformt, bevorzugt durch Gießen und anschließendes Fließpressen oder durch Sintern und Kalibrieren. Sowohl für das Gehäuseteil als auch das Stellglied gilt, dass die jeweilige Aluminiumlegierung vorzugsweise 10 ± 2 Gew.-% Silizium enthält. Bevorzugt enthält die jeweilige Legierung auch Kupfer, allerdings mit einem Anteil von höchstens 4 Gew.-%, bevorzugt höchstens 3 Gew,-%, Des Weiteren kann sie einen kleineren Anteil Eisen enthalten. Das Gehäuseteil, vorzugsweise auch weitere Teile des Gehäuses, ist oder sind vorzugsweise im Sandguss oder Druckguss geformt, wobei sich der Druckguss in erster Linie für größere und der Sandguss für kleinere Serien anbieten. Statt Sandguss kann auch Kokillenguss zur Anwendung gelangen. Eine besonders bevorzugte Legierung für das Gehäuseteil und auch für das Gehäuse insgesamt ist AlSi8Cu3, falls es im Sandguss oder Kokillenguss geformt wird, und AlSi9Cu3 zuzüglich eines geringen Fe-Anteils, falls es im Druckguss geformt wird.

[0014] Als Gleitmaterial bevorzugte Nitride sind Titancarbonitrid (TiCN) und insbesondere nitrierter Stahl. Als nitrierte Stähle kommen insbesondere Stähle mit hohem Chromgehalt, vorzugsweise mit Molybdänanteil und ebenfalls bevorzugt mit Vanadiumanteil zum Einsatz, beispielsweise 30CrMoV9, TiCN gelangt als Oberflächenbeschichtung auf einem Leichtmetall-Trägermaterials zum Einsatz. Falls nitrierter Stahl das Gleitmaterial bildet, ist der entsprechende Stahl vorzugsweise das Trägermaterial, So kann insbesondere das Stellglied aus dem Stahl geformt und die Stellglied-Gleitfläche aus dem nitriertem Stahl bestehen. Eine besonders bevorzugte Gleitpaarung ist Hardcoat-Keramik oder Hardeoat-Glatt-Keramik bei dem einen und nitrierter Stahl bei dem anderen Gleitpartner. Das keramische Gleitmaterial dieser Paarung kann PTFE enthalten, geringer Verschleiß wird jedoch auch bei Verwendung nur der Keramik erzielt. Eine Gleitpaarung aus Hardcoat- oder Hardcoat-Glatt-Keramik mit gesinterter Zinnbronze ist ebenfalls eine Alternative, obgleich im Hinblick auf die Wärmeausdehnung nur eine bedingt bevorzugte.

[0015] Verschleiß mindern wirkt sich auch eine DLC-Beschichtung (Diamond Like Carbon) und hier insbesondere eine Wolframcarbid(WC)-Beschichtung aus. Eine DLC-Gleitschicht kann insbesondere durch Plasmabeschichten erzeugt werden.

[0016] Gleitlacke sind ebenfalls geeignete Gleitmaterialien, wobei auch für Gleitlacke gilt, dass eine Verschließminderung zwar bereits bei Beschichtung nur eines der Gleitpartner erzielt wird, eine Gleitlackbeschichtung beider Gleitpartner des Reibsystems jedoch der Vorzug gegeben wird. Auch eine Kombination eines Gleitlacks bei dem einen und eines Kunststoffmaterials bei dem anderen Gleitpartner ist eine vorteilhafte Lösung. Der Gleitlack besteht aus einem organischen oder anorganischen Bindemittel, einem oder mehreren Festschmierstoffen und Additiven, Als Festschmierstoff kommen insbesondere MoS2, Graphit oder PTFE einzeln oder in Kombination in Frage. Vor dem Beschichten mit dem Gleitlack wird die zu beschichtende Oberfläche vorbehandelt, indem auf der zu beschichtenden Oberfläche zweclcmäßigerweise eine Phosphatschicht gebildet wird. Ein besonderer Gleitlack ist Ferroprint, der als Festsclunierstoff feine Stahlplättchen enthält.

[0017] Falls eine Nano-Beschichtung das Gleitmaterial bildet, können insbesondere Nano-Phosphorverbindungen die Gleitschicht bilden.

[0018] Vorteilhafte Merkmale der Erfindung werden auch in den Unteransprüchen und deren Kombinationen beschrieben. Die dort beschriebenen Merkmale und die vorstehend beschriebenen ergeben weitere vorteilhafte Merkmalskombinationen.

[0019] Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Figuren erläutert. An den Ausführungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Kombination von Merkmalen die sich nicht gegenseitig ausschließen, die Gegenstände der Ansprüche und auch die vorstehend beschriebenen Ausgestaltungen vorteilhaft weiter. Es zeigen:
Figur 1
eine Förderkammer einer Außenzahnradpumpe mit zwei in Zahneingriff befindlichen Förderrotoren und
Figur 2
die Außenzahnradpumpe in einem Längsschnitt.


[0020] Figur 1 zeigt eine Außenzahnradpumpe in einem Querschnitt. In einem Pumpengehäuse, das ein Gehäuseteil 3 und einen Deckel 6 (Figur 2) umfasst, ist eine Förderkammer gebildet, in der zwei außenverzahnte Förderrotoren 1 und 2 in Form von außen verzahnten Zahnrädern um parallele Drehachsen R1 und R2 drehbar gelagert sind. Der Förderrotor 1 wird drehangetrieben, beispielsweise von der Kurbelwelle eines Verbrennungsmotors eines Kraftfahrzeugs. Die Förderrotoren 1 und 2 sind miteinander in einem Zahneingriff, so dass bei einem Drehantrieb des Förderrotors 1 der damit kämmende Förderrotor 2 ebenfalls drehangetrieben wird. In die Förderkammer münden auf einer Niederdruckseite ein Einlass 4 und auf einer Hochdruckseite ein Auslass 5 für ein zu förderndes Fluid, vorzugsweise Schnieröl für einen Verbrennungsmotor. Das Gehäuseteil 3 bildet den Förderrotoren 1 und 2 in radialer Richtung zugewandt jeweils eine radiale Dichtfläche 9, die den jeweiligen Förderrotor 1 oder 2 umfangsseitig unter Ausbildung eines engen radialen Dichtspalts umschlingt. Für den Förderrotor 1 bildet das Gehäuse 3, 6 ferner an jeder Stirnseite des Förderrotors 1 und diesem axial zugewandt eine axiale Dichtfläche, von denen in Figur 1 die Dichtfläche 7 zu erkennen ist. Dem Förderrotor 2 ist an dessen beiden Stirnseiten axial zugewandt je eine weitere axiale Dichtfläche gebildet, von denen im Querschnitt der Figur 1 die Dichtfläche 17 zu erkennen ist.

[0021] Durch Drehantrieb der Förderrotoren 1 und 2 wird Fluid durch den Einlass 4 in die Förderkammer gesogen und in den Zahnlücken der Förderrotoren 1 und 2 durch die jeweilige Umschlingung auf die Hochdruckseite der Förderkammer und dort durch den Auslass 5 zu dem Verbraucher, im angenommenen Beispielfall der Verbrennungsmotor, gefördert Während der Fördertätigkeit trennen die zwischen den Förderrotoren 1 und 2 und den genannten Dichtflächen gebildeten Dichtspalte und der Zahneingriff der Förderrotoren 1 und 2 die Hochdruckseite von der Niederdruckseite. Die Förderrate der Pumpe steigt proportional mit der Drehzahl der Förderrotoren 1 und 2. Da ein beispielhaft als Verbraucher angenommener Verbrennungsmotor ab einer gewissen Grenzdrehzahl weniger Schmieröl aufnimmt als die Pumpe entsprechend ihrer proportional mit der Drehzahl steigenden Kennlinie fördern würde, wird die Förderrate der Pumpe ab der Grenzdrehzahl abgeregelt Für die Abregelung ist der Förderrotor 2 relativ zu dem Förderrotor 1 axial, d.h. längs seiner Drehachse R2 hin und her bewegbar, so dass die Eingriffslänge der Förderrotoren 1 und 2 und entsprechend die Förderrate verändert werden können.

[0022] In Figur 2 nimmt der Förderrotor 2 eine axiale Position mit einer axialen Überdeckung, d.h. Eingriffslänge, ein, die im Vergleich zu der maximalen Eingriffslänge bereits reduziert ist. Der Förderrotor 2 ist Bestandteil einer Verstelleinheit bestehend aus einem Lagerzapfen 14, einem Stellglied 15, einem Stellglied 16 und dem zwischen den Stellgliedern 15 und 16 drehbar auf dem Lagerzapfen 14 gelagerten Förderrotor 2. Der Lagerzapfen 14 verbindet die Stellglieder 15 und 16 drehsteif miteinander. Das Stellglied 16 bildet dem Förderrotor 2 zugewandt die axiale Dichtfläche 17. Das Stellglied 15 bildet die andere axiale Dichtfläche 18. Die gesamte Verstelleinheit ist in einem Verschieberaum des Pumpengehäuses 3, 6 axial hin und her verschiebbar verdrehgesichert gelagert.

[0023] Das Gehäuse wird von dem Gehäuseteil 3 und dem damit fest verbundenen Gehäusedeckel 6 gebildet. Der Gehäusedeckel 6 ist mit einem Sockel geformt, dessen dem Förderrotors 1 zugewandte Stirnfläche die Dichtfläche 7 bildet. Das Gehäuseteil 3 bildet auf der gegenüberliegenden Stirnseite dem Förderrotor 1 axial zugewandt die vierte axiale Dichtfläche 8. Die Dichtfläche 8 ist an ihrer der Verstelleinheit zugewandten Seite mit einem kreissegmentförmigen Ausschnitt für das Stellglied 15 versehen. Das Stellglied 16 ist an seiner zum Fördenotor 1 gewandten Seite mit einem kreissegmentformigen Ausschnitt für den die Dichtfläche 7 bildenden Sockel 6 versehen. Von dem jeweiligen Ausschnitt abgesehen entspricht die Dichtfläche 7 der Dichtfläche 8 und entspricht die Dichtfläche 17 der Dichtfläche 18.

[0024] Die Verstellglieder 15 und 16 des Ausführungsbeispiels sind Verstellkolben. Der Verschieberaum, in dem die Verstelleinheit axial hin und her beweglich ist, umfasst einen von der Rückseite des Stellglieds 15 begrenzten Teilraum 10 und einen von der Rückseite des Stellglieds 16 begrenzten Teilraum 11. Der Teilraum 11 ist mit der Hochdruckseite der Pumpe verbunden und wird ständig mit dort abgezweigtem Druckfluid beaufschlagt, das somit auf die Rückseite des Stellglieds 16 wirkt. In dem Raum 10 ist eine mechanische Druckfeder als Elastizitätsglied 12 angeordnet, dessen Elastizitätskraft auf die Rückseite des Stellglieds 16 wirkt. Das Elastizitätsglied 12 wirkt der im Teilraum 11 auf das Stellglied 16 wirkenden Druckkraft entgegen. Die Regelung derartiger Außenzahnradpumpen ist bekannt und bedarf daher keiner Erläuterung. Die Regelung kann insbesondere entsprechend der DE 102 22 131 B4 gestaltet sein.

[0025] Wären die axialen Dichtflächen 7, 8 und 17, 18 umlaufend glatt und die axialen Dichtspalte dementsprechend umlaufend eng, würde im Eingriffsbereich der Förderrotoren 1 und 2 Fluid der Hochdruckseite gequetscht, d.h. noch über den Druck der Hochdruckseite hinaus komprimiert und auf die Niederdruckseite gefördert werden. Für das Quetschen des Fluids wird Antriebsleistung verbraucht und ferner ist mit der besonderen Kompression des Fluids und dem Transport durch den Zahneingriff hindurch eine Förderstrompulsation verbunden.

[0026] Zur Vermeidung der genannten Nachteile sind die Dichtflächen 7, 8, 17 und 18 auf der Hochdruckseite je mit einer Entlastungstasche versehen. Von den vier Taschen sind in Figur 1 die Taschen 7a und 17a zu erkennen. Entlastungstaschen sind nur auf der Hochdruckseite gebildet,

[0027] Das Gehäuseteil 3 führt die Stellglieder 15 und 16 in einem Gleitkontakt. Für den Gleitkontakt bilden das Gehäuseteil 3 eine Laufbahn 3a und das Gehäuseteils 3 gemeinsam mit dem Deckel 6 eine Laufbahn 3b, 6b, Die Stellglieder 15 und 16 bilden an ihrer äußeren Umfangsfläche je eine Stellglied-Gleitfläche 15a und 16a, In dem Gleitkontakt stehen genauer gesagt die Laufbahn 3a und die Stellglied-Gleitfläche 15a einerseits und die Laufbahn 3b, 6b und die Stellglied-Gleitfläche 16a andererseits. Im Stand der Technik ist es üblich, die Gehäuse 3, 6 und die Stellglieder 15 und 16 aus Leichtmetalllegierungen zu fertigen. In den aus den Laufbahnen 3a und 3b, 6b einerseits und den Stellglied-Gleitflächen 15a und 16a andererseits gebildeten Reibsystemen bildet ein besonderes Gleitmaterial je wenigstens einen der Gleitpartner des betreffenden Reibsystems. Dabei kann in dem Reibsystem 3a/15a entweder die Laufbahn 3a oder die Stellglied-Gleitfläche 15a von dem Gleitmaterial gebildet werden. Das gleiche Gleitmaterial kann ferner sowohl die Laufbahn 3a als auch die Stellglied-Gleitfläche 15a bilden. Schließlich können die beiden Gleitflächen 3a und 15a jeweils von einem anderen Gleitmaterial gebildet werden. Das Gleiche gilt in Bezug auf das andere Reibungssystem 3b, 6b/16a. Falls nur einer der Gleitpartner des jeweiligen Reibsystems aus dem Gleitmaterial besteht, kommt zweckmäßigerweise jeweils das gleiche Gleitmaterial zum Einsatz. Bestehen beide Reibpartner aus einem Gleitmaterial, werden die Stellglied-Gleitflächen 15a und 16a,je vom gleichen Gleitmaterial oder die Laufbahnen 3a, 3b und 6b je vom gleichen Gleitmaterial gebildet,

[0028] Obgleich grundsätzlich im jeweiligen Reibsystem einer der Gleitpartner aus einer Metalllegierung, vorzugsweise einer Leichtmetalllegierung, bestehen kann, entspricht es bevorzugten Ausführungsbeispielen, wenn jeder der Gleitpartner von einem besonderen Gleitmaterial niedriger Adhäsionsenergie gebildet wird. Das Gleitmaterial der Gleitpartner des jeweiligen Reibsystems kann gleich oder unterschiedlich sein. Die Stellglieder 15 und 16 können insgesamt aus dem Gleitmaterial geformt sein oder aus einem Trägermaterial, vorzugsweise einer Leichtmetalllegierung, und oberflächlich je eine Gleitschicht aus dem Gleitmaterial aufweisen. Das Gehäuse, im Ausführungsbeispiel das Gehäuseteil 3 und der Deckel 6, können ebenfalls aus Kunststoff geformt sein, in bevorzugten Ausführungsbeispielen wird jedoch zumindest das Gehäuseteil 3, vorzugsweise auch der Deckel 6, aus einer Metalllegierung gegossen, vorzugsweise einer Leichtmetalllegierung. Als Leichtmetall kommen insbesondere Aluminiumlegierungen in Frage Nachfolgend werden bevorzugte Beispiele angegeben:

Beispiel 1



[0029] 
Gehäuseteil 3 und Deckel 6: jeweils aus AlSi9Cu.3 (Fe) Druckguss
Stellglieder 15 und 16: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)


[0030] Im Beispiel 1 werden das Gehäuseteil 3 und der Deckel 6 je aus der gleichen Aluminiumlegierung, nämlich AlSi9Cu.3 im Druckguss geformt. Die Legierung kann einen geringen Fe-Anteil enthalten. Die Laufbahnen 3a, 3b und 6b werden durch mechanische Bearbeitung passgenau erhalten. Die Stellglieder 15 und 16 werden jeweils im Ganzen aus dem spezifizierten Kunststoffgleitmateriat geformt. Die Gleitflächen 15a und 16a werden durch mechanische Bearbeitung passgenau erzeugt.

Beispiel 2



[0031] 
Gehäuseteil 3 und Deckel 6: jeweils aus AISi9Cu3(Fe) Druckguss
Stellglieder 15 und 16: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew,-% Graphit, 10 Ges-% PTFE, Rest PES (z. B. ULTRASON®)
Laufbahnen 3a, 3b und 6b: mit gleitmodifiziertem Kunststoff oder Gleitlack beschichtet


[0032] Das Beispiel 2 entspricht mit Ausnahme der Laufbahnen 3a, 3b und 6b dem Beispiel 1, Im Unterschied zum Beispiel 1 bildet jedoch jeweils eine Gleitschicht aus Kunststoffgleitmaterial oder Gleitlack die Laufbahnen .3a, 3b und 6b. Das Kunststoffgleitmaterial kann insbesondere das Material der Stellglieder 15 und 16 sein.

Beispiel 3



[0033] 
Gehäuseteil 3 und Deckel 6: jeweils aus AlSi9Cu3(Fe) Druckguss
Stellglieder 15 und 16: Fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3
Gleitflächen 15a und 16a: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)


[0034] Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1. Die Stellglieder 15 und 16 bestehen je aus der gleichen AI-Legierung, vorzugsweise AISi8Cu3. Sie werden aus einem gegossenen Halbzeug der Aluminiumlegierung durch Fließpressen geformt. Anschließend werden zumindest die Umfangsflächen je mit einer Gleitschicht aus dem Kunststoffgleitmaterial versehen. Anstatt die Rohlinge der Stellglieder 15 und 16 durch Fließpressen zu formen, können die Rohlinge durch Sintern und Kalibrieren geformt werden. Die fließgepressten oder kalibrierten Rohlinge werden angewärmt und in einer Form mit dem Kunststoffgleitmaterial umspritzt, vorzugsweise komplett umhüllt.

Beispiel 4



[0035] 
Gehäuseteil 3 und Deckel 6: jeweils aus AlSi9Cu3(Fe) Druckguss
Laufbahnen 3a, 3b und 6b: Hardcoat-Glatt (HC-GL-Gleitschicht, vorzugsweise mit PTFE Imprägnierung)
Stellglieder 15 und 16: Fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3
Gleitflächen 15a und 16a: Hardcoat-Glatt (HC-GL-Gleitschicht, vorzugsweise mit PTFE Imprägnierung)


[0036] Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1, Die Stellglieder 15 und 16 bestehen je aus der gleichen Aluminiumlegierung, vorzugsweise AlSi8Cu3. Sie werden entweder aus einem Gusshalbzeug durch Fließpressen geformt oder alternativ durch Sintern und Kalibrieren, Anschließend werden die Stellglied-Rohlinge zumindest an ihrer jeweils die Gleitfläche 15a und 16a bildenden Umfangsfläche eloxiert. Als Elektrolyt wird eine Mischung aus Oxalsäure und Additiven verwendet, so dass sich an den äußeren Umfangsflächen je eine Gleitschicht aus Al2O3―Hardcoat-Glatt bildet. Vorzugsweise ist die Gleitschicht mit PTFE imprägniert. Die Laufbahnen 3a, 3b und 6b weiden in gleicher Weise ebenfalls je als HC-GL-Gleitschicht, vorzugsweise als PTFE imprägnierte Gleitschicht gebildet.

[0037] In einer Abwandlung kann einer der beiden Gleitpartner oder können auch beide Gleitpartner je als HC-Gleitschicht gebildet sein, ebenfalls bevorzugt als PTFE imprägnierte Gleitschicht.

Beispiel 5



[0038] 
Gehäuseteils 3 und Deckel 6: jeweils aus AlSi9Cu3(Fe) Druckguss
Laufbahnen .3a, .3b und 6b: HC-Gleitschicht
Stellglieder 15 und 16: Stahl, beispielsweise 30CrMoV9, als Trägermaterial
Gleitflächen 15a und 16a: nitrierter Stahl


[0039] Das Gehäuseteil 3 und der Deckel 6 entsprechend dem Beispiel 1 und werden nach dem Formen eloxiert, so dass die Laufbahnen 3a, 3b und 6b als Al2O3―Hardcoat (HC-Gleitschicht) erhalten werden. Die HC-Gleitschicht kann PTFE imprägniert seine Die Stellglieder 15 und 16 werden aus Stahl geformt und an der Oberfläche, zumindest an den äußeren Umfangsflächen, nitriert.

Beispiel 6



[0040] 
Gehäuseteils 3 und Deckel 6: AlSi8Cu3 Sandguss oder Kokillenguss
Stellglieder 15 und 16: Fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3
Gleitflächen 15a und 16a: Hardcoat-Glatt (HC-Gl-Gleitschicht)


[0041] Das Gehäuseteil 3 und der Deckel 6 werden je aus AlSi8Cu.3 im Sandguss oder Kokillenguss geformt. Die Laufbahnen 3a, .3b und 6b werden durch mechanische Bearbeitung passgenau erzeugt. Die Stellglieder 15 und 16 werden je aus gegossenem Aluminiumhalbzeug durch Fließpressen geformt und eloxiert. Als Elektrolyt wird eine Mischung aus Oxalsäure und Additiven verwendet, so dass sich an den äußeren Umfangsflächen je eine Gleitschicht aus Al2O3―Hardcoat-Glatt bildet (HC-GL-Gleitschicht). Die HC-GL-Gleitschicht enthält vorzugsweise PTFE.

[0042] In einer Modifikation bildet HC-Keramik oder HC-Glatt-Keramik auch die Laufbahnen 3a, 3b und 6b, wobei auch dort die Keramik vorteilhafterweise PTFE imprägniert sein kann

[0043] Die Herstellungsweise und Materialwahl des letzten Ausfültrungsbeispiels eignet sich insbesondere für kleinere Serien, während die Formung der Gehäuseteile 3 und 6 im Druckguss für Großserien die bessere Wahl ist, Metallkeramische Gleitschichten eignen sich insbesondere für den Einsatz in Reibungssystemen mit Leichtmetall-Sandgussgefüge oder - Kokillengussgefüge oder generell Leichtmetall-Gusslegierungen, die im then-nodynamischen Gleichgewicht oder nahe dem thermodynamischen Gleichgewicht erstarrt sind, In Verbindung mit Druckgussteilen als Gleitpartner bereiten die wegen der kürzeren Auskühlzeit kleineren α-Mischkristalle, beispielsweise AlSi, des Druckgussgefüges Probleme, die für metalloxidkeramische Gleitschichten wie feine Schmirgelkörner wirken. Weist einer der Gleitpartner an seiner Gleitfläche ein Druckgussgefüge oder generell eine metastabile Phase auf, sind gleitmodifizierte, temperaturfeste Thermoplaste die bessere Wahl, oder es sollten je beide Gleitpartner eine HC- oder HC-GL-Gleitschicht aufweisen. Vorzugsweise bestehen jedoch auch bei Sandguss- oder Kokillengussgefügen beide Gleitpartner aus einem Gleitmaterial, niedriger Adhäsionsenergie.


Ansprüche

1. Rotationspumpe mit regelbarem Fördervolumen, umfassend

a) ein Gehäuse (3, 6),

b) eine in dem Gehäuse (3, 6) gebildete Förderkammer mit einem Einlass (4) für ein Fluid auf einer Niederdruckseite und einem Auslass (5) für das Fluid auf einer Hochdruckseite der Pumpe,

c) wenigstens einen in der Förderkammer um eine Drehachse (R2) drehbaren Förderrotor (2),

d) ein zu einer Stirnseite des Förderrotors (2) angeordnetes oder den Förderrotor umgebendes Stellglied (15), das für die Verstellung des Fördervolumens in dem Gehäuse (3, 6) hin und her bewegbar ist,

e) wobei das Stellglied (15) in Richtung seiner Bewegbarkeit mit einer von dem Bedarf eines mit dem Fluid zu versorgenden Verbrauchers abhängigen Stellkraft beaufschlagbar ist,

f) und eine in dem Gehäuse (3, 6) gebildete Laufbahn (3a), die das Stellglied (15) an einer Stellglied-Gleitfläche (15a) in einem Gleitkontakt führt,

g) wobei ein Gleitmaterial, das wenigstens eines aus Laufbahn (3a) und Stellglied-Gleitfläche (15a) bildet, aus wenigstens einem aus Kunststoff, Keramik, Nitrid, einer Nickelphosphorverbindung oder einem Gleitlack besteht oder von einer DLC-Beschichtung, einer Ferroprint-Beschichtung oder einer Nano-Beschichtung gebildet wird,


 
2. Rotationspumpe mit regelbarem Fördervolumen, umfassend

a) ein Gehäuse (3, 6),

b) eine in dem Gehäuse (3, 6) gebildete Förderkammer mit einem Einlass (4) für ein Fluid auf einer Niederdruckseite und einem Auslass (5) Für das Fluid auf einer Hochdruckseite der Pumpe,

c) wenigstens einen in der Förderkammer um eine Drehachse (R2) drehbaren Förderrotor (2),

d) ein zu einer Stirnseite des Förderrotor (2) angeordnetes oder den Förderrotor umgebendes Stellglied (15), das für die Verstellung des Fördervolumens in dem Gehäuse (3, 6) hin und her bewegbar ist,

e) wobei das Stellglied (15) in Richtung seiner Bewegbarkeit mit einer von dem Bedarf eines mit dem Fluid zu versorgenden Verbrauchers abhängigen Stellkraft beaufschlagbar ist,

f) und eine in dem Gehäuse (3, 6) gebildete Laufbahn (3a), die das Stellglied (15) an einer Stellglied-Gleitfläche (15a) in einem Gleitkontakt führt,

g) wobei ein Gleitmaterial, das wenigstens eines aus Laufbahn (3a) und Stellglied-Gleitfläche (15a) bildet, eine Adhäsionsenergie aufweist, die höchstens halb so groß wie die Adhäsionsenergie von Aluminium ist.


 
3. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei

- das Stellglied (15), ein weiteres Stellglied (16) und der Förderrotor (2) Bestandteil einer in dem Gehäuse (3, 6) als Gesamtheit hin und her bewegbaren Verstelleinheit (2, 15, 16) sind,

- die Stellglieder (15, 16) je zu einer der Stirnseiten des Förderrotors (2) angeordnet sind und in dem Gehäuse (3, 6) eine weitere Laufbahn (3b, 6b) gebildet ist, die das weitere Stellglied (16) an dessen Stellglied-Gleitfläche (16a) in einem Gleitkontakt führt,

- und wobei wenigstens eines aus weiterer Laufbahn (3b, 6b) und Stellglied-Gleitfläche (16a) des weiteren Stellglieds (16) aus dem Gleitmaterial, besteht.


 
4. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei das Gleitmaterial ein gleitmodifizierter Thermoplast ist.
 
5. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei das Gleitmaterial ein Polymer-Compound aus wenigstens einem temperaturfesten, mit Fasermaterial und Gleitzusatz gefüllten Polymer ist.
 
6. Rotationspumpe nach dem vorhergehenden Anspruch, wobei der Gleitzusatz wenigstens eines aus Graphit und Fluorpolymer, vorzugsweise PTFE, umfasst.
 
7. Rotationspumpe nach einem der zwei vorhergehenden Ansprüche, wobei das Fasennaterial Carbonfasern umfasst oder aus Carbonfasern besteht,
 
8. Rotationspumpe nach einem der drei vorhergehenden Ansprüche, wobei das Gleitmaterial wenigstens eines der folgenden Merkmale erfüllt:

- der Polymeranteil beträgt wenigstens 60 und höchstens 80 Gew.%,

- der Anteil des Gleitzusatzes beträgt wenigstens 10 und höchstens 30 Gew.%,

- der Anteil des Fasermaterials beträgt wenigstens 5 und höchstens 15 Gew,%.


 
9. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei das Gleitmaterial ein Kunststoff ist und ein Basismaterial des Kunststoffs ein Polymer einschließlich Copolymer, eine Mischung von Polymeren oder ein Polymerblend aus der Gruppe bestehend aus Polyethersulfon (PES), Polysulfon (PSU) Polyphenylensulfid (PPS), Polyetherketone (PAEK, PEK, PEEK), Polyamide (PA) und Polyphtalamid (PPA) ist.
 
10. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei wenigstens eines aus Stellglied-Gleitfläche (15a, 16a) und Laufbahn (3a, 3b, 6b) von einer metallkeramischen Schicht gebildet wird.
 
11. Rotationspumpe nach dem vorhergehenden Anspruch, wobei die Schicht eine Hardcoat-Schicht oder Hardcoat-Glatt-Schicht ist und vorzugsweise PTFE enthält.
 
12. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei nitrierter Stahl oder TiCN eines aus Laufbahn (3a, 3b, 6b) und Stellglied-Gleitfläche (15a, 16a) bildet.
 
13. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei ein die Laufbahn (3a, 3b, 6b) aufweisendes Gehäuseteil (3, 6) zumindest im Wesentlichen aus Metall besteht oder aus einem Metall als Trägermaterials geformt und auf dem Trägermaterial eine die Laufbahn (3a, 3b, 6b) bildende Gleitschicht aus dem Gleitmaterial aufgebracht oder durch Umwandlung des Trägermaterials gebildet ist,
 
14. Rotationspumpe nach dem vorhergehenden Anspruch, wobei ein Gussmaterial, vorzugsweise ein Druckgussmaterial, ein Kokillengussmaterial oder ein Sandgussmaterial mit entsprechendem Gefüge, das Gehäuseteil (3, 6) oder das Trägermaterial des Gehäuseteils (3, 6) bildet
 
15. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei das Stellglied (15, 16) einschließlich der Stellglied-Gleitfläche (15a, 16a) zumindest im Wesentlichen aus Metall besteht oder aus einem Metall als Trägermaterial geformt und auf dem Trägermaterial eine die Stellglied-Gleitfläche (15a, 16a) bildende Gleitschicht aus dem Gleitmaterial aufgebracht oder durch Umwandlung des Trägermaterials gebildet ist.
 
16. Rotationspumpe nach einer Kombination der Ansprüche 13 und 15, wobei das Metall des Gehäuseteils (3, 6) und das Metall des Stellglieds (15, 16) das gleiche metallische Element zumindest als Hauptbestandteil enthalten.
 
17. Rotationspumpe nach einem der vier vorhergehenden Ansprüche, wobei das Metall ein Leichtmetall, vorzugsweise Aluminium oder eine Al-Basisiegierung ist,
 
18. Rotationspumpe nach einem der fünf vorhergehenden Ansprüche, wobei ein Keramikmaterial des Trägermaterials, vorzugsweise Aluminiumoxid (Al2O3), die Gleitschicht bildet.
 
19. Rotationspumpe nach einem der sechs vorhergehenden Ansprüche, wobei das Metall Aluminium oder eine Al-Basislegierung ist, die Silizium und vorzugsweise wenigstens eines aus Kupfer und Eisen enthält.
 
20. Rotationspumpe nach einem der Ansprüche 1 bis 14 oder 16 bis 19, wobei das Stellglied (15, 16) aus dem Gleitmaterial geformt ist.
 
21. Rotationspumpe nach einem der vorhergehenden Ansprüche 1 bis 12 oder 15 bis 20, wobei das Gehäuse (3, 6) oder wenigstens ein die Laufbahn (3a, 3b) bildendes Gehäuseteil (3) aus dem Gleitmaterial geformt ist.
 
22. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei der Stellkraft entgegenwirkend ein Elastizitätsglied (12) angeordnet ist.
 
23. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei das Stellglied (15, 16) ein Stellkolben ist, der mit dem Fluid der Hochdruckseite beaufschlagbar ist.
 
24. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei der Förderrotor (2) und das Stellglied (15, 16) in Bezug auf die Drehachse (R2) axial bewegbar sind.
 
25. Rotationspumpe nach einem der vorhergehenden Ansprüche, umfassend einen weiteren Förderrotor (1), der in der Förderkammer um eine weitere Drehachse (R1) drehbar ist und die Förderrotoren (1, 2) miteinander in einem Fördereingriff sind.
 
26. Rotationspumpe nach einem der vorhergehenden Ansprüche, die außenachsig und vorzugsweise eine Außenzahnradpumpe ist.
 
27. Verfahren zur Herstellung der Rotationspumpe nach einem der vorhergehenden Ansprüche, bei dem

a) ein die Laufbahn (3a, 3b, 6b) bildendes Gehäuseteil (3, 6) aus einem Leichtmetall und

b) das Stellglied (15, 16) aus dem gleichen oder einem anderen Leichtmetall geformt werden und

c) das Gehäuseteil (3, 6) zur Erzeugung der Laufbahn (3a, 3b, 6b) oder das Stellglied (15, 16) zur Erzeugung der Stellglied-Gleitfläche (15a, 16a) mit dem Gleitmaterial beschichtet oder
das Leichtmetall des Gehäuseteils (3, 6) oder das Leichtmetall des Stellglieds (15, 16) an der Oberfläche in das Gleitmaterial umgewandelt wird oder werden.


 
28. Verfahren nach dem vorhergehenden Anspruch, bei dem wenigstens eines aus Gehäuseteil (3, 6) und Stellglied (15, 16) im Bereich der Laufbahn (3a, 3b, 6b) oder der Stellglied-Gleitfläche (15a, 16a) keramisiert, vorzugsweise eloxiert, nitriert oder mit einer Kunststoffbeschichtung, einem Gleitlack, einer WC-Beschichtung, einer Ferroprint-Beschichtung oder einer Nano-Beschichtung versehen wird.
 
29. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Gehäuseteil (3) aus einer Al-Basislegierung im Sandguss, Kokillenguss oder Druckguss geformt und die Laufbahn (3a, 3b, 6b) vorzugsweise durch mechanische Bearbeitung des Gussmaterials geschaffen wird.
 
30. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Stellglied (15, 16) zur Schaffung der Stellglied-Gleitfläche (15a, 16a) mit einem gleitmodifizierten Kunststoff beschichtet wird.
 




Zeichnung








Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente